1 Andréasson, H., “Controlling the propagation of the support for the relativistic Vlasov equation with a selfconsistent Lorentz invariant field”, Indiana Univ. Math. J., 45, 617–642, (1996).
2 Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386–1405, (1996).
3 Andréasson, H., “Global existence of smooth solutions in three dimensions for the semiconductor Vlasov–Poisson–Boltzmann equation”, Nonlinear Anal., 28, 1193–1211, (1997).
4 Andréasson, H., “Global Foliations of Matter Spacetimes with Gowdy Symmetry”, Commun. Math. Phys., 206, 337–365, (1999).
5 Andréasson, H., Calogero, S., and Illner, R., “On Blowup for Gain-Term-Only classical and relativistic Boltzmann equations”, submitted. To appear in Math. Method. Appl. Sci.
6 Andréasson, H., Calogero, S., and Rein, G., “Global classical solutions to the spherically symmetric Nordström–Vlasov system”, (August 2003)URL:
External Linkhttp://arXiv.org/abs/gr-qc/0311027. To appear in Math. Proc. Camb. Phil. Soc.
7 Andréasson, H., Rein, G., and Rendall, A.D., “On the Einstein–Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529–549, (2003).
8 Andréasson, H., Rendall, A.D., and Weaver, M., “Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237–262, (2004).
9 Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the Inhomogeneous Conformal Einstein–Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395–419, (2000).
10 Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283–288, (1992).
11 Bancel, D., and Choquet-Bruhat, Y., “Existence, uniqueness and local stability for the Einstein–Maxwell–Boltzmann system”, Commun. Math. Phys., 33, 83–96, (1993).
12 Bardos, C., and Degond, P., “Global existence for the Vlasov–Poisson equation in three space variables with small initial data”, Ann. Inst. Henri Poincare, 2, 101–118, (1985).
13 Bardos, C., Degond, P., and Ha, T.N., “Existence globale des solutions des équations de Vlasov–Poisson relativistes en dimension 3”, C. R. Acad. Sci., 301, 265–268, (1985).
14 Batt, J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equations, 25, 342–364, (1977).
15 Batt, J., Faltenbacher, W., and Horst, E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Ration. Mech. Anal., 93, 159–183, (1986).
16 Berger, B.K., Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997).
17 Bouchut, F., Golse, F., and Pallard, C., “Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system”, Arch. Ration. Mech. Anal., 170, 1–15, (2003).
18 Burnett, G.A., and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111–123, (1996).
19 Calogero, S., “Spherically symmetric steady states of galactic dynamics in scalar gravity”, Class. Quantum Grav., 20, 1729–1741, (2003).
20 Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys., 45, 4042–4052, (2004).
21 Calogero, S., and Lee, H., “The non-relativistic limit of the Nordström–Vlasov system”, Commun. Math. Sci., 2, 19–34, (2004).
22 Calogero, S., and Rein, G., “On classical solutions of the Nordström–Vlasov system”, Commun. Part. Diff. Eq., 28, 1863–1885, (2003).
23 Calogero, S., and Rein, G., “Global weak solutions to the Nordström–Vlasov system”, J. Differ. Equations, 204, 323–338, (2004).
24 Cercignani, C., Illner, R., and Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106, (Springer, Berlin, Germany; New York, U.S.A., 1988).
25 Choquet-Bruhat, Y., “Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville”, Ann. Inst. Fourier, 21, 181–201, (1971).
26 Choquet-Bruhat, Y., and Noutchegueme, N., “Systéme de Yang–Mills–Vlasov en jauge temporelle”, Ann. Inst. Henri Poincare, 55, 759–787, (1991).
27 Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337–361, (1986).
28 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991).
29 Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607–653, (1994).
30 Christodoulou, D., “Self-Gravitating Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Soft to Hard”, Arch. Ration. Mech. Anal., 134, 97–154, (1996).
31 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217, (1999).
32 Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, (March 2004). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403032.
33 Dafermos, M., and Rendall, A.D., “An extension principle for the Einstein–Vlasov system in spherical symmetry”, (November 2004). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411075.
34 de Groot, S.R., van Leeuwen, W.A., and van Weert, C.G., Relativistic Kinetic Theory: Principles and Applications, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1980).
35 DiPerna, R.J., and Lions, P.-L., “Global weak solutions of Vlasov–Maxwell systems”, Commun. Pure Appl. Math., 42, 729–757, (1989).
36 DiPerna, R.J., and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math., 130, 321–366, (1989).
37 Dudyński, M., and Ekiel-Jezewska, M.L., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991–1001, (1992).
38 Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the summer school held 14–26 August 1972 at the Banff Centre, Banff, Alberta, Atrophysics and Space Science Library, vol. 38, pp. 1–125, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1973).
39 Fjällborg, M., “On the cylindrically symmetric Einstein–Vlasov system”, (March 2005)URL:
External Linkhttp://arXiv.org/abs/gr-qc/0503098. Preprint Karlstad University Studies 2004:19.
40 Ganguly, K., and Victory, H., “On the convergence for particle methods for multidimensional Vlasov–Poisson systems”, SIAM J. Numer. Anal., 26, 249–288, (1989).
41 Glassey, R.T., The Cauchy Problem in Kinetic Theory, (SIAM, Philadelphia, U.S.A., 1996).
42 Glassey, R.T., and Schaeffer, J., “On symmetric solutions to the relativistic Vlasov–Poisson system”, Commun. Math. Phys., 101, 459–473, (1985).
43 Glassey, R.T., and Schaeffer, J., “The ‘two and one half dimensional’ relativistic Vlasov–Maxwell system”, Commun. Math. Phys., 185, 257–284, (1997).
44 Glassey, R.T., and Schaeffer, J., “The Relativistic Vlasov–Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355–374, (1998).
45 Glassey, R.T., and Schaeffer, J., “On global symmetric solutions to the relativistic Vlasov–Poisson equation in three space dimensions”, Math. Method. Appl. Sci., 24, 143–157, (2001).
46 Glassey, R.T., and Strauss, W., “Singularity formation in a collisionless plasma could only occur at high velocities”, Arch. Ration. Mech. Anal., 92, 56–90, (1986).
47 Glassey, R.T., and Strauss, W., “Absence of shocks in an initially dilute collisionless plasma”, Commun. Math. Phys., 113, 191–208, (1987).
48 Glassey, R.T., and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res. Inst. Math. Sci., 29, 301–347, (1993).
49 Glassey, R.T., and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Transp. Theor. Stat. Phys., 24, 657–678, (1995).
50 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998).
51 Guo, Y., and Rein, G., “Isotropic steady states in stellar dynamics”, Commun. Math. Phys., 219, 607–629, (2001).
52 Henkel, O., “Global prescribed mean curvature foliations in cosmological spacetimes with matter, Part I”, J. Math. Phys., 43, 2439–2465, (2002).
53 Henkel, O., “Global prescribed mean curvature foliations in cosmological spacetimes with matter, Part II”, J. Math. Phys., 43, 2466–2485, (2002).
54 Horst, E., “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation (Parts I and II)”, Math. Method. Appl. Sci., 6, 262–279, (1982).
55 Horst, E., “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math. Method. Appl. Sci., 16, 75–86, (1993).
56 Horst, E., and Hunze, R., “Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation”, Math. Method. Appl. Sci., 6, 262–279, (1984).
57 Illner, R., and Rein, G., “Time decay of the solutions of the Vlasov–Poisson system in the plasma physical case”, Math. Method. Appl. Sci., 19, 1409–1413, (1996).
58 Illner, R., and Shinbrot, M., “The Boltzmann equation, global existence for a rare gas in an infinite vacuum”, Commun. Math. Phys., 95, 217–226, (1984).
59 Isenberg, J.A., and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 3679–3688, (1998).
60 Klainerman, S., and Staffilani, G., “A new approach to study the Vlasov–Maxwell system”, Commun. Pure Appl. Anal., 1, 103–125, (2002).
61 Kunze, M., and Rendall, A.D., “The Vlasov–Poisson system with radiation damping.”, Ann. Henri Poincare, 2, 857–886, (2001).
62 Lee, H., “Global existence of solutions of the Nordström–Vlasov system in two space dimensions”, (2003). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/math-ph/0312014.
63 Lee, H., “Asymptotic behaviour of the Einstein–Vlasov system with a positive cosmological constant”, Math. Proc. Camb. Phil. Soc., 137, 495–509, (2004).
64 Lee, H., “The Einstein–Vlasov system with a scalar field”, (April 2004). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404007.
65 Lions, P.-L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications”, J. Math. Kyoto Univ., 34, 391–427, (1994).
66 Lions, P.-L., and Perthame, B., “Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system”, Invent. Math., 105, 415–430, (1991).
67 Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55–69, (1998).
68 Martín-García, J.M., and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein–Vlasov system”, Phys. Rev. D, 65, 084026, 1–18, (2002).
69 Nishida, T., and Imai, K., “Global solutions to the initial value problem for the nonlinear Boltzmann equation”, Publ. Res. Inst. Math. Sci., 12, 229–239, (1976).
70 Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533–554, (1913).
71 Noundjeu, P., “On a regularity theorem for solutions of the spherically symmetric Einstein–Vlasov–Maxwell system”, (2004). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406021.
72 Noundjeu, P., and Noutchegueme, N., “Local existence and continuation criterion for solutions of the spherically symmetric Einstein–Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36, 1373–1398, (2004). Related online version (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311081.
73 Noundjeu, P., Noutchegueme, N., and Rendall, A.D., “Existence of initial data satisfying the constraints for the spherically symmetric Einstein–Vlasov–Maxwell system”, J. Math. Phys., 45, 668–676, (2004).
74 Noutchegueme, N., and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann equation in the homogeneous case on the Minkowski space-time”, (July 2003). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307065.
75 Olabarrieta, I., and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007, 1–10, (2001).
76 Pallard, C., “On global smooth solutions to the 3D Vlasov–Nordström system”, submitted. To appear in Annales de l’I.H.P. Analyse non linéaire.
77 Pallard, C., “On the boundedness of the momentum support of solutions to the relativistic Vlasov–Maxwell system”, submitted. To appear in Indiana Univ. Math. J.
78 Pallard, C., “A pointwise bound on the electromagnetic field generated by a collisionless plasma”, unknown status. Preprint.
79 Perthame, B., “Time decay, propagation of low moments and dispersive effects for kinetic equations”, Commun. Part. Diff. Eq., 21, 659–686, (1996).
80 Pfaffelmoser, K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95, 281–303, (1992).
81 Rein, G., “Static solutions of the spherically symmetric Vlasov–Einstein system”, Math. Proc. Camb. Phil. Soc., 115, 559–570, (1994).
82 Rein, G., “Cosmological solutions of the Vlasov–Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739–762, (1996).
83 Rein, G., “Growth estimates for the Vlasov–Poisson system in the plasma physics case”, Math. Nachr., 191, 269–278, (1998).
84 Rein, G., “Static shells for the Vlasov–Poisson and Vlasov–Einstein systems”, Indiana Univ. Math. J., 48, 335–346, (1999).
85 Rein, G., “Stationary and static stellar dynamical models with axial symmetry”, Nonlinear Anal., 41, 313–344, (2000).
86 Rein, G., “Global weak solutions of the relativistic Vlasov–Maxwell system revisited”, Commun. Math. Sci., 2, 145–148, (2004).
87 Rein, G., “On future completeness for the Einstein–Vlasov system with hyperbolic symmtery”, Math. Proc. Camb. Phil. Soc., 137, 237–244, (2004).
88 Rein, G., and Rendall, A.D., “Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data”, Commun. Math. Phys., 150, 561–583, (1992). Erratum: Commun. Math. Phys. 176, (1996), 475–478.
89 Rein, G., and Rendall, A.D., “The Newtonian limit of the spherically symmetric Vlasov–Einstein system”, Commun. Math. Phys., 150, 585–591, (1992).
90 Rein, G., and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov–Einstein system”, Ann. Inst. Henri Poincare A, 59, 383–397, (1993).
91 Rein, G., and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363–380, (2000).
92 Rein, G., Rendall, A.D., and Schaeffer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov–Einstein system”, Commun. Math. Phys., 168, 467–478, (1995).
93 Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998).
94 Rein, G., and Rodewis, T., “Convergence of a particle-in-cell scheme for the spherically symmetric Vlasov–Einstein system”, Indiana Univ. Math. J., 52, 821–862, (2003).
95 Rendall, A.D., “Cosmic censorship and the Vlasov equation”, Class. Quantum Grav., 9, L99–L104, (1992).
96 Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Vlasov–Einstein system”, Commun. Math. Phys., 163, 89–112, (1994).
97 Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517–1533, (1995).
98 Rendall, A.D., “Global properties of locally homogeneous cosmological models with matter.”, Math. Proc. Camb. Phil. Soc., 118, 511–526, (1995).
99 Rendall, A.D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589–3598, (1997).
100 Rendall, A.D., “Existence of Constant Mean Curvature Foliations in Spacetimes with Two-Dimensional Local Symmetry”, Commun. Math. Phys., 189, 145–164, (1997).
101 Rendall, A.D., “An introduction to the Einstein–Vlasov system”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 - March 30, 1996, Banach Center Publications, vol. 41, pp. 35–68, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997).
102 Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34, 1277–1294, (2002). Related online version (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112040.
103 Rendall, A.D., and Tod, K.P., “Dynamics of spatially homogeneous solutions of the Einstein–Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705–1726, (1999).
104 Rendall, A.D., and Uggla, C., “Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein–Vlasov equations”, Class. Quantum Grav., 17, 4697–4713, (2000).
105 Schaeffer, J., “The classical limit of the relativistic Vlasov–Maxwell system”, Commun. Math. Phys., 104, 403–421, (1986).
106 Schaeffer, J., “Discrete approximation of the Poisson–Vlasov system”, Quart. Appl. Math., 45, 59–73, (1987).
107 Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov–Einstein system”, Commun. Math. Phys., 204, 313–327, (1999).
108 Shizuta, Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl. Math., 36, 705–754, (1983).
109 Stewart, J.M., Non-equilibrium relativistic kinetic theory, Lecture Notes in Physics, vol. 10, (Springer, Berlin, Germany; New York, U.S.A., 1971).
110 Synge, J.L., The Relativistic Gas, (North-Holland; Interscience, Amsterdam, Netherlands; New York, U.S.A., 1957).
111 Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric Einstein–Vlasov system”, Class. Quantum Grav., 21, 5333–5346, (2004). Related online version (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407062.
112 Tchapnda, S.B., and Noutchegueme, N., “The surface-symmetric Einstein–Vlasov system with cosmological constant.”, (April 2003). URL (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0304098.
113 Tchapnda, S.B., and Rendall, A.D., “Global existence and asymptotic behaviour in the future for the Einstein–Vlasov system with positive cosmological constant”, Class. Quantum Grav., 20, 3037–3049, (2003).
114 Tegankong, D., Noutchegueme, N., and Rendall, A.D., “Local existence and continuation criteria for solutions of the Einstein–Vlasov-scalar field system with surface symmetry”, J. Hyperbol. Differ. Equations, 1, 691–724, (2004). Related online version (cited on 22 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405039.
115 Ukai, S., “On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation”, Proc. Japan Acad., 50, 179–184, (1974).
116 Villani, C., “A review of mathematical topics in collisional kinetic theory”, in Friedlander, S., and Serre, D., eds., Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 71–305, (Elsevier, Amsterdam, Netherlands; Boston, U.S.A., 2002). Related online version (cited on 22 February 2005):
External Linkhttp://www.umpa.ens-lyon.fr/~cvillani/GZPS/B01.Handbook.ps.gz.
117 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
118 Weaver, M., “On the area of the symmetry orbits in T2 symmetric spacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079–1098, (2004).
119 Wennberg, B., “Regularity in the Boltzmann equation and the Radon transform”, Commun. Part. Diff. Eq., 19, 2057–2074, (1994).
120 Wennberg, B., “The geometry of binary collisions and generalized Radon transforms”, Arch. Ration. Mech. Anal., 139, 291–302, (1997).
121 Wolansky, G., “Static Solutions of the Vlasov–Einstein System”, Arch. Ration. Mech. Anal., 156, 205–230, (2001).