1 Armstrong, J.W., Estabrook, F.B., and Tinto, M., “Time-Delay Interferometry for Space-based Gravitational Wave Searches”, Astrophys. J., 527, 814-826, (1999).
2 Becker, T., and Weispfenning, V., Gröbner Bases: A Computational Approach to Commutative Algebra, vol. 141 of Graduate Texts in Mathematics, (Springer, Berlin, Germany; New York, U.S.A., 1993).
3 Bender, P.L., Brillet, A., Ciufolini, I., Cruise, A.M., Cutler, C., Danzmann, K., Fidecaro, F., Folkner, W.M., Hough, J., McNamara, P.W., Peterseim, M., Robertson, D., Rodrigues, M., Rüdiger, A., Sandford, M., Schäfer, G., Schilling, R., Schutz, B.F., Speake, C.C., Stebbins, R.T., Sumner, T.J., Touboul, P., Vinet, J.-Y., Vitale, S., Ward, H., and Winkler, W. (LISA Study Team), LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space. Pre-Phase A report, MPQ-233, (Max-Planck-Institut für Quantenoptik, Garching, Germany, 1998). Related online version (cited on 06 July 2005):
External Linkftp://ftp.ipp-garching.mpg.de/pub/grav/lisa/pdd/.
4 Bender, P.L., and Hils, D., “Confusion noise level due to galactic and extragalactic binaries”, Class. Quantum Grav., 14, 1439-1444, (1997).
5 Cornish, N.J., and Hellings, R.W., “The effects of orbital motion on LISA time delay interferometry”, Class. Quantum Grav., 20, 4851-4860, (2003).
6 Dhurandhar, S.V., Rajesh Nayak, K., and Vinet, J.Y., “Algebraic approach to time-delay data analysis for LISA”, Phys. Rev. D, 65, 102002-1-16, (2002).
7 Estabrook, F.B., Tinto, M., and Armstrong, J.W., “Time-delay analysis of LISA gravitational wave data: Elimination of spacecraft motion effects”, Phys. Rev. D, 62, 042002-1-8, (2000).
8 Estabrook, F.B., and Wahlquist, H.D., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439-447, (1975).
9 Faller, J.E., and Bender, P.L., “A possible laser gravitational wave experiment in space”, in Taylor, B.N., and Phillips, W.D., eds., Precision Measurement and Fundamental Constants II, Proceedings of the Second International Conference held at the National Bureau of Standards, Gaithersburg, MD, June 8-12, 1981, vol. 617 of NBS Special Publication, 689-690, (U.S. Dept. of Commerce / National Bureau of Standards, Washington, U.S.A., 1984).
10 Faller, J.E., Bender, P.L., Hall, J.L., Hils, D., Stebbins, R.T., and Vincent, M.A., “An antenna for laser gravitational-wave observations in space”, Adv. Space Res., 9(9), 107-111, (1989). COSPAR and IAU, 27th Plenary Meeting, 15th Symposium on Relativistic Gravitation, Espoo, Finland, July 18-29, 1988.
11 Faller, J.E., Bender, P.L., Hall, J.L., Hils, D., and Vincent, M.A., “Space antenna for gravitational wave astronomy”, in Longdon, N., and Melita, O., eds., Kilometric Optical Arrays in Space, Proceedings of the Colloquium held 23-25 October 1984, Cargèse, Corsica, France, vol. SP-226 of ESA Conference Proceedings, 157-163, (ESA Publications Division, Noordwijk, Netherlands, 1985).
12 Finn, L.S., “Aperture synthesis for gravitational-wave data analysis: Deterministic sources”, Phys. Rev. D, 63, 102001-1-18, (2001).
13 Folkner, W.M., Hechler, F., Sweetser, T.H., Vincent, M.A., and Bender, P.L., “LISA orbit selection and stability”, Class. Quantum Grav., 14, 1405-1410, (1997).
14 Giampieri, G., Hellings, R.W., Tinto, M., and Faller, J.E., “Algorithms for unequal-arm Michelson interferometers”, Opt. Commun., 123, 669-678, (1996).
15 Jenkins, G.M., and Watts, D.G., Spectral Analysis and its Applications, (Holden-Day, San Francisco, U.S.A., 1968).
16 Kreuzer, M., and Robbiano, L., Computational Commutative Algebra 1, (Springer, Berlin, Germany; New York, U.S.A., 2000).
17 Nelemans, G., Yungelson, L.R., and Portegies Zwart, S.F., “The gravitational wave signal from the Galactic disk population of binaries containing two compact objects”, Astron. Astrophys., 375, 890-898, (2001).
18 Noble, B., Applied Linear Algebra, (Prentice-Hall, Englewood Cliffs, U.S.A., 1969).
19 Prince, T.A., Tinto, M., Larson, S.L., and Armstrong, J.W., “LISA optimal sensitivity”, Phys. Rev. D, 66, 122002-1-7, (2002).
20 Rajesh Nayak, K., Dhurandhar, S.V., Pai, A., and Vinet, J.-Y., “Optimizing the directional sensitivity of LISA”, Phys. Rev. D, 68, 122001-1-11, (2003).
21 Rajesh Nayak, K., Pai, A., Dhurandhar, S.V., and Vinet, J.-Y., “Improving the sensitivity of LISA”, Class. Quantum Grav., 20, 1217-1231, (2003).
22 Rajesh Nayak, K., and Vinet, J.-Y., unknown status. In preparation.
23 Selby, S.M., Standard of Mathematical Tables, (The Chemical Rubber Co., Cleveland, U.S.A., 1964).
24 Shaddock, D.A., “Operating LISA as a Sagnac interferometer”, Phys. Rev. D, 69, 022001-1-6, (2004).
25 Shaddock, D.A., Tinto, M., Estabrook, F.B., and Armstrong, J.W., “Data combinations accounting for LISA spacecraft motion”, Phys. Rev. D, 68, 061303-1-4, (2003).
26 Summers, D., “Algorithm tradeoffs”, unknown status, (2003). Talk given at the 3rd progress meeting of the ESA funded LISA PMS Project. ESTEC, NL, February 2003.
27 Tinto, M., “Spacecraft to spacecraft coherent laser tracking as a xylophone interferometer detector of gravitational radiation”, Phys. Rev. D, 58, 102001-1-12, (1998).
28 Tinto, M., “The Cassini Ka-band gravitational wave experiments”, Class. Quantum Grav., 19, 1767-1773, (2002).
29 Tinto, M., and Armstrong, J.W., “Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation”, Phys. Rev. D, 59, 102003-1-11, (1999).
30 Tinto, M., Armstrong, J.W., and Estabrook, F.B., “Discriminating a gravitational wave background from instrumental noise in the LISA detector”, Phys. Rev. D, 63, 021101-1-3, (2001).
31 Tinto, M., and Estabrook, F.B., “Parallel beam interferometric detectors of gravitational waves”, Phys. Rev. D, 52, 1749-1754, (1995).
32 Tinto, M., Estabrook, F.B., and Armstrong, J.W., “Time-Delay Interferometry and LISA’s Sensitivity to Sinusoidal Gravitational Waves”, other, Caltech, (2002). URL (cited on 06 July 2005):
External Linkhttp://www.srl.caltech.edu/lisa/tdi_wp/LISA_Whitepaper.pdf.
33 Tinto, M., Estabrook, F.B., and Armstrong, J.W., “Time-delay interferometry for LISA”, Phys. Rev. D, 65, 082003-1-12, (2002).
34 Tinto, M., Estabrook, F.B., and Armstrong, J.W., “Time delay interferometry with moving spacecraft arrays”, Phys. Rev. D, 69, 082001-1-10, (2004).
35 Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram Research. URL (cited on 06 July 2005):
External Linkhttp://www.wolfram.com/products/mathematica/.