1  Abramovici, A., Althouse, W.E., Drever, R.W.P., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D.H., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E., “LIGO: The Laser Interferometer GravitationalWave Observatory”, Science, 256, 325–333, (1992).  
2  Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “Erratum: A new class of postNewtonian approximants to the dynamics of inspiralling compact binaries: Testmass in the Schwarzschild spacetime”, Phys. Rev. D, 72, 049902, (2005).  
3  Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “A new class of
postNewtonian approximants to the dynamics of inspiralling compact binaries: Testmass in
the Schwarzschild spacetime”, Phys. Rev. D, 71, 044029, (2005). Related online version (cited
on 7 March 2006):
http://arXiv.org/abs/grqc/0412033. 

4  Anderson, J.D., and Williams, J.G., “Longrange tests of the equivalence principle”, Class. Quantum Grav., 18, 2447–2456, (2001).  
5  Anderson, J.L., and DeCanio, T.C., “Equations of hydrodynamics in general relativity in the slow motion approximation”, Gen. Relativ. Gravit., 6, 197–237, (1975).  
6  Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling binaries”, Phys. Rev. D, 52, 605–620, (1995).  
7  Apostolatos, T.A., “Construction of a template family for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 54, 2421–2437, (1996).  
8  Apostolatos, T.A., “The Influence of spin spin coupling on inspiraling compact binaries with M_{1} = M_{2} and S_{1} = S_{2}”, Phys. Rev. D, 54, 2438–2441, (1996).  
9  Apostolatos, T.A., Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries”, Phys. Rev. D, 49, 6274–6297, (1994).  
10  Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 postNewtonian gravitational wave phasing: The
nonspinning case”, Phys. Rev. D, 71, 084008, 1–16, (2005). Related online version (cited on 7
March 2006):
http://arXiv.org/abs/grqc/0411146. 

11  Asada, H., and Futamase, T., “PostNewtonian Approximation”, Prog. Theor. Phys. Suppl.,
128, 123–181, (1997). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9806108. 

12  Asada, H., and Futamase, T., “Propagation of gravitational waves from slow motion sources in
a Coulomb type potential”, Phys. Rev. D, 56, 6062–6066, (1997). Related online version (cited
on 7 March 2006):
http://arXiv.org/abs/grqc/9711009. 

13  Ashby, N., and Bertotti, B., “Relativistic effects in local inertial frames”, Phys. Rev. D, 34, 2246–2259, (1986).  
14  Bel, L., Deruelle, N., Damour, T., Ibañez, J., and Martin, J., “PoincaréInvariant Gravitational Field and Equations of Motion of two Pointlike Objects: The Postlinear Approximation of General Relativity”, Gen. Relativ. Gravit., 13, 963–1004, (1981).  
15  Bildsten, L., and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180, (1992).  
16  Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.A., and Lasota,
J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches
School of Physics, held in Les Houches, Haute Savoie, France 26 September – 6 October, 1995,
33–66, (Cambridge University Press, Cambridge, U.K., 1995). Related online version (cited on
7 March 2006):
http://arXiv.org/abs/grqc/9607025. 

17  Blanchet, L., “Gravitational radiation reaction and balance equations to postNewtonian
order”, Phys. Rev. D, 55, 714–732, (1997). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9609049. 

18  Blanchet, L., “PostNewtonian Gravitational Radiation”, in Schmidt, B.G., ed., Einstein’s Field
Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol.
540 of Lecture Notes in Physics, 225–271, (Springer, Berlin, Germany; New York, U.S.A., 2000).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0004012. 

19  Blanchet, L., “Gravitational Radiation from PostNewtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr20064, (2006). URL (cited on 3 August 2006):
http://www.livingreviews.org/lrr20064. 

20  Blanchet, L., and Damour, T., “Tailtransported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435, (1988).  
21  Blanchet, L., and Damour, T., “PostNewtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408, (1989).  
22  Blanchet, L., Damour, T., and EspositoFarèse, G., “Dimensional regularization of the third
postNewtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69,
124007, 1–51, (2004). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0311052. 

23  Blanchet, L., Damour, T., EspositoFarèse, G., and Iyer, B.R., “Gravitational radiation from
inspiralling compact binaries completed at the third postNewtonian order”, Phys. Rev. Lett.,
93, 091101, (2004). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0406012. 

24  Blanchet, L., Damour, T., EspositoFarèse, G., and Iyer, B.R., “Dimensional regularization
of the third postNewtonian gravitational wave generation from two point masses”, Phys. Rev.
D, 71, 124004, 1–36, (2005). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0503044. 

25  Blanchet, L., and Faye, G., “Equations of motion of pointparticle binaries at the third
postNewtonian order”, Phys. Lett. A, 271, 58–64, (2000). Related online version (cited on 7
March 2006):
http://arXiv.org/abs/grqc/0004009. 

26  Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675–7714, (2000).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0004008. 

27  Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third
postNewtonian order”, Phys. Rev. D, 63, 062005, 1–43, (2001). Related online version (cited
on 7 March 2006):
http://arXiv.org/abs/grqc/0007051. 

28  Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of pointlike particles
in general relativity”, J. Math. Phys., 42, 4391–4418, (2001). Related online version (cited on
7 March 2006):
http://arXiv.org/abs/grqc/0006100. 

29  Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitationalwave inspiral of compact
binary systems to 7/2 postNewtonian order”, Phys. Rev. D, 65, 061501, 1–5, (2002). Related
online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0105099. 

30  Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact
binaries to 5/2 postNewtonian order”, Phys. Rev. D, 58, 124002, 1–20, (1998). Related online
version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9804079. 

31  Blanchet, L., and Iyer, B.R., “Hadamard regularization of the third postNewtonian
gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004, 1–20, (2005).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0409094. 

32  Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact
binaries: Energy flux to third postNewtonian order”, Phys. Rev. D, 65, 064005, 1–41, (2002).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0105098. 

33  Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699–2721, (1993).  
34  Blandford, R., and Teukolsky, S.A., “Arrivaltime analysis for a pulsar in a binary system”, Astrophys. J., 205, 580–591, (1976).  
35  Bradaschia, C., Del Fabbro, R., Di Virgilio, A., Giazotto, A., Kautzky, H., Montelatici, V., Passuello, D., Brillet, A., Cregut, O., Hello, P., Man, C.N., Manh, P.T., Marraud, A., Shoemaker, D.H., Vinet, J.Y., Barone, F., di Fiore, L., Milano, L., Russo, G., Aguirregabiria, J.M., Bel, H., Duruisseau, J.P., Le Denmat, G., Tourrenc, P., Capozzi, M., Longo, M., Lops, M., Pinto, I., Rotoli, G., Damour, T., Bonazzola, S., Marck, J.A., Gourghoulon, Y., Holloway, L.E., Fuligni, F., Iafolla, V., and Natale, G., “The VIRGO Project: A wide band antenna for gravitational wave detection”, Nucl. Instrum. Methods A, 289, 518–525, (1990).  
36  Brumberg, V.A., Essential Relativistic Celestial Mechanics, (Adam Hilger, Bristol, U.K.; Philadelphia, U.S.A., 1991).  
37  Brumberg, V.A., and Kopeikin, S.M., “Relativistic Reference Systems and Motion of Test Bodies in the Vicinity of the Earth”, Nuovo Cimento B, 103, 63–98, (1989).  
38  Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D.R., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533, (2003).  
39  Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971).  
40  Chandrasekhar, S., “The PostNewtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488–1540, (1965).  
41  Chandrasekhar, S., “Conservation Laws in General Relativity and in the PostNewtonian Approximations”, Astrophys. J., 158, 45, (1969).  
42  Chandrasekhar, S., and Esposito, F.P., “The 2PostNewtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153–179, (1970).  
43  Chandrasekhar, S., and Nutku, Y., “The Second PostNewtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55–79, (1969).  
44  Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., MarkoviÄ‡, D.M., Ori, A., Poisson, E., and Sussman, G.J., “The Last Three Minutes: Issues in GravitationalWave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993).  
45  Cutler, C., and Thorne, K.S., “An Overview of GravitationalWave Sources”, in Bishop,
N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th
International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21
July, 2001, 72–111, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online
version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0204090. 

46  Damour, T., “Problème des deux corps et freinage de rayonnement en relativité générale”, C. R. Acad. Sci. Ser. II, 294, 1355–1357, (1982).  
47  Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de Physique des Houches, France, 2 – 21 June, 1982, 59–144, (NorthHolland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1983).  
48  Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, Cargése, France, 15 – 31 July, 1986, vol. 156 of NATO ASI Series B, 3–62, (Plenum Press, New York, U.S.A., 1987).  
49  Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 128–198, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).  
50  Damour, T., and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation postpostnewtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540, (1981).  
51  Damour, T., and Deruelle, N., “Lois de conservation d’un système de deux masses ponctuelles en relativité générale”, C. R. Acad. Sci. Ser. II, 293, 877–880, (1981).  
52  Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81–84, (1981).  
53  Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian
approach to the general relativistic twobody problem”, Phys. Rev. D, 62, 021501, 1–5, (2000).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0003051. Erratum: Phys. Rev. D 63 (2001) 029903. 

54  Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational
interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). Related online version (cited
on 7 March 2006):
http://arXiv.org/abs/grqc/0105038. 

55  Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADMHamiltonian
and the harmoniccoordinates approaches to the third postNewtonian dynamics of compact
binaries”, Phys. Rev. D, 63, 044021, 1–11, (2001). Related online version (cited on 7 March
2006):
http://arXiv.org/abs/grqc/0010040. Erratum: Phys. Rev. D 63 (2001) 044021. 

56  Damour, T., and Schäfer, G., “Lagrangians for n Point Masses at the Second PostNewtonian Approximation of General Relativity”, Gen. Relativ. Gravit., 17, 879–905, (1985).  
57  Damour, T., Soffel, M., and Xu, C., “Generalrelativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273–3307, (1991).  
58  Damour, T., Soffel, M., and Xu, C., “Generalrelativistic celestial mechanics. II. Translational equations of motion”, Phys. Rev. D, 45, 1017–1044, (1992).  
59  Damour, T., Soffel, M., and Xu, C., “Generalrelativistic celestial mechanics. III. Rotational equations of motion”, Phys. Rev. D, 47, 3124–3135, (1993).  
60  Damour, T., Soffel, M., and Xu, C., “Generalrelativistic celestial mechanics. IV. Theory of satellite motion”, Phys. Rev. D, 49, 618–635, (1994).  
61  Damour, T., and Taylor, J.H., “On the orbital period change of the binary pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991).  
62  Danzmann, K. et al., “The GEOProject. A LongBaseline Laser Interferometer for the Detection of Gravitational Waves”, in Ehlers, J., and Schäfer, G., eds., Relativistic Gravity Research with Emphasis on Experiments and Observations, Proceedings of the 81 WEHeraeusSeminar held at the Physikzentrum, Bad Honnef, Germany, 2 – 6 September, 1991, vol. 410 of Lecture Notes in Physics, 184–209, (Springer, Berlin, Germany; New York, U.S.A., 1992).  
63  Dautcourt, G., “PostNewtonian extension of the NewtonCartan theory”, Class. Quantum
Grav., 14, A109–A118, (1997). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9610036. 

64  de Andrade, V.C., Blanchet, L., and Faye, G., “Third postNewtonian dynamics of compact
binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and
ADMHamiltonian formalisms”, Class. Quantum Grav., 18, 753–778, (2001). Related online
version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0011063. 

65  D’Eath, P.D., “Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11, 1387–1403, (1975).  
66  D’Eath, P.D., “Interaction of two black holes in the slowmotion limit”, Phys. Rev. D, 12, 2183–2199, (1975).  
67  Detweiler, S., and Whiting, B.F., “Selfforce via a Green’s function decomposition”, Phys. Rev.
D, 67, 024025, (2003). Related online version (cited on 23 March 2006):
http://arXiv.org/abs/grqc/0202086. 

68  DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960).  
69  Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics “Enrico Fermi”, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, 156–219, (NorthHolland, Amsterdam, Netherlands; New York, U.S.A., 1979).  
70  Ehlers, J., “Examples of Newtonian limits of relativistic spacetimes”, Class. Quantum Grav., 14, A119–A126, (1997).  
71  Ehlers, J., Rosenblum, A., Goldberg, J.N., and Havas, P., “Comments on gravitational radiation damping and energy loss in binary systems”, Astrophys. J. Lett., 208, L77–L81, (1976).  
72  Einstein, A., “Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”, Sitzungsber. Preuss. Akad. Wiss., 1915, 831–839, (1915).  
73  Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100, (1938).  
74  Epstein, R., “The binary pulsar: PostNewtonian timing effects”, Astrophys. J., 216, 92–100,
(1977). Related online version (cited on 3 August 2006):
http://adsabs.harvard.edu/abs/1977ApJ...216...92E. 

75  Finn, L.S., “Binary inspiral, gravitational radiation, and cosmology”, Phys. Rev. D, 53, 2878–2894, (1996).  
76  Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81–116, (1939).  
77  Fock, V.A., Theory of space, time and gravitation, (Pergamon Press, London, U.K., 1959).  
78  Fukumoto, T., Futamase, T., and Itoh, Y., “On the Equation of Motion for a Fast Moving
Small Object in the Strong Field Point Particle Limit”, Prog. Theor. Phys., 116, 423–428,
(2006). Related online version (cited on 5 July 2006):
http://arXiv.org/abs/grqc/0606114. 

79  Futamase, T., “Gravitational radiation reaction in the Newtonian limit”, Phys. Rev. D, 28, 2373–2381, (1983).  
80  Futamase, T., “Point particle limit and the far zone quadrupole formula in general relativity”, Phys. Rev. D, 32, 2566–2574, (1985).  
81  Futamase, T., “The strong field point particle limit and the equations of motion in the binary system”, Phys. Rev. D, 36, 321–329, (1987).  
82  Futamase, T., and Schutz, B.F., “Newtonian and postNewtonian approximation are asymptotic to general relativity”, Phys. Rev. D, 28, 2363–2372, (1983).  
83  MPI for Gravitational Physics (Albert Einstein Institute), “GEO 600: The GermanBritish
Gravitational Wave Detector”, project homepage. URL (cited on 7 March 2006):
http://geo600.aei.mpg.de. 

84  Geroch, R., “Limits of Spacetimes”, Commun. Math. Phys., 13, 180–193, (1969).  
85  Gopakumar, A., Iyer, B.R., and Iyer, S., “Second postNewtonian gravitational radiation
reaction for twobody systems: Nonspinning bodies”, Phys. Rev. D, 55, 6030–6053, (1997).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9703075. 

86  Gopakumar, A., Iyer, B.R., and Iyer, S., “Erratum: Second postNewtonian gravitational radiation reaction for twobody systems: Nonspinning bodies”, Phys. Rev. D, 57, 6562, (1998).  
87  Grishchuk, L.P., and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230–232, (1983).  
88  Hadamard, J., Le probèm de Cauchy et les équation aux dérivées partielles linéaries hyperboliques, (Hermann, Paris, France, 1932).  
89  Hulse, R.A., and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J. Lett., 195, L51–L53, (1975).  
90  Isaacson, R.A., Welling, J.S., and Winicour, J., “Extension of the Einstein quadrupole formula”, Phys. Rev. Lett., 53, 1870–1872, (1984).  
91  Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point
particle limit: Third postNewtonian order”, Phys. Rev. D, 69, 064018, 1–43, (2004). Related
online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0310029. 

92  Itoh, Y., “On the equation of motion of compact binaries in PostNewtonian approximation”,
Class. Quantum Grav., 21, S529–S534, (2004). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0401059. 

93  Itoh, Y., and Futamase, T., “New derivation of a third postNewtonian equation of motion for
relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003). Related
online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0310028. 

94  Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: Formulation, the first postNewtonian and multipole
terms”, Phys. Rev. D, 62, 064002, 1–12, (2000). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9910052. 

95  Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: The second and half postNewtonian order”, Phys.
Rev. D, 63, 064038, 1–21, (2001). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0101114. 

96  Iyer, B.R., and Will, C.M., “PostNewtonian gravitational radiation reaction for twobody systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882–6893, (1995).  
97  Jaranowski, P., and Schäfer, G., “Radiative 3.5 postNewtonian ADM Hamiltonian for manybody pointmass systems”, Phys. Rev. D, 55, 4712–4722, (1997).  
98  Jaranowski, P., and Schäfer, G., “Nonuniqueness of the third postNewtonian binary
pointmass dynamics”, Phys. Rev. D, 57, 5948–5949, (1998). Related online version (cited on
7 June 2006):
http://arXiv.org/abs/grqc/9802030. 

99  Jaranowski, P., and Schäfer, G., “Third postNewtonian higher order ADM Hamilton
dynamics for twobody pointmass systems”, Phys. Rev. D, 57, 7274–7291, (1998). Related
online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9712075. Erratum: Phys. Rev. D 63 (2001) 029902. 

100  Jaranowski, P., and Schäfer, G., “The binary blackhole problem at the third postNewtonian
approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9906092. 

101  Jaranowski, P., and Schäfer, G., “The binary blackhole dynamics at the third postNewtonian
order in the orbital motion”, Ann. Phys. (Berlin), 9, 378–383, (2000). Related online version
(cited on 12 December 2006):
http://arXiv.org/abs/grqc/0003054. 

102  Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004).  
103  Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “Erratum: The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 614, L137–L138, (2004).  
104  Kates, R.E., “Gravitational radiation damping of a binary system containing compact objects calculated using matched asymptotic expansions”, Phys. Rev. D, 22, 1871–1878, (1980).  
105  Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980).  
106  Kerlick, G.D., “Finite reduced hydrodynamic equations in the slowmotion approximation to general relativity. Part I. First postNewtonian equations”, Gen. Relativ. Gravit., 12, 467–482, (1980).  
107  Kerlick, G.D., “Finite reduced hydrodynamic equations in the slowmotion approximation to general relativity. Part II. Radiation reaction and higherorder divergent terms”, Gen. Relativ. Gravit., 12, 521–543, (1980).  
108  Kidder, L.E., “Coalescing binary systems of compact objects to (post)^{5âˆ•2}Newtonian order. V.
Spin effects”, Phys. Rev. D, 52, 821–847, (1995). Related online version (cited on 7 March
2006):
http://arXiv.org/abs/grqc/9506022. 

109  Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact
binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). Related online version (cited on 7 March
2006):
http://arXiv.org/abs/grqc/9211025. 

110  Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992).  
111  Königsdörffer, C., Faye, G., and Schäfer, G., “Binary blackhole dynamics at the
thirdandahalf postNewtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004,
1–19, (2003). Related online version (cited on 12 December 2006):
http://arXiv.org/abs/grqc/0305048. 

112  Königsdörffer, C., and Gopakumar, A., “PostNewtonian accurate parametric solution to
the dynamics of spinning compact binaries in eccentric orbits: The leading order spinorbit
interaction”, Phys. Rev. D, 71, 024039, 1–18, (2005). Related online version (cited on 7 March
2006):
http://arXiv.org/abs/grqc/0501011. 

113  Kopeikin, S.M., “Generalrelativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516–524, (1985).  
114  Kuroda, K. et al., “Status of TAMA”, in Ciufolini, I., and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), Italy, 19 – 23 March 1996, vol. 2 of Edoardo Amaldi Foundation Series, 100, (World Scientific, Singapore; River Edge, U.S.A., 1997).  
115  Landau, L.D., and Lifshitz, E.M., The Classical Theory of Fields, vol. 2 of Course of Theoretical Physics, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1975), 4th edition.  
116  California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL
(cited on 7 March 2006):
http://www.ligo.caltech.edu. 

117  Lorentz, H.A., and Droste, J., “The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory”, in Zeeman, P., and Fokker, A.D., eds., The Collected Papers of H.A. Lorentz, Vol. 5, 330–355, (Nijhoff, The Hague, Netherlands, 1937). English translation of Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649, (1917).  
118  Maplesoft, “Maple: Math and Engineering Software by Maplesoft”, institutional homepage.
URL (cited on 7 March 2006):
http://www.maplesoft.com/. 

119  MarkoviÄ‡, D., “Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries”, Phys. Rev. D, 48, 4738–4756, (1993).  
120  MathTensor, Inc., “MathTensor for Mathematica”, institutional homepage. URL (cited on 7
March 2006):
http://smc.vnet.net/MathTensor.html. 

121  Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”,
Phys. Rev. D, 55, 3457–3476, (1997). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9606018. 

122  Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).  
123  Nissanke, S., and Blanchet, L., “Gravitational radiation reaction in the equations of motion of
compact binaries to 3.5 postNewtonian order”, Class. Quantum Grav., 22, 1007–1032, (2005).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0412018. 

124  Ó Murchadha, N., and York Jr, J.W., “Gravitational energy”, Phys. Rev. D, 10, 2345–2357, (1974).  
125  Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Eintein’s equation for manybody system”, Prog. Theor. Phys., 50, 492–514, (1973).  
126  Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate Condition and Higher Order Gravitational Potential in Canocical Formalism”, Prog. Theor. Phys., 51, 1598–1612, (1974).  
127  Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higherorder gravitational potential for manybody system”, Prog. Theor. Phys., 51, 1220–1238, (1974).  
128  Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spinorbit effects on gravitational
waves from inspiraling compact binaries to second postNewtonian order”, Phys. Rev. D, 57,
6168–6175, (1998). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9710134. 

129  Pati, M.E., and Will, C.M., “PostNewtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015,
1–28, (2000). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0007087. 

130  Pati, M.E., and Will, C.M., “PostNewtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations. II. Twobody equations of motion to
second postNewtonian order, and radiationreaction to 3.5 postNewtonian order”, Phys. Rev.
D, 65, 104008, 1–21, (2002). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0201001. 

131  PlebaÅ„ski, J.F., and BaÅ¼aÅ„ski, S.L., “The general Fokker action principle and its application in general relativity theory”, Acta Phys. Pol., 18, 307, (1959).  
132  Poisson, E., “Gravitational waves from inspiraling compact binaries: The quadrupolemoment
term”, Phys. Rev. D, 57, 5287–5290, (1998). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9709032. 

133  Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational
radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997).
Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9610053. 

134  Rendall, A.D., “On the definition of postNewtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360, (1992).  
135  Schäfer, G., “The Gravitational Quadrupole RadiationReaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81–100, (1985).  
136  Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255–270, (1986).  
137  Schäfer, G., “Threebody hamiltonian in general relativity”, Phys. Lett. A, 123, 336–339, (1987).  
138  Schutz, B.F., “Statistical formulation of gravitational radiation reaction”, Phys. Rev. D, 22, 249–259, (1980).  
139  Schutz, B.F., “The Use of Perturbation and Approximation Methods in General Relativity”, in Fustero, X., and Verdaguer, E., eds., Relativistic Astrophysics and Cosmology, Proceedings of the XIVth GIFT International Seminar on Theoretical Physics, Sant Feliu de Guixols, Spain, 27 June – 1 July, 1983, 35, (World Scientific, Singapore, 1984).  
140  Schutz, B.F., “Motion and radiation in general relativity”, in Bressan, O., Castagnino, M., and Hamity, V., eds., Relativity, Supersymmetry and Cosmology, Proceedings of the 5th Simposio Latino Americano de Relatividad y Gravitación – SILARG V, 3–80, (World Scientific, Singapore; Philadelphia, U.S.A., 1985).  
141  Schutz, B.F., “Determining the Hubble constant from gravitational wave observations”, Nature, 323, 310–311, (1986).  
142  Schutz, B.F., “Lighthouses of gravitational wave astronomy”, in Gilfanov, M., Sunyaev, R.A.,
and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects
and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy
Conference held in Garching, Germany, 6 – 10 August 2001, (Springer, Berlin, Germany; New
York, U.S.A., 2002). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0111095. 

143  Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1966).  
144  Sobolev, S.L., Partial Differential Equations of Mathematical Physics, (Dover, New York, U.S.A., 1989). Reprint. Originally published in 1964 by Pergamon Press, London.  
145  Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, (Springer, Berlin, Germany; New York, U.S.A., 1989).  
146  Stewart, J.M., and Walker, M., “Perturbations of spacetimes in general relativity”, Proc. R. Soc. London, Ser. A, 341, 49–74, (1974).  
147  Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the postNewtonian expansion”, Phys. Rev. D, 49, 4016–4022, (1994).  
148  Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of
spinning compact binaries to 2.5postNewtonian order”, Phys. Rev. D, 63, 044006, 1–14,
(2001). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/0010014. 

149  National Astronomical Observatory, “TAMA Project”, project homepage. URL (cited on 7
March 2006):
http://tamago.mtk.nao.ac.jp. 

150  Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980).  
151  Thorne, K.S., “LIGO, VIRGO, and the international network of laserinterferometer gravitationalwave detectors”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th NishinomiyaYukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, October 28 – 29, 1993, vol. 8 of NYMSS, (Universal Academy Press, Tokyo, Japan, 1994).  
152  Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985).  
153  INFN, “The Virgo Project”, project homepage. URL (cited on 7 March 2006):
http://www.virgo.infn.it. 

154  Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).  
155  Walker, M., “Isolated Systems in Relativistic Gravity”, in de Sabbata, V., and Karade, T.M., eds., Relativistic Astrophysics and Cosmology, Vol. 1, Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur, India, 99–134, (World Scientific, Singapore, 1984).  
156  Walker, M., and Will, C.M., “The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J., 242, L129–L133, (1980).  
157  Walker, M., and Will, C.M., “Gravitational radiation quadrupole formula is valid for gravitationally interacting systems”, Phys. Rev. Lett., 45, 1741–1744, (1980).  
158  Wang, Y., Stebbins, A., and Turner, E.L., “Gravitational Lensing of Gravitational Waves from Merging Neutron Star Binaries”, Phys. Rev. Lett., 77, 2875–2878, (1996).  
159  Will, C.M., “Experimental gravitation from Newton’s Principia to Einstein’s general relativity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 80–127, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).  
160  Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition.  
161  Will, C.M.,
“Gravitational Waves from Inspiraling Compact Binaries: A PostNewtonian Approach”, in
Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th NishinomiyaYukawa Memorial
Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, 28 – 29 October, 1993, vol. 8 of
NYMSS, 83–98, (Universal Academy Press, Tokyo, Japan, 1994). Related online version (cited
on 7 March 2006):
http://arXiv.org/abs/grqc/9403033. 

162  Will, C.M., “Generation of postNewtonian gravitational radiation via direct integration of the
relaxed Einstein equations”, Prog. Theor. Phys. Suppl., 136, 158–167, (1999). Related online
version (cited on 16 March 2006):
http://arXiv.org/abs/grqc/9910057. 

163  Will, C.M., “PostNewtonian gravitational radiation and equations of motion via direct
integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with
spinning bodies”, Phys. Rev. D, 71, 084027, 1–15, (2005). Related online version (cited on 7
March 2006):
http://arXiv.org/abs/grqc/0502039. 

164  Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev.
Relativity, 9, lrr20063, (2006). URL (cited on 5 July 2006):
http://www.livingreviews.org/lrr20063. 

165  Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems:
Gravitational waveforms and energy loss to second postNewtonian order”, Phys. Rev. D, 54,
4813–4848, (1996). Related online version (cited on 7 March 2006):
http://arXiv.org/abs/grqc/9608012. 

166  Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram
Research, Inc. URL (cited on 7 March 2006):
http://www.wolfram.com/products/mathematica/. 
http://www.livingreviews.org/lrr20072 
This work is licensed under a Creative Commons AttributionNoncommercialNo Derivative Works 2.0 Germany License. Problems/comments to 