1 Abramovici, A., Althouse, W.E., Drever, R.W.P., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D.H., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333, (1992).
2 Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “Erratum: A new class of post-Newtonian approximants to the dynamics of inspiralling compact binaries: Test-mass in the Schwarzschild spacetime”, Phys. Rev. D, 72, 049902, (2005).
3 Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “A new class of post-Newtonian approximants to the dynamics of inspiralling compact binaries: Test-mass in the Schwarzschild spacetime”, Phys. Rev. D, 71, 044029, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0412033.
4 Anderson, J.D., and Williams, J.G., “Long-range tests of the equivalence principle”, Class. Quantum Grav., 18, 2447–2456, (2001).
5 Anderson, J.L., and DeCanio, T.C., “Equations of hydrodynamics in general relativity in the slow motion approximation”, Gen. Relativ. Gravit., 6, 197–237, (1975).
6 Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling binaries”, Phys. Rev. D, 52, 605–620, (1995).
7 Apostolatos, T.A., “Construction of a template family for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 54, 2421–2437, (1996).
8 Apostolatos, T.A., “The Influence of spin spin coupling on inspiraling compact binaries with M1 = M2 and S1 = S2”, Phys. Rev. D, 54, 2438–2441, (1996).
9 Apostolatos, T.A., Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries”, Phys. Rev. D, 49, 6274–6297, (1994).
10 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008, 1–16, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0411146.
11 Asada, H., and Futamase, T., “Post-Newtonian Approximation”, Prog. Theor. Phys. Suppl., 128, 123–181, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9806108.
12 Asada, H., and Futamase, T., “Propagation of gravitational waves from slow motion sources in a Coulomb type potential”, Phys. Rev. D, 56, 6062–6066, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9711009.
13 Ashby, N., and Bertotti, B., “Relativistic effects in local inertial frames”, Phys. Rev. D, 34, 2246–2259, (1986).
14 Bel, L., Deruelle, N., Damour, T., Ibañez, J., and Martin, J., “Poincaré-Invariant Gravitational Field and Equations of Motion of two Pointlike Objects: The Postlinear Approximation of General Relativity”, Gen. Relativ. Gravit., 13, 963–1004, (1981).
15 Bildsten, L., and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180, (1992).
16 Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.-A., and Lasota, J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, France 26 September – 6 October, 1995, 33–66, (Cambridge University Press, Cambridge, U.K., 1995). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9607025.
17 Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian order”, Phys. Rev. D, 55, 714–732, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9609049.
18 Blanchet, L., “Post-Newtonian Gravitational Radiation”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol. 540 of Lecture Notes in Physics, 225–271, (Springer, Berlin, Germany; New York, U.S.A., 2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0004012.
19 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (cited on 3 August 2006):
http://www.livingreviews.org/lrr-2006-4.
20 Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435, (1988).
21 Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408, (1989).
22 Blanchet, L., Damour, T., and Esposito-Farèse, G., “Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69, 124007, 1–51, (2004). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0311052.
23 Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101, (2004). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0406012.
24 Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses”, Phys. Rev. D, 71, 124004, 1–36, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0503044.
25 Blanchet, L., and Faye, G., “Equations of motion of point-particle binaries at the third post-Newtonian order”, Phys. Lett. A, 271, 58–64, (2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0004009.
26 Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675–7714, (2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0004008.
27 Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005, 1–43, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0007051.
28 Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of point-like particles in general relativity”, J. Math. Phys., 42, 4391–4418, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0006100.
29 Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501, 1–5, (2002). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0105099.
30 Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002, 1–20, (1998). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9804079.
31 Blanchet, L., and Iyer, B.R., “Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004, 1–20, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0409094.
32 Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005, 1–41, (2002). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0105098.
33 Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699–2721, (1993).
34 Blandford, R., and Teukolsky, S.A., “Arrival-time analysis for a pulsar in a binary system”, Astrophys. J., 205, 580–591, (1976).
35 Bradaschia, C., Del Fabbro, R., Di Virgilio, A., Giazotto, A., Kautzky, H., Montelatici, V., Passuello, D., Brillet, A., Cregut, O., Hello, P., Man, C.N., Manh, P.T., Marraud, A., Shoemaker, D.H., Vinet, J.-Y., Barone, F., di Fiore, L., Milano, L., Russo, G., Aguirregabiria, J.M., Bel, H., Duruisseau, J.P., Le Denmat, G., Tourrenc, P., Capozzi, M., Longo, M., Lops, M., Pinto, I., Rotoli, G., Damour, T., Bonazzola, S., Marck, J.-A., Gourghoulon, Y., Holloway, L.E., Fuligni, F., Iafolla, V., and Natale, G., “The VIRGO Project: A wide band antenna for gravitational wave detection”, Nucl. Instrum. Methods A, 289, 518–525, (1990).
36 Brumberg, V.A., Essential Relativistic Celestial Mechanics, (Adam Hilger, Bristol, U.K.; Philadelphia, U.S.A., 1991).
37 Brumberg, V.A., and Kopeikin, S.M., “Relativistic Reference Systems and Motion of Test Bodies in the Vicinity of the Earth”, Nuovo Cimento B, 103, 63–98, (1989).
38 Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D.R., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533, (2003).
39 Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971).
40 Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488–1540, (1965).
41 Chandrasekhar, S., “Conservation Laws in General Relativity and in the Post-Newtonian Approximations”, Astrophys. J., 158, 45, (1969).
42 Chandrasekhar, S., and Esposito, F.P., “The 21 2-Post-Newtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153–179, (1970).
43 Chandrasekhar, S., and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55–79, (1969).
44 Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., Marković, D.M., Ori, A., Poisson, E., and Sussman, G.J., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993).
45 Cutler, C., and Thorne, K.S., “An Overview of Gravitational-Wave Sources”, in Bishop, N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21 July, 2001, 72–111, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0204090.
46 Damour, T., “Problème des deux corps et freinage de rayonnement en relativité générale”, C. R. Acad. Sci. Ser. II, 294, 1355–1357, (1982).
47 Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de Physique des Houches, France, 2 – 21 June, 1982, 59–144, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1983).
48 Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, Cargése, France, 15 – 31 July, 1986, vol. 156 of NATO ASI Series B, 3–62, (Plenum Press, New York, U.S.A., 1987).
49 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 128–198, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
50 Damour, T., and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540, (1981).
51 Damour, T., and Deruelle, N., “Lois de conservation d’un système de deux masses ponctuelles en relativité générale”, C. R. Acad. Sci. Ser. II, 293, 877–880, (1981).
52 Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81–84, (1981).
53 Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501, 1–5, (2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0003051. Erratum: Phys. Rev. D 63 (2001) 029903.
54 Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0105038.
55 Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021, 1–11, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0010040. Erratum: Phys. Rev. D 63 (2001) 044021.
56 Damour, T., and Schäfer, G., “Lagrangians for n Point Masses at the Second Post-Newtonian Approximation of General Relativity”, Gen. Relativ. Gravit., 17, 879–905, (1985).
57 Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273–3307, (1991).
58 Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. II. Translational equations of motion”, Phys. Rev. D, 45, 1017–1044, (1992).
59 Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. III. Rotational equations of motion”, Phys. Rev. D, 47, 3124–3135, (1993).
60 Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. IV. Theory of satellite motion”, Phys. Rev. D, 49, 618–635, (1994).
61 Damour, T., and Taylor, J.H., “On the orbital period change of the binary pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991).
62 Danzmann, K. et al., “The GEO-Project. A Long-Baseline Laser Interferometer for the Detection of Gravitational Waves”, in Ehlers, J., and Schäfer, G., eds., Relativistic Gravity Research with Emphasis on Experiments and Observations, Proceedings of the 81 WE-Heraeus-Seminar held at the Physikzentrum, Bad Honnef, Germany, 2 – 6 September, 1991, vol. 410 of Lecture Notes in Physics, 184–209, (Springer, Berlin, Germany; New York, U.S.A., 1992).
63 Dautcourt, G., “Post-Newtonian extension of the Newton-Cartan theory”, Class. Quantum Grav., 14, A109–A118, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9610036.
64 de Andrade, V.C., Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753–778, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0011063.
65 D’Eath, P.D., “Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11, 1387–1403, (1975).
66 D’Eath, P.D., “Interaction of two black holes in the slow-motion limit”, Phys. Rev. D, 12, 2183–2199, (1975).
67 Detweiler, S., and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025, (2003). Related online version (cited on 23 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0202086.
68 DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960).
69 Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics “Enrico Fermi”, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, 156–219, (North-Holland, Amsterdam, Netherlands; New York, U.S.A., 1979).
70 Ehlers, J., “Examples of Newtonian limits of relativistic spacetimes”, Class. Quantum Grav., 14, A119–A126, (1997).
71 Ehlers, J., Rosenblum, A., Goldberg, J.N., and Havas, P., “Comments on gravitational radiation damping and energy loss in binary systems”, Astrophys. J. Lett., 208, L77–L81, (1976).
72 Einstein, A., “Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”, Sitzungsber. Preuss. Akad. Wiss., 1915, 831–839, (1915).
73 Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100, (1938).
74 Epstein, R., “The binary pulsar: Post-Newtonian timing effects”, Astrophys. J., 216, 92–100, (1977). Related online version (cited on 3 August 2006):
External Linkhttp://adsabs.harvard.edu/abs/1977ApJ...216...92E.
75 Finn, L.S., “Binary inspiral, gravitational radiation, and cosmology”, Phys. Rev. D, 53, 2878–2894, (1996).
76 Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81–116, (1939).
77 Fock, V.A., Theory of space, time and gravitation, (Pergamon Press, London, U.K., 1959).
78 Fukumoto, T., Futamase, T., and Itoh, Y., “On the Equation of Motion for a Fast Moving Small Object in the Strong Field Point Particle Limit”, Prog. Theor. Phys., 116, 423–428, (2006). Related online version (cited on 5 July 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0606114.
79 Futamase, T., “Gravitational radiation reaction in the Newtonian limit”, Phys. Rev. D, 28, 2373–2381, (1983).
80 Futamase, T., “Point particle limit and the far zone quadrupole formula in general relativity”, Phys. Rev. D, 32, 2566–2574, (1985).
81 Futamase, T., “The strong field point particle limit and the equations of motion in the binary system”, Phys. Rev. D, 36, 321–329, (1987).
82 Futamase, T., and Schutz, B.F., “Newtonian and post-Newtonian approximation are asymptotic to general relativity”, Phys. Rev. D, 28, 2363–2372, (1983).
83 MPI for Gravitational Physics (Albert Einstein Institute), “GEO 600: The German-British Gravitational Wave Detector”, project homepage. URL (cited on 7 March 2006):
External Linkhttp://geo600.aei.mpg.de.
84 Geroch, R., “Limits of Spacetimes”, Commun. Math. Phys., 13, 180–193, (1969).
85 Gopakumar, A., Iyer, B.R., and Iyer, S., “Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 55, 6030–6053, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9703075.
86 Gopakumar, A., Iyer, B.R., and Iyer, S., “Erratum: Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 57, 6562, (1998).
87 Grishchuk, L.P., and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230–232, (1983).
88 Hadamard, J., Le probèm de Cauchy et les équation aux dérivées partielles linéaries hyperboliques, (Hermann, Paris, France, 1932).
89 Hulse, R.A., and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J. Lett., 195, L51–L53, (1975).
90 Isaacson, R.A., Welling, J.S., and Winicour, J., “Extension of the Einstein quadrupole formula”, Phys. Rev. Lett., 53, 1870–1872, (1984).
91 Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018, 1–43, (2004). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0310029.
92 Itoh, Y., “On the equation of motion of compact binaries in Post-Newtonian approximation”, Class. Quantum Grav., 21, S529–S534, (2004). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0401059.
93 Itoh, Y., and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0310028.
94 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian and multipole terms”, Phys. Rev. D, 62, 064002, 1–12, (2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9910052.
95 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038, 1–21, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0101114.
96 Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882–6893, (1995).
97 Jaranowski, P., and Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems”, Phys. Rev. D, 55, 4712–4722, (1997).
98 Jaranowski, P., and Schäfer, G., “Non-uniqueness of the third post-Newtonian binary point-mass dynamics”, Phys. Rev. D, 57, 5948–5949, (1998). Related online version (cited on 7 June 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9802030.
99 Jaranowski, P., and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291, (1998). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9712075. Erratum: Phys. Rev. D 63 (2001) 029902.
100 Jaranowski, P., and Schäfer, G., “The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9906092.
101 Jaranowski, P., and Schäfer, G., “The binary black-hole dynamics at the third post-Newtonian order in the orbital motion”, Ann. Phys. (Berlin), 9, 378–383, (2000). Related online version (cited on 12 December 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0003054.
102 Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004).
103 Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “Erratum: The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 614, L137–L138, (2004).
104 Kates, R.E., “Gravitational radiation damping of a binary system containing compact objects calculated using matched asymptotic expansions”, Phys. Rev. D, 22, 1871–1878, (1980).
105 Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980).
106 Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467–482, (1980).
107 Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part II. Radiation reaction and higher-order divergent terms”, Gen. Relativ. Gravit., 12, 521–543, (1980).
108 Kidder, L.E., “Coalescing binary systems of compact objects to (post)52-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821–847, (1995). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9506022.
109 Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9211025.
110 Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992).
111 Königsdörffer, C., Faye, G., and Schäfer, G., “Binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004, 1–19, (2003). Related online version (cited on 12 December 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0305048.
112 Königsdörffer, C., and Gopakumar, A., “Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction”, Phys. Rev. D, 71, 024039, 1–18, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0501011.
113 Kopeikin, S.M., “General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516–524, (1985).
114 Kuroda, K. et al., “Status of TAMA”, in Ciufolini, I., and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), Italy, 19 – 23 March 1996, vol. 2 of Edoardo Amaldi Foundation Series, 100, (World Scientific, Singapore; River Edge, U.S.A., 1997).
115 Landau, L.D., and Lifshitz, E.M., The Classical Theory of Fields, vol. 2 of Course of Theoretical Physics, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1975), 4th edition.
116 California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 7 March 2006):
External Linkhttp://www.ligo.caltech.edu.
117 Lorentz, H.A., and Droste, J., “The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory”, in Zeeman, P., and Fokker, A.D., eds., The Collected Papers of H.A. Lorentz, Vol. 5, 330–355, (Nijhoff, The Hague, Netherlands, 1937). English translation of Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649, (1917).
118 Maplesoft, “Maple: Math and Engineering Software by Maplesoft”, institutional homepage. URL (cited on 7 March 2006):
External Linkhttp://www.maplesoft.com/.
119 Marković, D., “Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries”, Phys. Rev. D, 48, 4738–4756, (1993).
120 MathTensor, Inc., “MathTensor for Mathematica”, institutional homepage. URL (cited on 7 March 2006):
External Linkhttp://smc.vnet.net/MathTensor.html.
121 Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457–3476, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9606018.
122 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
123 Nissanke, S., and Blanchet, L., “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007–1032, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0412018.
124 Ó Murchadha, N., and York Jr, J.W., “Gravitational energy”, Phys. Rev. D, 10, 2345–2357, (1974).
125 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Eintein’s equation for many-body system”, Prog. Theor. Phys., 50, 492–514, (1973).
126 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate Condition and Higher Order Gravitational Potential in Canocical Formalism”, Prog. Theor. Phys., 51, 1598–1612, (1974).
127 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higher-order gravitational potential for many-body system”, Prog. Theor. Phys., 51, 1220–1238, (1974).
128 Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57, 6168–6175, (1998). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9710134.
129 Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015, 1–28, (2000). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0007087.
130 Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008, 1–21, (2002). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0201001.
131 Plebański, J.F., and Bażański, S.L., “The general Fokker action principle and its application in general relativity theory”, Acta Phys. Pol., 18, 307, (1959).
132 Poisson, E., “Gravitational waves from inspiraling compact binaries: The quadrupole-moment term”, Phys. Rev. D, 57, 5287–5290, (1998). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9709032.
133 Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9610053.
134 Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360, (1992).
135 Schäfer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81–100, (1985).
136 Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255–270, (1986).
137 Schäfer, G., “Three-body hamiltonian in general relativity”, Phys. Lett. A, 123, 336–339, (1987).
138 Schutz, B.F., “Statistical formulation of gravitational radiation reaction”, Phys. Rev. D, 22, 249–259, (1980).
139 Schutz, B.F., “The Use of Perturbation and Approximation Methods in General Relativity”, in Fustero, X., and Verdaguer, E., eds., Relativistic Astrophysics and Cosmology, Proceedings of the XIVth GIFT International Seminar on Theoretical Physics, Sant Feliu de Guixols, Spain, 27 June – 1 July, 1983,  35, (World Scientific, Singapore, 1984).
140 Schutz, B.F., “Motion and radiation in general relativity”, in Bressan, O., Castagnino, M., and Hamity, V., eds., Relativity, Supersymmetry and Cosmology, Proceedings of the 5th Simposio Latino Americano de Relatividad y Gravitación – SILARG V, 3–80, (World Scientific, Singapore; Philadelphia, U.S.A., 1985).
141 Schutz, B.F., “Determining the Hubble constant from gravitational wave observations”, Nature, 323, 310–311, (1986).
142 Schutz, B.F., “Lighthouses of gravitational wave astronomy”, in Gilfanov, M., Sunyaev, R.A., and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6 – 10 August 2001, (Springer, Berlin, Germany; New York, U.S.A., 2002). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0111095.
143 Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1966).
144 Sobolev, S.L., Partial Differential Equations of Mathematical Physics, (Dover, New York, U.S.A., 1989). Reprint. Originally published in 1964 by Pergamon Press, London.
145 Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, (Springer, Berlin, Germany; New York, U.S.A., 1989).
146 Stewart, J.M., and Walker, M., “Perturbations of space-times in general relativity”, Proc. R. Soc. London, Ser. A, 341, 49–74, (1974).
147 Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016–4022, (1994).
148 Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006, 1–14, (2001). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0010014.
149 National Astronomical Observatory, “TAMA Project”, project homepage. URL (cited on 7 March 2006):
External Linkhttp://tamago.mtk.nao.ac.jp.
150 Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980).
151 Thorne, K.S., “LIGO, VIRGO, and the international network of laser-interferometer gravitational-wave detectors”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, October 28 – 29, 1993, vol. 8 of NYMSS, (Universal Academy Press, Tokyo, Japan, 1994).
152 Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985).
153 INFN, “The Virgo Project”, project homepage. URL (cited on 7 March 2006):
External Linkhttp://www.virgo.infn.it.
154 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
155 Walker, M., “Isolated Systems in Relativistic Gravity”, in de Sabbata, V., and Karade, T.M., eds., Relativistic Astrophysics and Cosmology, Vol. 1, Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur, India, 99–134, (World Scientific, Singapore, 1984).
156 Walker, M., and Will, C.M., “The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J., 242, L129–L133, (1980).
157 Walker, M., and Will, C.M., “Gravitational radiation quadrupole formula is valid for gravitationally interacting systems”, Phys. Rev. Lett., 45, 1741–1744, (1980).
158 Wang, Y., Stebbins, A., and Turner, E.L., “Gravitational Lensing of Gravitational Waves from Merging Neutron Star Binaries”, Phys. Rev. Lett., 77, 2875–2878, (1996).
159 Will, C.M., “Experimental gravitation from Newton’s Principia to Einstein’s general relativity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 80–127, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
160 Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition.
161 Will, C.M., “Gravitational Waves from Inspiraling Compact Binaries: A Post-Newtonian Approach”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, 28 – 29 October, 1993, vol. 8 of NYMSS, 83–98, (Universal Academy Press, Tokyo, Japan, 1994). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9403033.
162 Will, C.M., “Generation of post-Newtonian gravitational radiation via direct integration of the relaxed Einstein equations”, Prog. Theor. Phys. Suppl., 136, 158–167, (1999). Related online version (cited on 16 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9910057.
163 Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies”, Phys. Rev. D, 71, 084027, 1–15, (2005). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0502039.
164 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). URL (cited on 5 July 2006):
http://www.livingreviews.org/lrr-2006-3.
165 Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813–4848, (1996). Related online version (cited on 7 March 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9608012.
166 Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram Research, Inc. URL (cited on 7 March 2006):
External Linkhttp://www.wolfram.com/products/mathematica/.