Go to previous page Go up Go to next page

1.2 A brief history of fluids

The two fluids air and water are essential to human survival. This obvious fact implies a basic human need to divine their innermost secrets. Homo Sapiens has always needed to anticipate air and water behavior under a myriad of circumstances, such as those that concern water supply, weather, and travel. The essential importance of fluids for survival, and that they can be exploited to enhance survival, implies that the study of fluids probably reaches as far back into antiquity as the human race itself. Unfortunately, our historical record of this ever-ongoing study is not so great that we can reach very far accurately.

A wonderful account (now in Dover print) is “A History and Philosophy of Fluid Mechanics” by G.A. Tokaty [111Jump To The Next Citation Point]. He points out that while early cultures may not have had universities, government sponsored labs, or privately funded centers pursuing fluids research (nor the Living Reviews archive on which to communicate results!), there was certainly some collective understanding. After all, there is a clear connection between the viability of early civilizations and their access to water. For example, we have the societies associated with the Yellow and Yangtze rivers in China, the Ganges in India, the Volga in Russia, the Thames in England, and the Seine in France, to name just a few. We should also not forget the Babylonians and their amazing technological (irrigation) achievements in the land between the Tigris and Euphrates, and the Egyptians, whose intimacy with the flooding of the Nile is well documented. In North America, we have the so-called Mississippians, who left behind their mound-building accomplishments. For example, the Cahokians (in Collinsville, Illinois) constructed Monk’s Mound, the largest pre-Columbian earthen structure in existence that is “…over 100 feet tall, 1000 feet long, and 800 feet wide (larger at its base than the Great Pyramid of Giza)” (see External Linkhttp://en.wikipedia.org/wiki/Monk's_Mound).

In terms of ocean and sea travel, we know that the maritime ability of the Mediterranean people was a main mechanism for ensuring cultural and economic growth and societal stability. The finely-tuned skills of the Polynesians in the South Pacific allowed them to travel great distances, perhaps reaching as far as South America, and certainly making it to the “most remote spot on the Earth”, Easter Island. Apparently, they were remarkably adept at reading the smallest of signs – water color, views of weather on the horizon, subtleties of wind patterns, floating objects, birds, etc. – as indication of nearby land masses. Finally, the harsh climate of the North Atlantic was overcome by the highly accomplished Nordic sailors, whose skills allowed them to reach several sites in North America. Perhaps it would be appropriate to think of these early explorers as adept geophysical fluid dynamicists/oceanographers?

Many great scientists are associated with the study of fluids. Lost are the names of those individuals who, almost 400,000 years ago, carved “aerodynamically correct” [46] wooden spears. Also lost are those who developed boomerangs and fin-stabilized arrows. Among those not lost is Archimedes, the Greek mathematician (287 – 212 BC), who provided a mathematical expression for the buoyant force on bodies. Earlier, Thales of Miletus (624 – 546 BC) asked the simple question: What is air and water? His question is profound since it represents a clear departure from the main, myth-based modes of inquiry at that time. Tokaty ranks Hero of Alexandria as one of the great, early contributors. Hero (c. 10 – 70) was a Greek scientist and engineer, who left behind many writings and drawings that, from today’s perspective, indicate a good grasp of basic fluid mechanics. To make complete account of individual contributions to our present understanding of fluid dynamics is, of course, impossible. Yet it is useful to list some of the contributors to the field. We provide a highly subjective “timeline” in Figure 1View Image. Our list is to a large extent focussed on the topics covered in this review, and includes chemists, engineers, mathematicians, philosophers, and physicists. It recognizes those who have contributed to the development of non-relativistic fluids, their relativistic counterparts, multi-fluid versions of both, and exotic phenomena such as superfluidity. We have provided this list with the hope that the reader can use these names as key words in a modern, web-based literature search whenever more information is required.

View Image

Figure 1: A “timeline” focussed on the topics covered in this review, including chemists, engineers, mathematicians, philosophers, and physicists who have contributed to the development of non-relativistic fluids, their relativistic counterparts, multi-fluid versions of both, and exotic phenomena such as superfluidity.

Tokaty [111] discusses the human propensity for destruction when it comes to our water resources. Depletion and pollution are the main offenders. He refers to a “Battle of the Fluids” as a struggle between their destruction and protection. His context for this discussion was the Cold War. He rightly points out the failure to protect our water and air resources by the two predominant participants – the USA and USSR. In an ironic twist, modern study of the relativistic properties of fluids has also a “Battle of the Fluids”. A self-gravitating mass can become absolutely unstable and collapse to a black hole, the ultimate destruction of any form of matter.

  Go to previous page Go up Go to next page