1 Alford, M., Berges, J., and Rajagopal, K., “Magnetic Fields within Color Superconducting Neutron Star Cores”, Nucl. Phys. B, 571, 269–284, (2000). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/2000NuPhB.571..269A
2 Amsden, A.A., Bertsch, G.F., Harlow, F.H., and Nix, J.R., “Relativistic Hydrodynamic Theory of Heavy-Ion Collisions”, Phys. Rev. Lett., 35, 905–908, (1975). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/1975PhRvL..35..905A
3 Amsden, A.A., Harlow, F.H., and Nix, J.R., “Relativistic Nuclear Fluid Dynamics”, Phys. Rev. C, 15, 2059–2071, (1977). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/1977PhRvC..15.2059A
4 Andersson, N., “TOPICAL REVIEW: Gravitational Waves from Instabilities in Relativistic Stars”, Class. Quantum Grav., 20, 105–144, (2003). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/2002astro.ph.11057A
5 Andersson, N., and Comer, G.L., “On the Dynamics of Superfluid Neutron Star Cores”, Mon. Not. R. Astron. Soc., 328, 1129–1143, (2005). Related online version (cited on 14 December 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0101193
6 Andersson, N., and Comer, G.L., “A Flux-Conservative Formalism for Convective and Dissipative Multi-Fluid Systems, with Application to Newtonian Superfluid Neutron Stars”, Class. Quantum Grav., 23, 5505–5529, (2006)
7 Andersson, N., Comer, G.L., and Grosart, K., “Lagrangian Perturbation Theory of Non-relativistic Rotating Superfluid Stars”, Mon. Not. R. Astron. Soc., 355, 918–928, (2004)
8 Andreev, A.F., and Bashkin, E.P., “Three-Velocity Hydrodynamics of Superfluid Solutions”, Zh. Eksp. Teor. Fiz., 69, 319–326, (1975)
9 Anile, A.M., Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989)
10 Arnold, V.I., Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, (Springer, Berlin, Germany; New York, U.S.A., 1995), 2nd edition
11 Bekenstein, J.D., “Helicity Conservation Laws for Fluids and Plasmas”, Astrophys. J., 319, 207–214, (1987). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/1987ApJ...319..207B
12 Belenkij, S.Z., and Landau, L.D., “Hydrodynamic Theory of Multiple Production of Particles”, Usp. Fiz. Nauk, 56, 309, (1955)
13 Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982)
14 Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., “Axisymmetric rotating relativistic bodies: a new numerical approach for ‘exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993)
15 Carruthers, P., “Heretical Models of Particle Production”, Ann. N.Y. Acad. Sci., 229, 91–123, (1974)
16 Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233–238, (1970). Related online version (cited on 14 December 2006):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1103842335
17 Carter, B., “The Canonical Treatment of Heat Conduction and Superfluidity in Relativistic Hydrodynamics”, in Dadhich, N., Rao, J.K., Narlikar, J.V., and Vishveshwara, C.V., eds., A Random Walk in General Relativity and Cosmology: Festschrift for Professors P.C. Vaidya & A.K. Raychaudhuri, 49–62, (Wiley Eastern, New Delhi, India, 1983)
18 Carter, B., “Conductivity with Causality in Relativistic Hydrodynamics: The Regular Solution to Eckart’s Problem”, in Iyer, B.R., Kembhavi, A., Narlikar, J.V., and Vishveshwara, C.V., eds., Highlights in Gravitation and Cosmology, Proceedings of the International Conference on Gravitation and Cosmology, Goa, India, 14–19 December 1987,  58, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1988)
19 Carter, B., “Covariant Theory of Conductivity in Ideal Fluid or Solid Media”, in Anile, A., and Choquet-Bruhat, M., eds., Relativistic Fluid Dynamics, Lectures given at the 1st 1987 session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Noto, Italy, May 25 – June 3, 1987, vol. 1385 of Lecture Notes in Mathematics, 1–64, (Springer, Berlin, Germany; New York, U.S.A., 1989)
20 Carter, B., “Convective Variational Approach to Relativistic Thermodynamics of Dissipative Fluids”, Proc. R. Soc. London, Ser. A, 433, 45, (1991)
21 Carter, B., “Basic Brane Theory”, Class. Quantum Grav., 9, 19–33, (1992)
22 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-fluid Models for Neutron Stars: I. Milne–Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–326, (2004)
23 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars: II. Stress-Energy Tensors and Virial Theorems”, Int. J. Mod. Phys. D, 14, 717–748, (2005)
24 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-fluid Models for Neutron stars: III. Transvective, Viscous, and Superfluid Drag Dissipation”, Int. J. Mod. Phys. D, 14, 749–774, (2005)
25 Carter, B., and Khalatnikov, I.M., “Momentum, Vorticity and Helicity in Covariant Superfluid Dynamics”, Ann. Phys. (N.Y.), 219, 243–265, (1992)
26 Carter, B., and Khalatnikov, I.M., “Canonically Covariant Formulation of Landau’s Newtonian Superfluid Dynamics”, Rev. Math. Phys., 6, 277–304, (1994)
27 Carter, B., and Langlois, D., “The Equation of State for Cool Relativisitic Two Constituent Superfluid Dynamics”, Phys. Rev. D, 51, 5855–5864, (1995)
28 Carter, B., and Langlois, D., “Kalb–Ramond Coupled Vortex Fibration Model for Relativistic Superfluid Dynamics”, Nucl. Phys. B, 454, 402–424, (1995)
29 Carter, B., and Langlois, D., “Relativistic Models for Superconducting-Superfluid Mixtures”, Nucl. Phys. B, 531, 478–504, (1998)
30 Chandrasekhar, S., “Solutions of Two Problems in the Theory of Gravitational Radiation”, Phys. Rev. Lett., 24, 611–615, (1970)
31 Chandrasekhar, S., and Friedman, J.L., “On the Stability of Axisymmetric Systems to Axisymmetric Perturbations in General Relativity. I. The Equations Governing Nonstationary, Stationary, and Perturbed Systems”, Astrophys. J., 175, 379–405, (1972)
32 Chandrasekhar, S., and Friedman, J.L., “On the Stability of Axisymmetric Systems to Axisymmetric Perturbations in General Relativity. II. A Criterion for the Onset of Instability in Uniformly Rotating Configurations and the Frequency of the Fundamental Mode in Case of Slow Rotation”, Astrophys. J., 176, 745–768, (1972). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1972ApJ...176..745C
33 Clare, R.B., and Strottman, D., “Relativistic hydrodynamics and heavy ion reactions”, Phys. Rep., 141, 177–280, (1986)
34 Comer, G.L., “Do Neutron Star Gravitational Waves Carry Superfluid Imprints?”, Found. Phys., 32, 1903–1942, (2002). Related online version (cited on 29 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0207608
35 Comer, G.L., and Joynt, R., “Relativistic mean field model for entrainment in general relativistic superfluid neutron stars”, Phys. Rev. D, 68, 12, 023002, (2003). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/2003PhRvD..68b3002C
36 Comer, G.L., and Langlois, D., “Hamiltonian Formulation for Multi-constituent Relativistic Perfect Fluids”, Class. Quantum Grav., 10, 2317–2327, (1993)
37 Comer, G.L., and Langlois, D., “Hamiltonian Formulation for Relativistic Superfluids”, Class. Quantum Grav., 11, 709–721, (1994)
38 Comer, G.L., Langlois, D., and Lin, L.M., “Quasinormal modes of general relativistic superfluid neutron stars”, Phys. Rev. D, 60, 1–20, 104025, (1999)
39 Eckart, C., “The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid”, Phys. Rev., 58, 919–924, (1940)
40 Elze, H.-T., Hama, Y., Kodama, T., Makler, M., and Rafelski, J., “Variational Principle for Relativistic Fluid Dynamics”, J. Phys. G, 25, 1935–1957, (1999)
41 Epstein, R.I., “Acoustic Properties of Neutron Stars”, Astrophys. J., 333, 880–894, (1988). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1988ApJ...333..880E
42 Friedman, J.L., “Generic Instability of Rotating Relativistic Stars”, Commun. Math. Phys., 62, 247–278, (1978)
43 Friedman, J.L., and Schutz, B.F., “On the Stability of Relativistic Systems”, Astrophys. J., 200, 204–220, (1975). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1975ApJ...200..204F
44 Friedman, J.L., and Schutz, B.F., “Lagrangian Perturbation Theory of Nonrelativistic Fluids”, Astrophys. J., 221, 937–957, (1978). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1978ApJ...221..937F
45 Friedman, J.L., and Schutz, B.F., “Secular Instability of Rotating Newtonian Stars”, Astrophys. J., 222, 281–296, (1978). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1978ApJ...222..281F
46 Gad-el Hak, M., “Fluid Mechanics from the Beginning to the Third Millennium”, Int. J. Engng. Ed., 14, 177–185, (1998)
47 Geroch, R., “Relativistic theories of dissipative fluids”, J. Math. Phys., 36, 4226–4241, (1995)
48 Glendenning, N.K., Compact Stars: Nuclear Physics, Particle Physics and General Relativity, Astronomy and Astrophysics Library, (Springer, New York, U.S.A.; Berlin, Germany, 1997)
49 Gourgoulhon, E., “An Introduction to Relativistic Hydrodynamics”, in Rieutord, M., and Dubrulle, B., eds., Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, Aussois and Cargèse, France, September 2004 and May 2005, EAS Publications Series, 43–79, (EDP Sciences, Les Ulis, France, 2006). Related online version (cited on 28 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0603009
50 Grad, H., “On the Kinetic Theory of Rarefied Gases”, Commun. Pure Appl. Math., 2, 331–407, (1949)
51 Hartle, J.B., Gravity: An Introduction to Einstein’s General Relativity, (Addison Wesley, San Francisco, U.S.A., 2003)
52 Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979)
53 Hiscock, W.A., and Lindblom, L., “Stability and Causality in Dissipative Relativistic Fluids”, Ann. Phys. (N.Y.), 151, 466–496, (1983)
54 Hiscock, W.A., and Lindblom, L., “Generic instabilities in first-order dissipative relativistic fluid theories”, Phys. Rev. D, 31, 725–733, (1985)
55 Hiscock, W.A., and Lindblom, L., “Linear Plane Waves in Dissipative Relativistic Fluids”, Phys. Rev. D, 35, 3723–3732, (1987)
56 Hiscock, W.A., and Lindblom, L., “Nonlinear pathologies in relativistic heat-conducting fluid theories”, Phys. Lett. A, 131, 509–513, (1988)
57 Israel, W., and Stewart, J.M., “On transient relativistic thermodynamics and kinetic theory. II”, Proc. R. Soc. London, Ser. A, 365, 43–52, (1979)
58 Israel, W., and Stewart, J.M., “Transient Relativistic Thermodynamics and Kinetic Theory”, Ann. Phys. (N.Y.), 118, 341–372, (1979)
59 Kapusta, J., “Viscous Heating of Expanding Fireballs”, Phys. Rev. C, 24, 2545–2551, (1981)
60 Katz, J., “Relativistic Potential Vorticity”, Proc. R. Soc. London, Ser. A, 391, 415–418, (1984)
61 Khalatnikov, I.M., An Introduction to the Theory of Superfluidity, (W.A. Benjamin, New York, U.S.A., 1965)
62 Khalatnikov, I.M., and Lebedev, V.V., “Relativistic Hydrodynamics of a Superfluid Liquid”, Phys. Lett. A, 91, 70–72, (1982)
63 Kokkotas, K.D., and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 29 April 2006):
http://www.livingreviews.org/lrr-1999-2
64 Kreiss, H.-O., Nagy, G.B., Ortiz, O.E., and Reula, O.A., “Global existence and exponential decay for hyperbolic dissipative relativistic fluid theories”, J. Math. Phys., 38, 5272–5279, (1997). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1997JMP....38.5272K
65 Lanczos, C., The Variational Principles of Mechanics, (University of Toronto Press, Toronto, Canada, 1949)
66 Landau, L.D., and Lifshitz, E.M., Fluid Mechanics, vol. 6 of Course of Theoretical Physics, (Pergamon; Addison-Wesley, London, U.K.; Reading, U.S.A., 1959)
67 Langlois, D., Sedrakian, D.M., and Carter, B., “Differential Rotation of Relativistic Superfluids in Neutron Stars”, Mon. Not. R. Astron. Soc., 297, 1189–1201, (1998)
68 Lautrup, J.B., Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, (Institute of Physics Publishing, Bristol, U.K.; Philadelphia, U.S.A., 2005)
69 Lebedev, V.V., and Khalatnikov, I.M., “Relativistic Hydrodynamics of a Superfluid”, Sov. Phys. JETP, 56, 923–930, (1982)
70 Lee, U., “Nonradial oscillations of neutron stars with the superfluid core”, Astron. Astrophys., 303, 515–525, (1995). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1995A&A...303..515L
71 Levi-Civita, T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana”, Rend. Circ. Mat. Palermo, 42, 173–205, (1917)
72 Lichnerowicz, A., Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions, (Benjamin, New York, U.S.A., 1967)
73 Lindblom, L., “The Relaxation Effect in Dissipative Relativistic Fluid Theories”, Ann. Phys. (N.Y.), 247, 1–18, (1996). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/1996AnPhy.247....1L
74 Lindblom, L., and Mendell, G., “Does Gravitational Radiation Limit the Angular Velocities of Superfluid Neutron Stars?”, Astrophys. J., 444, 804–809, (1995). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1995ApJ...444..804L
75 Lockitch, K.H., and Friedman, J.L., “Where are the r-Modes of Isentropic Stars?”, Astrophys. J., 521, 764–788, (1999). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/1999ApJ...521..764L
76 Lovelock, D., and Rund, H., Tensors, Differential Forms, and Variational Principles, (Dover Publications, New York, U.S.A., 1989). Corrected and revised republication of the 1975 edition
77 McDermott, P.N., Van Horn, H.M., and Hansen, C.J., “Nonradial Oscillations of Neutron Stars”, Astrophys. J., 325, 725–748, (1988). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1988ApJ...325..725M
78 Mendell, G., “Superfluid Hydrodynamics in Rotating Neutron Stars. I. Nondissipative Equations”, Astrophys. J., 380, 515–529, (1991). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1991ApJ...380..515M
79 Mendell, G., “Superfluid Hydrodynamics in Rotating Neutron Stars. II. Dissipative Effects”, Astrophys. J., 380, 530–540, (1991). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1991ApJ...380..530M
80 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973)
81 Müller, I., “Zum Paradox der Wärmeleitungstheorie”, Z. Phys., 198, 329–344, (1967)
82 Muronga, A., “Second-Order Dissipative Fluid Dynamics for Ultrarelativistic Nuclear Collisions”, Phys. Rev. Lett., 88, 062302, (2002). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/2001nucl.th...4064M
83 Muronga, A., “Causal theories of dissipative relativistic fluid dynamics for nuclear collisions”, Phys. Rev. C, 69, 16, 034903, (2004). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/2003nucl.th...9055M
84 Olson, T.S., “Maximally incompressible neutron star matter”, Phys. Rev. C, 63, 7, 015802, (2001). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/2001PhRvC..63a5802O
85 Olson, T.S., and Hiscock, W.A., “Effects of frame choice on nonlinear dynamics in relativistic heat-conducting fluid theories”, Phys. Lett. A, 141, 125–130, (1989)
86 Olson, T.S., and Hiscock, W.A., “Relativistic dissipative hydrodynamics and the nuclear equation of state”, Phys. Rev. C, 39, 1818–1826, (1989)
87 Olson, T.S., and Hiscock, W.A., “Stability, causality, and hyperbolicity in Carter’s “regular” theory of relativistic heat-conducting fluids”, Phys. Rev. D, 41, 3687–3695, (1990)
88 Pauli, W., Theory of Relativity, (Dover Publications, New York, U.S.A., 1981). Reprint of English 1958 edition
89 Priou, D., “Comparison Between Variational and Traditional Approaches to Relativistic Thermodynamics of Dissipative Fluids”, Phys. Rev. D, 43, 1223–1234, (1991)
90 Prix, R., Aspects de l’Hydrodynamique Superfluide des Étoiles à Neutrons, Ph.D. Thesis, (Université de Paris XI, Paris, France, 2000)
91 Prix, R., “Variational description of multifluid hydrodynamics: Uncharged fluids”, Phys. Rev. D, 69, 20, 043001, (2004). Related online version (cited on 14 December 2006):
External Linkhttp://adsabs.harvard.edu/abs/2002physics...9024P
92 Pujol, C., and Davesne, D., “Relativistic dissipative hydrodynamics with spontaneous symmetry breaking”, Phys. Rev. C, 67, 014901, (2003). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/2003PhRvC..67a4901P
93 Pullin, D.I., and Saffman, P.G., “Vortex Dynamics in Turbulence”, Annu. Rev. Fluid Mech., 30, 31–51, (1998)
94 Putterman, S.J., Superfluid Hydrodynamics, (North-Holland, Amsterdam, Netherlands, 1974)
95 Radhakrishnan, V., and Manchester, R.N., “Detection of a Change of State in the Pulsar PSR 0833–45”, Nature, 222, 228, (1969)
96 Reichl, L.E., A Modern Course in Statistical Physics, (University of Texas Press, Austin, U.S.A., 1984)
97 Reichley, P.E., and Downs, G.S., “Observed Decrease in the Periods of Pulsar PSR 0833–45”, Nature, 222, 229–230, (1969)
98 Reisenegger, A., and Goldreich, P., “A New Class of g-modes in Neutron Stars”, Astrophys. J., 395, 240–249, (1992). Related online version (cited on 29 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1992ApJ...395..240R
99 Schouten, J.A., Tensor Analysis for Physicists, (Dover Publications, New York, U.S.A., 1989), 2nd edition. Reprint of 1954 edition
100 Schroeder, D.V., An Introduction to Thermal Physics, (Addison Wesley, San Francisco, U.S.A., 2000)
101 Schutz, B.F., “Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle”, Phys. Rev. D, 2, 2762–2773, (1970)
102 Schutz, B.F., “Linear Pulsations and Stability of Differentially Rotating Stellar Models. I. Newtonian Analysis”, Astrophys. J., 24, 319–342, (1972). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1972ApJS...24..319S
103 Schutz, B.F., “Linear Pulsations and Stability of Differentially Rotating Stellar Models. II. General-Relativistic Analysis”, Astrophys. J., 24, 343–374, (1972). Related online version (cited on 28 April 2006):
External Linkhttp://adsabs.harvard.edu/abs/1972ApJS...24..343S
104 Schutz, B.F., Geometrical Methods of Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1980)
105 Smarr, L.L., and York Jr, J.W., “Kinematical conditions in the construction of spacetime”, Phys. Rev. D, 17, 2529–2551, (1978)
106 Son, D.T., “Hydrodynamics of Relativistic Systems with Broken Continuous Symmetries”, Int. J. Mod. Phys. A, 16, 1284–1286, (2001). Related online version (cited on 14 December 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0011246
107 Stewart, J.M., “On transient relativistic thermodynamics and kinetic theory”, Proc. R. Soc. London, Ser. A, 357, 59–75, (1977)
108 Taub, A.H., “General Relativistic Variational Principle for Perfect Fluids”, Phys. Rev., 94, 1468–1470, (1954)
109 Taylor, E.F., and Wheeler, J.A., Spacetime Physics: Introduction to Special Relativity, (W.H. Freeman, New York, U.S.A., 1992), 2nd edition
110 Tilley, D.R., and Tilley, J., Superfluidity and Superconductivity, (Adam Hilger, Bristol, U.K., 1990), 3rd edition
111 Tokaty, G.A., A History and Philosophy of Fluid Mechanics, (Dover Publications, New York, U.S.A., 1994). Reprint of 1971 edition
112 Tolman, R.C., Relativity, Thermodynamics, and Cosmology, (Dover Publications, New York, U.S.A., 1987). Reprint of 1934 edition
113 Vollhardt, D., and Wölfle, P., The Superfluid Phases of Helium 3, (Taylor & Francis, London, U.K.; New York, U.S.A., 2002)
114 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984)
115 Walecka, J.D., Theoretical Nuclear and Subnuclear Physics, vol. 16 of Oxford Studies in Nuclear Physics, (Oxford University Press, New York, U.S.A.; Oxford, U.K., 1995)
116 Weber, F., Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, (Institute of Physics Publishing, Bristol, UK; Philadelphia, U.S.A., 1999)
117 Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, U.S.A., 1972)
118 Weyl, H., Space, Time, Matter, (Dover Publications, New York, U.S.A., 1952), 4th edition. Reprint of 1922 edition
119 Will, C.M., Was Einstein Right?: Putting General Relativity to the Test, (Basic Books, New York, U.S.A., 1986)
120 Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition
121 Will, C.M., “Was Einstein Right? Testing Relativity at the Centenary”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore; Hackensack, U.S.A., 2005). Related online version (cited on 28 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0504086
122 Will, C.M., “Special Relativity: A Centenary Perspective”, in Damour, T., Darrigol, O., Duplantier, B., and Rivasseau, V., eds., Einstein, 1905–2005: Poincaré Seminar 2005, Séminaire Poincaré, IHP, Paris, 9 April 2005, 33–58, (Birkhäuser, Basel, Switzerland; Boston, U.S.A.; Berlin, Germany, 2006). Related online version (cited on 28 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0504085
123 Wilson, J.R., and Mathews, G.J., Relativistic Numerical Hydrodynamics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2003)
124 York Jr, J.W., “Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys. Rev. Lett., 28, 1082–1085, (1972)
125 Zhang, S., “Study on Two Coupled Relativistic Superfluids with Spontaneous Symmetry Breaking”, Phys. Lett. A, 307, 93–98, (2002). Related online version (cited on 14 December 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0206234