References

1 Abrahams, A.M., and Evans, C.R., “Critical behavior and scaling in vacuum axisymmetric gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993). [External LinkDOI].
2 Abrahams, A.M., and Evans, C.R., “Universality in axisymmetric vacuum collapse”, Phys. Rev. D, 49, 3998–4003, (1994). [External LinkDOI].
3 Aichelburg, P.C., Bizoń, P., and Tabor, Z., “Bifurcation and fine structure phenomena in critical collapse of a self-gravitating σ-field”, Class. Quantum Grav., 23, S299–S306, (2006). [External LinkDOI], [External Linkgr-qc/0512136].
4 Alcubierre, M., Allen, G., Brügmann, B., Lanfermann, G., Seidel, E., Suen, W.-M., and Tobias, M., “Gravitational collapse of gravitational waves in 3D numerical relativity”, Phys. Rev. D, 61, 041501, 1–5, (2000). [External LinkDOI], [External Linkgr-qc/9904013].
5 Álvarez-Gaumé, L., Gómez, C., and Vázquez-Mozo, M.A., “Scaling Phenomena in Gravity from QCD”, Phys. Lett. B, 649, 478–482, (2007). [External LinkDOI], [External Linkhep-th/0611312].
6 Álvarez-Gaumé, L., Gómez, C., Vera, A.S., Tavanfar, A., and Vázquez-Mozo, M.A., “Critical formation of trapped surfaces in the collision of gravitational shock waves”, J. High Energy Phys.(02), 009, (2009). [External LinkDOI], [External LinkarXiv:0811.3969 [hep-th]].
7 Álvarez-Gaumé, L., Gómez, C., Vera, A.S., Tavanfar, A., and Vázquez-Mozo, M.A., “Critical gravitational collapse: Towards a holographic understanding of the Regge region”, Nucl. Phys. B, 806, 327–385, (2009). [External LinkDOI], [External LinkarXiv:0804.1464 [hep-th]].
8 Andreasson, H., and Rein, G., “A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system”, Class. Quantum Grav., 23, 3659–3677, (2006). [External LinkDOI], [External Linkgr-qc/0601112].
9 Ayal, S., and Piran, T., “Spherical collapse of a massless scalar field with semiclassical corrections”, Phys. Rev. D, 56, 4768–4774, (1997). [External LinkDOI], [External Linkgr-qc/9704027].
10 Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988). [External LinkDOI].
11 Birmingham, D., “Choptuik scaling and quasinormal modes in the anti-de Sitter space/conformal-field theory correspondence”, Phys. Rev. D, 64, 064024, 1–5, (2001). [External LinkDOI], [External Linkhep-th/0101194].
12 Birmingham, D., and Sen, S., “Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling”, Phys. Rev. Lett., 84, 1074–1077, (2000). [External LinkDOI], [External Linkhep-th/9908150].
13 Birukou, M., Husain, V., Kunstatter, G., Vaz, E., and Olivier, M., “Spherically symmetric scalar field collapse in any dimension”, Phys. Rev. D, 65, 104036, 1–7, (2002). [External LinkDOI], [External Linkgr-qc/0201026].
14 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990). [External LinkDOI].
15 Bizoń, P., “How to Make a Tiny Black Hole?”, Acta Cosm., 22, 81, (1996). [External Linkgr-qc/9606060].
16 Bizoń, P., “Equivariant Self-Similar Wave Maps from Minkowski Spacetime into 3-Sphere”, Commun. Math. Phys., 215, 45–56, (2000). [External LinkDOI], [External LinkADS], [External Linkmath-ph/9910026].
17 Bizoń, P., and Chmaj, T., “Formation and critical collapse of Skyrmions”, Phys. Rev. D, 58, 041501, 1–4, (1998). [External LinkDOI], [External Linkgr-qc/9801012].
18 Bizoń, P., and Chmaj, T., “Remark on formation of colored black holes via fine-tuning”, Phys. Rev. D, 61, 067501, 1–2, (2000). [External LinkDOI], [External Linkgr-qc/9906070].
19 Bizoń, P., Chmaj, T., Rostworowski, A., Schmidt, B.G., and Tabor, Z., “On vacuum gravitational collapse in nine dimensions”, Phys. Rev. D, 72, 121502, 1–4, (2005). [External LinkDOI], [External Linkgr-qc/0511064].
20 Bizoń, P., Chmaj, T., and Schmidt, B.G., “Critical Behavior in Vacuum Gravitational Collapse in 4+1 Dimensions”, Phys. Rev. Lett., 95, 071102, 1–4, (2005). [External LinkDOI], [External Linkgr-qc/0506074].
21 Bizoń, P., Chmaj, T., and Schmidt, B.G., “Codimension-Two Critical Behavior in Vacuum Gravitational Collapse”, Phys. Rev. Lett., 97, 131101, 1–4, (2006). [External LinkDOI], [External Linkgr-qc/0608102].
22 Bizoń, P., Chmaj, T., and Tabor, Z., “Equivalence of critical collapse of non-Abelian fields”, Phys. Rev. D, 59, 104003, 1–3, (1999). [External LinkDOI], [External Linkgr-qc/9901039].
23 Bizoń, P., Chmaj, T., and Tabor, Z., “Dispersion and collapse of wave maps”, Nonlinearity, 13, 1411–1423, (2000). [External LinkDOI], [External Linkmath-ph/9912009].
24 Bizoń, P., Chmaj, T., and Tabor, Z., “Formation of singularities for equivariant (2+1)-dimensional wave maps into the 2-sphere”, Nonlinearity, 14, 1041–1053, (2001). [External LinkDOI], [External Linkmath-ph/0011005].
25 Bizoń, P., Szybka, S.J., and Wasserman, A., “Periodic self-similar wave maps coupled to gravity”, Phys. Rev. D, 69, 064014, 1–6, (2004). [External LinkDOI], [External Linkgr-qc/0310038].
26 Bizoń, P., and Tabor, Z., “On blowup for Yang–Mills fields”, Phys. Rev. D, 64, 121701, 1–4, (2001). [External LinkDOI], [External Linkmath-ph/0105016].
27 Bizoń, P., and Wasserman, A., “Self-similar spherically symmetric wave maps coupled to gravity”, Phys. Rev. D, 62, 084031, 1–7, (2000). [External LinkDOI], [External Linkgr-qc/0006034].
28 Bizoń, P., and Wasserman, A., “On the existence of self-similar spherically symmetric wave maps coupled to gravity”, Class. Quantum Grav., 19, 3309–3321, (2002). [External LinkDOI], [External Linkgr-qc/0201046].
29 Bland, J., and Kunstatter, G., “The 5-D Choptuik critical exponent and holography”, Phys. Rev. D, 75, 101501, 1–4, (2007). [External LinkDOI], [External Linkhep-th/0702226].
30 Bland, J., Preston, B., Becker, M., Kunstatter, G., and Husain, V., “Dimension dependence of the critical exponent in spherically symmetric gravitational collapse”, Class. Quantum Grav., 22, 5355–5364, (2005). [External LinkDOI], [External Linkgr-qc/0507088].
31 Bose, S., Parker, L., and Peleg, Y., “Predictability and semiclassical approximation at the onset of black hole formation”, Phys. Rev. D, 54, 7490–7505, (1996). [External LinkDOI], [External Linkhep-th/9606152].
32 Brady, P.R., “Analytic example of critical behaviour in scalar field collapse”, Class. Quantum Grav., 11, 1255–1260, (1994). [External LinkDOI], [External Linkgr-qc/9402023]. arXiv preprint title: Does scalar field collapse produce ‘zero mass’ black holes?
33 Brady, P.R., and Cai, M.J., “Critical phenomena in gravitational collapse”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, pp. 689–704, (World Scientific, Singapore, 1999). [External Linkgr-qc/9812071].
34 Brady, P.R., Chambers, C.M., and Gonçalves, S.M.C.V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9709014].
35 Brady, P.R., Choptuik, M.W., Gundlach, C., and Neilsen, D.W., “Black-hole threshold solutions in stiff fluid collapse”, Class. Quantum Grav., 19, 6359, (2002). [External LinkDOI], [External Linkgr-qc/0207096].
36 Brady, P.R., and Ottewill, A.C., “Quantum corrections to critical phenomena in gravitational collapse”, Phys. Rev. D, 58, 024006, 1–6, (1998). [External LinkDOI], [External Linkgr-qc/9804058].
37 Burko, L.M., “Black-Hole Singularities: A New Critical Phenomenon”, Phys. Rev. Lett., 90, 121101, 1–4, (2003). [External LinkDOI], [External Linkgr-qc/0209084].
38 Cahill, M.E., and Taub, A.H., “Spherically symmetric similarity solutions of the Einstein field equations for a perfect fluid”, Commun. Math. Phys., 21, 1–40, (1971). [External LinkDOI]. Related online version (cited on 18 May 2005):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1103857257.
39 Carlip, S., “The (2+1)-dimensional black hole”, Class. Quantum Grav., 12, 2853–2879, (1995). [External LinkDOI], [External Linkgr-qc/9506079].
40 Carr, B.J., and Coley, A.A., “Complete classification of spherically symmetric self-similar perfect fluid solutions”, Phys. Rev. D, 62, 044023, 1–25, (2000). [External LinkDOI], [External Linkgr-qc/9901050].
41 Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “Critical phenomena and a new class of self-similar spherically symmetric perfect-fluid solutions”, Phys. Rev. D, 61, 081502, 1–5, (2000). [External LinkDOI], [External Linkgr-qc/9901031].
42 Carr, B.J., and Gundlach, C., “Spacetime structure of self-similar spherically symmetric perfect fluid solutions”, Phys. Rev. D, 67, 024035, 1–13, (2003). [External LinkDOI], [External Linkgr-qc/0209092].
43 Cavaglià, M., Clément, G., and Fabbri, A., “Approximately self-similar critical collapse in 2+1 dimensions”, Phys. Rev. D, 70, 044010, 1–5, (2004). [External LinkDOI], [External Linkgr-qc/0404033].
44 Caveny, S.A., and Matzner, R.A., “Adaptive event horizon tracking and critical phenomena in binary black hole coalescence”, Phys. Rev. D, 68, 104003, 1–13, (2003). [External LinkDOI], [External Linkgr-qc/0303109].
45 Chiba, T., and Siino, M., “Disappearance of black hole criticality in semiclassical general relativity”, Mod. Phys. Lett. A, 12, 709–718, (1997). [External LinkDOI], [External LinkADS].
46 Choptuik, M.W., personal communication.
47 Choptuik, M.W., “ ‘Critical’ behavior in massless scalar field collapse”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, p. 202, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
48 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [External LinkDOI], [External LinkADS].
49 Choptuik, M.W., “Critical behavior in scalar field collapse”, in Hobill, D., Burd, A., and Coley, A., eds., Deterministic Chaos in General Relativity, Proceedings of a NATO Advanced Research Workshop on Deterministic Chaos in General Relativity, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, p. 155, (Plenum Press, New York, 1994).
50 Choptuik, M.W., “The (Unstable) Threshold of Black Hole Formation”, in Dadhich, N., and Narlikar, J.V., eds., Gravitation and Relativity: At the Turn of the Millenium, Proceedings of the 15th International Conference on General Relativity and Gravitation (GR-15), held at IUCAA, Pune, India, December 16 – 21, 1997, pp. 67–85, (IUCAA, Pune, 1998). [External Linkgr-qc/9803075].
51 Choptuik, M.W., “Critical behavior in gravitational collapse”, Prog. Theor. Phys. Suppl., 136, 353–365, (1999). [External LinkDOI].
52 Choptuik, M.W., Chmaj, T., and Bizoń, P., “Critical Behavior in Gravitational Collapse of a Yang–Mills Field”, Phys. Rev. Lett., 77, 424–427, (1996). [External LinkDOI], [External Linkgr-qc/9603051].
53 Choptuik, M.W., Hirschmann, E.W., and Liebling, S.L., “Instability of an ‘approximate black hole’ ”, Phys. Rev. D, 55, 6014–6018, (1997). [External LinkDOI], [External Linkgr-qc/9701011].
54 Choptuik, M.W., Hirschmann, E.W., Liebling, S.L., and Pretorius, F., “Critical collapse of the massless scalar field in axisymmetry”, Phys. Rev. D, 68, 044007, 1–9, (2003). [External LinkDOI], [External Linkgr-qc/0305003].
55 Choptuik, M.W., Hirschmann, E.W., Liebling, S.L., and Pretorius, F., “Critical Collapse of a Complex Scalar Field with Angular Momentum”, Phys. Rev. Lett., 93, 131101, 1–4, (2004). [External LinkDOI], [External Linkgr-qc/0405101].
56 Choptuik, M.W., Hirschmann, E.W., and Marsa, R.L., “New critical behavior in Einstein-Yang-Mills collapse”, Phys. Rev. D, 60, 124011, 1–9, (1999). [External LinkDOI], [External Linkgr-qc/9903081].
57 Christodoulou, D., “Violation of cosmic censorship in the gravitational collapse of a dust cloud”, Commun. Math. Phys., 93, 171–195, (1984). [External LinkDOI]. Related online version (cited on 18 May 2005):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1103941053.
58 Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337–361, (1986). [External LinkDOI]. Related online version (cited on 18 May 2005):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1104115427.
59 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [External LinkDOI], [External LinkADS].
60 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [External LinkDOI].
61 Christodoulou, D., “Bounded Variation Solutions of the Spherically Symmetric Einstein-Scalar Field Equations”, Commun. Pure Appl. Math., 46, 1131–1220, (1993). [External LinkDOI].
62 Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [External LinkDOI].
63 Christodoulou, D., “The Instability of Naked Singularities in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 149, 183–217, (1999). [External LinkDOI].
64 Clément, G., and Fabbri, A., “Analytical treatment of critical collapse in (2+1)-dimensional AdS spacetime: a toy model”, Class. Quantum Grav., 18, 3665–3680, (2001). [External LinkDOI], [External Linkgr-qc/0101073].
65 Clément, G., and Fabbri, A., “Critical collapse in (2+1)-dimensional AdS spacetime: quasi-CSS solutions and linear perturbations”, Nucl. Phys. B, 630, 269–292, (2002). [External LinkDOI], [External Linkgr-qc/0109002].
66 Clément, G., and Hayward, S.A., “Comment on ‘An extreme critical space-time: echoing and black-hole perturbations’ ”, Class. Quantum Grav., 18, 4715–4716, (2001). [External LinkDOI], [External Linkgr-qc/0108024].
67 Donninger, R., and Aichelburg, P.C., “A note on the eigenvalues for equivariant maps of the SU(2) sigma-model”, arXiv e-print, (2006). [External Linkmath-ph/0601019].
68 Donninger, R., and Aichelburg, P.C., “On the mode stability of a self-similar wave map”, J. Math. Phys., 49, 043515, (2008). [External LinkDOI], [External Linkmath-ph/0702025].
69 Eardley, D.M., Hirschmann, E.W., and Horne, J.H., “S duality at the black hole threshold in gravitational collapse”, Phys. Rev. D, 52, R5397–R5401, (1995). [External LinkDOI], [External Linkgr-qc/9505041].
70 Eardley, D.M., and Moncrief, V., “The Global Existence of Yang–Mills–Higgs Fields in 4-Dimensional Minkowski Space. I. Local Existence and Smoothness Properties”, Commun. Math. Phys., 83, 171–191, (1982). [External LinkDOI].
71 Eggers, J., and Fontelos, M.A., “The role of self-similarity in singularities of partial differential equations”, Nonlinearity, 22, R1–R44, (2009). [External LinkDOI], [External LinkarXiv:0812.1339 [math-ph]].
72 Evans, C.R., and Coleman, J.S., “Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid”, Phys. Rev. Lett., 72, 1782–1785, (1994). [External LinkDOI], [External Linkgr-qc/9402041].
73 Frolov, A.V., “Perturbations and critical behavior in the self-similar gravitational collapse of a massless scalar field”, Phys. Rev. D, 56, 6433–6438, (1997). [External LinkDOI], [External Linkgr-qc/9704040].
74 Frolov, A.V., “Critical collapse beyond spherical symmetry: General perturbations of the Roberts solution”, Phys. Rev. D, 59, 104011, 1–7, (1999). [External LinkDOI], [External Linkgr-qc/9811001].
75 Frolov, A.V., “Self-similar collapse of scalar field in higher dimensions”, Class. Quantum Grav., 16, 407–417, (1999). [External LinkDOI], [External Linkgr-qc/9806112].
76 Frolov, A.V., “Continuous self-similarity breaking in critical collapse”, Phys. Rev. D, 61, 084006, 1–14, (2000). [External LinkDOI], [External Linkgr-qc/9908046].
77 Frolov, A.V., and Pen, U.-L., “The naked singularity in the global structure of critical collapse spacetimes”, Phys. Rev. D, 68, 124024, 1–6, (2003). [External LinkDOI], [External Linkgr-qc/0307081].
78 Frolov, V.P., “Merger transitions in brane-black-hole systems: Criticality, scaling and self-similarity”, Phys. Rev. D, 74, 044006, 1–9, (2006). [External LinkDOI], [External Linkgr-qc/0604114].
79 Frolov, V.P., Larsen, A.L., and Christensen, M., “Domain wall interacting with a black hole: A new example of critical phenomena”, Phys. Rev. D, 59, 125008, 1–8, (1999). [External LinkDOI], [External Linkhep-th/9811148].
80 Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9412008].
81 Garfinkle, D., “Choptuik scaling and the scale invariance of Einstein’s equation”, Phys. Rev. D, 56, 3169–3173, (1997). [External LinkDOI], [External Linkgr-qc/9612015].
82 Garfinkle, D., “Exact solution for (2+1)-dimensional critical collapse”, Phys. Rev. D, 63, 044007, 1–5, (2001). [External LinkDOI], [External Linkgr-qc/0008023].
83 Garfinkle, D., Cutler, C., and Duncan, G.C., “Choptuik scaling in six dimensions”, Phys. Rev. D, 60, 104007, 1–5, (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9908044].
84 Garfinkle, D., and Duncan, G.C., “Scaling of curvature in subcritical gravitational collapse”, Phys. Rev. D, 58, 064024, 1–4, (1998). [External LinkDOI], [External Linkgr-qc/9802061].
85 Garfinkle, D., and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum Grav., 16, 4111–4123, (1999). [External LinkDOI], [External Linkgr-qc/9908016].
86 Garfinkle, D., and Gundlach, C., “Perturbations of an exact solution for 2+1-dimensional critical collapse”, Phys. Rev. D, 66, 044015, 1–4, (2002). [External LinkDOI], [External Linkgr-qc/0205107].
87 Garfinkle, D., Gundlach, C., and Martín-García, J.M., “Angular momentum near the black hole threshold in scalar field collapse”, Phys. Rev. D, 59, 104012, 1–5, (1999). [External LinkDOI], [External Linkgr-qc/9811004].
88 Garfinkle, D., and Isenberg, J., “Numerical studies of the behavior of Ricci flow”, in Chang, S.-C., Chow, B., Chu, S.-C., and Lin, C.-S., eds., Geometric Evolution Equations, National Center for Theoretical Sciences Workshop on Geometric Evolution Equations, National Tsing Hua University, Hsinchu, Taiwan, July 15 – August 14, 2002, Contemporary Mathematics, vol. 367, p. 103, (American Mathematical Society, Providence, RI, 2004). [External Linkmath/0306129].
89 Garfinkle, D., and Isenberg, J., “The modelling of degenerate neck pinch singularities in Ricci flow by Bryant solitons”, J. Math. Phys., 49, 073505, (2007). [External LinkDOI], [External LinkarXiv:0709.0514 [math.DG]].
90 Garfinkle, D., Mann, R., and Vuille, C., “Critical collapse of a massive vector field”, Phys. Rev. D, 68, 064015, 1–6, (2003). [External LinkDOI], [External Linkgr-qc/0305014].
91 Garfinkle, D., and Meyer, K., “Scale invariance and critical gravitational collapse”, Phys. Rev. D, 59, 064003, 1–5, (1999). [External LinkDOI], [External Linkgr-qc/9806052].
92 Giddings, S.B., “Quantum mechanics of black holes”, arXiv e-print, (1994). [External Linkhep-th/9412138]. Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology.
93 Goode, S.W., Coley, A.A., and Wainwright, J., “The isotropic singularity in cosmology”, Class. Quantum Grav., 9, 445–455, (1992). [External LinkDOI].
94 Green, A.M., and Liddle, A.R., “Critical collapse and the primordial black hole initial mass function”, Phys. Rev. D, 60, 063509, 1–8, (1999). [External LinkDOI], [External Linkastro-ph/9901268v2].
95 Gundlach, C., “The Choptuik Spacetime as an Eigenvalue Problem”, Phys. Rev. Lett., 75, 3214–3217, (1995). [External LinkDOI], [External Linkgr-qc/9507054].
96 Gundlach, C., “Critical phenomena in gravitational collapse”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, Poland, February 29 – March 30, 1996, Banach Center Publications, vol. 41, pp. 143–152, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997). [External Linkgr-qc/9606023].
97 Gundlach, C., “Echoing and scaling in Einstein-Yang-Mills critical collapse”, Phys. Rev. D, 55, 6002–6013, (1997). [External LinkDOI], [External Linkgr-qc/9610069].
98 Gundlach, C., “Understanding critical collapse of a scalar field”, Phys. Rev. D, 55, 695–713, (1997). [External LinkDOI], [External Linkgr-qc/9604019].
99 Gundlach, C., “Angular momentum at the black hole threshold”, Phys. Rev. D, 57, 7080–7083, (1998). [External LinkDOI], [External Linkgr-qc/9711079].
100 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). [External Linkgr-qc/9712084].
101 Gundlach, C., “Nonspherical perturbations of critical collapse and cosmic censorship”, Phys. Rev. D, 57, 7075–7079, (1998). [External LinkDOI], [External Linkgr-qc/9710066].
102 Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, lrr-1999-4, (1999). URL (cited on 1 February 2003):
http://www.livingreviews.org/lrr-1999-4.
103 Gundlach, C., “Critical gravitational collapse of a perfect fluid: Nonspherical perturbations”, Phys. Rev. D, 65, 084021, 1–22, (2002). [External LinkDOI], [External Linkgr-qc/9906124].
104 Gundlach, C., “Critical gravitational collapse with angular momentum: from critical exponents to universal scaling functions”, Phys. Rev. D, 65, 064019, (2002). [External LinkDOI], [External Linkgr-qc/0110049].
105 Gundlach, C., “Critical phenomena in gravitational collapse”, Phys. Rep., 376, 339–405, (2003). [External LinkDOI], [External Linkgr-qc/0210101].
106 Gundlach, C., and Martín-García, J.M., “Charge scaling and universality in critical collapse”, Phys. Rev. D, 54, 7353–7360, (1996). [External LinkDOI], [External Linkgr-qc/9606072].
107 Gundlach, C., and Martín-García, J.M., “Kinematics of discretely self-similar spherically symmetric spacetimes”, Phys. Rev. D, 68, 064019, 1–11, (2003). [External LinkDOI], [External Linkgr-qc/0306001].
108 Gundlach, C., and Martín-García, J.M., “Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions”, Phys. Rev. D, 74, 024016, 1–19, (2006). [External LinkDOI], [External Linkgr-qc/0604035].
109 Gundlach, C., Price, R.H., and Pullin, J., “Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution”, Phys. Rev. D, 49, 890–899, (1994). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9307010].
110 Hamadé, R.S., Horne, J.H., and Stewart, J.M., “Continuous self-similarity and S-duality”, Class. Quantum Grav., 13, 2241–2253, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9511024].
111 Hamadé, R.S., and Stewart, J.M., “The spherically symmetric collapse of a massless scalar field”, Class. Quantum Grav., 13, 497–512, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9506044].
112 Hara, T., Koike, T., and Adachi, S., “Renormalization group and critical behavior in gravitational collapse”, arXiv e-print, (1996). [External Linkgr-qc/9607010].
113 Harada, T., “Final fate of the spherically symmetric collapse of a perfect fluid”, Phys. Rev. D, 58, 104015, 1–10, (1998). [External LinkDOI], [External Linkgr-qc/9807038].
114 Harada, T., “Stability criterion for self-similar solutions with perfect fluids in general relativity”, Class. Quantum Grav., 18, 4549–4567, (2001). [External LinkDOI], [External Linkgr-qc/0109042].
115 Harada, T., and Maeda, H., “Convergence to a self-similar solution in general relativistic gravitational collapse”, Phys. Rev. D, 63, 084022, 1–14, (2001). [External LinkDOI], [External Linkgr-qc/0101064].
116 Harada, T., and Maeda, H., “Critical phenomena in Newtonian gravity”, Phys. Rev. D, 64, 124024, 1–7, (2001). [External LinkDOI], [External Linkgr-qc/0109095].
117 Harada, T., Maeda, H., and Semelin, B., “Criticality and convergence in Newtonian collapse”, Phys. Rev. D, 67, 084003, 1–10, (2003). [External LinkDOI], [External Linkgr-qc/0210027].
118 Harada, T., and Mahajan, A., “Analytical solutions for black-hole critical behaviour”, Gen. Relativ. Gravit., 39, 1847–1854, (2007). [External LinkDOI], [External LinkarXiv:0707.3000 [gr-qc]].
119 Hawke, I., and Stewart, J.M., “The dynamics of primordial black-hole formation”, Class. Quantum Grav., 19, 3687–3707, (2002). [External LinkDOI].
120 Hawley, S.H., and Choptuik, M.W., “Boson stars driven to the brink of black hole formation”, Phys. Rev. D, 62, 104024, 1–19, (2000). [External LinkDOI], [External Linkgr-qc/0007039].
121 Hayward, S.A., “An extreme critical spacetime: echoing and black-hole perturbations”, Class. Quantum Grav., 17, 4021–4030, (2000). [External LinkDOI], [External Linkgr-qc/0004038].
122 Hirschmann, E.W., and Eardley, D.M., “Critical exponents and stability at the black hole threshold for a complex scalar field”, Phys. Rev. D, 52, 5850–5856, (1995). [External LinkDOI], [External Linkgr-qc/9506078].
123 Hirschmann, E.W., and Eardley, D.M., “Universal scaling and echoing in gravitational collapse of a complex scalar field”, Phys. Rev. D, 51, 4198–4207, (1995). [External LinkDOI], [External Linkgr-qc/9412066].
124 Hirschmann, E.W., and Eardley, D.M., “Criticality and bifurcation in the gravitational collapse of a self-coupled scalar field”, Phys. Rev. D, 56, 4696–4705, (1997). [External LinkDOI], [External Linkgr-qc/9511052].
125 Hirschmann, E.W., Wang, A., and Wu, Y., “Collapse of a Scalar Field in 2+1 Gravity”, Class. Quantum Grav., 21, 1791–1824, (2004). [External LinkDOI], [External Linkgr-qc/0207121].
126 Hod, S., and Piran, T., “Critical behavior and universality in gravitational collapse of a charged scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9606093].
127 Hod, S., and Piran, T., “Fine-structure of Choptuik’s mass-scaling relation”, Phys. Rev. D, 55, 440–442, (1997). [External LinkDOI], [External Linkgr-qc/9606087].
128 Honda, E.P., and Choptuik, M.W., “Fine structure of oscillons in the spherically symmetric ϕ4 Klein-Gordon model”, Phys. Rev. D, 65, 084037, 1–12, (2002). [External LinkDOI], [External Linkhep-ph/0110065].
129 Horne, J.H., “Critical behavior in black hole collapse”, Matters of Gravity(7), 14–15, (1996). [External Linkgr-qc/9602001].
130 Horowitz, G.T., and Hubeny, V.E., “Quasinormal modes of AdS black holes and the approach to thermal equilibrium”, Phys. Rev. D, 62, 024027, 1–11, (2000). [External LinkDOI], [External Linkhep-th/9909056].
131 Husa, S., Lechner, C., Pürrer, M., Thornburg, J., and Aichelburg, P.C., “Type II critical collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, 1–11, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0002067].
132 Husain, V., “Critical Behaviour in Quantum Gravitational Collapse”, Adv. Sci. Lett., 2, 214–220, (2009). [External LinkDOI], [External LinkarXiv:0808.0949 [gr-qc]].
133 Husain, V., Kunstatter, G., Preston, B., and Birukou, M., “Anti-de Sitter gravitational collapse”, Class. Quantum Grav., 20, L23–L29, (2003). [External LinkDOI], [External Linkgr-qc/0210011].
134 Husain, V., and Olivier, M., “Scalar field collapse in three-dimensional AdS spacetime”, Class. Quantum Grav., 18, L1–L9, (2001). [External LinkDOI], [External Linkgr-qc/0008060].
135 Husain, V., and Seahra, S.S., “Ricci flows, wormholes and critical phenomena”, Class. Quantum Grav., 25, 222002, (2008). [External LinkDOI], [External LinkarXiv:0808.0880 [gr-qc]].
136 Jin, K.-J., and Suen, W.-M., “Critical Phenomena in Head-On Collisions of Neutron Stars”, Phys. Rev. Lett., 98, 131101, 1–4, (2007). [External LinkDOI], [External Linkgr-qc/0603094].
137 Kiem, Y., “Phase Transition in Spherically Symmetric Gravitational Collapse of a Massless Scalar Field”, arXiv e-print, (1994). [External Linkhep-th/9407100].
138 Koike, T., Hara, T., and Adachi, S., “Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group (Linear Perturbation) Analysis”, Phys. Rev. Lett., 74, 5170–5173, (1995). [External LinkDOI], [External Linkgr-qc/9503007].
139 Koike, T., Hara, T., and Adachi, S., “Critical behavior in gravitational collapse of a perfect fluid”, Phys. Rev. D, 59, 104008, 1–9, (1999).
140 Kol, B., “Choptuik Scaling and The Merger Transition”, J. High Energy Phys., 2006(10), 017, 1–18, (2006). [External LinkDOI], [External Linkhep-th/0502033].
141 Lai, C.W., A Numerical Study of Boson Stars, Ph.D. Thesis, (University of British Columbia, Vancouver, 2004). [External Linkgr-qc/0410040]. Related online version (cited on 15 June 2007):
External Linkhttp://laplace.physics.ubc.ca/People/matt/Doc/Theses/.
142 Lai, C.W., and Choptuik, M.W., “Final Fate of Subcritical Evolutions of Boson Stars”, arXiv e-print, (2007). [External LinkarXiv:0709.0324].
143 Lavrelashvili, G., and Maison, D., “A remark on the instability of the Bartnik–McKinnon solutions”, Phys. Lett. B, 343, 214–217, (1995). [External LinkDOI].
144 Lechner, C., Staticity, self-similarity and critical phenomena in a self-gravitating nonlinear sigma model, Ph.D. Thesis, (University of Vienna, Vienna, 2001). [External Linkgr-qc/0507009].
145 Lechner, C., Thornburg, J., Husa, S., and Aichelburg, P.C., “A new transition between discrete and continuous self-similarity in critical gravitational collapse”, Phys. Rev. D, 65, 081501, 1–4, (2002). [External LinkDOI], [External Linkgr-qc/0112008].
146 Levin, J., “Gravity Waves, Chaos, and Spinning Compact Binaries”, Phys. Rev. Lett., 84, 3515–3518, (2000). [External LinkDOI], [External Linkgr-qc/9910040].
147 Liebling, S.L., “Multiply unstable black hole critical solutions”, Phys. Rev. D, 58, 084015, 1–8, (1998). [External LinkDOI], [External Linkgr-qc/9805043].
148 Liebling, S.L., “Critical phenomena inside global monopoles”, Phys. Rev. D, 60, 061502, 1–5, (1999). [External LinkDOI], [External Linkgr-qc/9904077].
149 Liebling, S.L., “Singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement”, Phys. Rev. D, 66, 041703, 1–5, (2002). [External LinkDOI], [External Linkgr-qc/0202093].
150 Liebling, S.L., and Choptuik, M.W., “Black Hole Criticality in the Brans–Dicke Model”, Phys. Rev. Lett., 77, 1424–1427, (1996). [External LinkDOI], [External Linkgr-qc/9606057].
151 Liebling, S.L., Hirschmann, E.W., and Isenberg, J.A., “Critical phenomena in nonlinear sigma models”, J. Math. Phys., 41(8), 5691–5700, (2000). [External LinkDOI], [External Linkmath-ph/9911020].
152 Mahajan, A., Harada, T., Joshi, P., and Nakao, K., “Critical Collapse of Einstein Cluster”, Prog. Theor. Phys., 118, 865–878, (2007). [External LinkDOI], [External LinkarXiv:0710.4315 [gr-qc]].
153 Maison, D., “Non-universality of critical behaviour in spherically symmetric gravitational collapse”, Phys. Lett. B, 366, 82–84, (1996). [External LinkDOI], [External Linkgr-qc/9504008].
154 Martín-García, J.M., and Gundlach, C., “All nonspherical perturbations of the Choptuik spacetime decay”, Phys. Rev. D, 59, 064031, 1–19, (1999). [External LinkDOI], [External Linkgr-qc/9809059].
155 Martín-García, J.M., and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein–Vlasov system”, Phys. Rev. D, 65, 084026, 1–18, (2002). [External LinkDOI], [External Linkgr-qc/0112009].
156 Martín-García, J.M., and Gundlach, C., “Critical Phenomena in Gravitational Collapse: The Role of Angular Momentum”, in Fernández-Jambrina, L., and González-Romero, L.M., eds., Current Trends in Relativistic Astrophysics: Theoretical, Numerical, Observational, Proceedings of the 24th Spanish Relativity Meeting on Relativistic Astrophysics, Madrid, 2001, Lecture Notes in Physics, vol. 617, pp. 68–86, (Springer, Berlin; New York, 2003).
157 Martín-García, J.M., and Gundlach, C., “Global structure of Choptuik’s critical solution in scalar field collapse”, Phys. Rev. D, 68, 024011, 1–25, (2003). [External LinkDOI], [External Linkgr-qc/0304070].
158 Millward, R.S., and Hirschmann, E.W., “Critical behavior of gravitating sphalerons”, Phys. Rev. D, 68, 024017, 1–12, (2003). [External LinkDOI], [External Linkgr-qc/0212015].
159 Musco, I., Miller, J.C., and Polnarev, A.G., “Primordial black hole formation in the radiative era: investigation of the critical nature of the collapse”, Class. Quantum Grav., 26, 235001, (2009). [External LinkDOI], [External LinkarXiv:0811.1452 [gr-qc]].
160 Musco, I., Miller, J.C., and Rezzolla, L., “Computations of primordial black-hole formation”, Class. Quantum Grav., 22, 1405–1424, (2005). [External LinkDOI], [External Linkgr-qc/0412063].
161 Neilsen, D.W., and Choptuik, M.W., “Critical phenomena in perfect fluids”, Class. Quantum Grav., 17, 761–782, (2000). [External LinkDOI], [External Linkgr-qc/9812053].
162 Neilsen, D.W., and Choptuik, M.W., “Ultrarelativistic fluid dynamics”, Class. Quantum Grav., 17, 733–759, (2000). [External LinkDOI], [External Linkgr-qc/9904052].
163 Niemeyer, J.C., and Jedamzik, K., “Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes”, Phys. Rev. Lett., 80, 5481–5484, (1998). [External LinkDOI], [External Linkgr-qc/9709072].
164 Niemeyer, J.C., and Jedamzik, K., “Dynamics of primordial black hole formation”, Phys. Rev. D, 59, 124013, 1–8, (1999). [External LinkDOI], [External Linkastro-ph/9901292].
165 Noble, S.C., A Numerical Study of Relativistic Fluid Collapse, Ph.D. Thesis, (University of Texas at Austin, Austin, 2003). [External Linkgr-qc/0310116].
166 Noble, S.C., and Choptuik, M.W., “Type II critical phenomena of neutron star collapse”, Phys. Rev. D, 78, 064059, (2008). [External LinkDOI], [External LinkarXiv:0709.3527].
167 Novak, J., “Velocity-induced collapses of stable neutron stars”, Astron. Astrophys., 376, 606–613, (2001). [External LinkDOI], [External Linkgr-qc/0107045].
168 Olabarrieta, I., and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007, 1–10, (2001). [External LinkDOI], [External Linkgr-qc/0107076].
169 Olabarrieta, I., Ventrella, J.F., Choptuik, M.W., and Unruh, W.G., “Critical behavior in the gravitational collapse of a scalar field with angular momentum in spherical symmetry”, Phys. Rev. D, 76, 124014, (2007). [External LinkDOI], [External LinkarXiv:0708.0513 [gr-qc]].
170 Oliveira-Neto, G., and Takakura, F.I., “Wyman’s solution, self-similarity, and critical behaviour”, J. Math. Phys., 46, 062503, 1–6, (2005). [External LinkDOI], [External Linkgr-qc/0309099].
171 Ori, A., and Piran, T., “Naked singularities in self-similar spherical gravitational collapse”, Phys. Rev. Lett., 59, 2137–2140, (1987). [External LinkDOI].
172 Ori, A., and Piran, T., “Naked singularities and other features of self-similar general-relativistic gravitational collapse”, Phys. Rev. D, 42, 1068–1090, (1990). [External LinkDOI].
173 Oshiro, Y., Nakamura, K., and Tomimatsu, A., “Critical behavior of black hole formation in a scalar wave Collapse”, Prog. Theor. Phys., 91, 1265–1270, (1994). [External LinkDOI], [External Linkgr-qc/9402017].
174 Peleg, Y., Bose, S., and Parker, L., “Choptuik scaling and quantum effects in 2D dilaton gravity”, Phys. Rev. D, 55, 4525–4528, (1997). [External LinkDOI], [External Linkgr-qc/9608040].
175 Peleg, Y., and Steif, A.R., “Phase transition for gravitationally collapsing dust shells in 2+1 dimensions”, Phys. Rev. D, 51, R3992–R3996, (1995). [External LinkDOI], [External Linkgr-qc/9412023].
176 Petryk, R., Maxwell–Klein–Gordon Fields in Black Hole Spacetimes, Ph.D. Thesis, (University of British Columbia, Vancouver, 2005). Related online version (cited on 15 June 2007):
External Linkhttp://laplace.physics.ubc.ca/People/matt/Doc/Theses/.
177 Polnarev, A.G., and Musco, I., “Curvature profiles as initial conditions for primordial black hole formation”, Class. Quantum Grav., 24, 1405–1432, (2007). [External LinkDOI], [External Linkgr-qc/0605122].
178 Pretorius, F., and Choptuik, M.W., “Gravitational collapse in 2+1 dimensional AdS spacetime”, Phys. Rev. D, 62, 124012, 1–15, (2000). [External LinkDOI], [External Linkgr-qc/0007008].
179 Pretorius, F., and Khurana, D., “Black hole mergers and unstable circular orbits”, Class. Quantum Grav., 24, S83–S108, (2007). [External LinkDOI], [External Linkgr-qc/0702084].
180 Price, R.H., and Pullin, J., “Analytic approximations to the spacetime of a critical gravitational collapse”, Phys. Rev. D, 54, 3792–3799, (1996). [External LinkDOI], [External Linkgr-qc/9601009].
181 Pullin, J., “Is there a connection between no-hair behavior and universality in gravitational collapse?”, Phys. Lett. A, 204, 7–10, (1995). [External LinkDOI], [External Linkgr-qc/9409044].
182 Pürrer, M., Husa, S., and Aichelburg, P.C., “News from critical collapse: Bondi mass, tails and quasinormal modes”, Phys. Rev. D, 71, 104005, 1–13, (2005). [External LinkDOI], [External Linkgr-qc/0411078].
183 Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [External LinkDOI], [External Linkgr-qc/9804040].
184 Roberts, M.D., “Scalar field counterexamples to the cosmic censorship hypothesis”, Gen. Relativ. Gravit., 21, 907–939, (1989). [External LinkDOI].
185 Sarbach, O., and Lehner, L., “Critical bubbles and implications for critical black strings”, Phys. Rev. D, 71, 026002, 1–11, (2005). [External LinkDOI], [External Linkhep-th/0407265].
186 Seidel, E., and Suen, W.-M., “Oscillating soliton stars”, Phys. Rev. Lett., 66, 1659–1662, (1991). [External LinkDOI].
187 Shibata, M., Okawa, H., and Yamamoto, T., “High-velocity collision of two black holes”, Phys. Rev. D, 78, 101501(R), (2008). [External LinkDOI], [External LinkarXiv:0810.4735 [gr-qc]].
188 Smarr, L.L., and York Jr, J.W., “Kinematical conditions in the construction of spacetime”, Phys. Rev. D, 17, 2529–2551, (1978). [External LinkDOI].
189 Snajdr, M., “Critical collapse of an ultrarelativistic fluid in the Γ 1 limit”, Class. Quantum Grav., 23, 3333–3352, (2006). [External LinkDOI], [External Linkgr-qc/0508062].
190 Sorkin, E., and Oren, Y., “Choptuik’s scaling in higher dimensions”, Phys. Rev. D, 71, 124005, (2005). [External LinkDOI], [External Linkhep-th/0502034].
191 Sperhake, U., Cardoso, V., Pretorius, F., Berti, E., Hinderer, T., and Yunes, N., “Cross Section, Final Spin, and Zoom-Whirl Behavior in High-Energy Black-Hole Collisions”, Phys. Rev. Lett., 103, 131102, (2009). [External LinkDOI], [External LinkarXiv:0907.1252 [gr-qc]].
192 Stevenson, R., The Spherically Symmetric Collapse of Collisionless Matter: Exploring Critical Phenomena through Finite Volume Methods, Masters Thesis, (University of British Columbia, Vancouver, 2005). Related online version (cited on 15 June 2007):
External Linkhttp://laplace.physics.ubc.ca/Theses/.
193 Straumann, N., and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990). [External LinkDOI].
194 Strominger, A., and Thorlacius, L., “Universality and scaling at the onset of quantum black hole formation”, Phys. Rev. Lett., 72, 1584–1587, (1994). [External LinkDOI], [External Linkhep-th/9312017].
195 Szybka, S.J., “Chaotic self-similar wave maps coupled to gravity”, Phys. Rev. D, 69, 084014, 1–7, (2004). [External LinkDOI], [External Linkgr-qc/0310050].
196 Szybka, S.J., and Chmaj, T., “Fractal Threshold Behavior in Vacuum Gravitational Collapse”, Phys. Rev. Lett., 100, 101102, (2008). [External LinkDOI], [External LinkarXiv:0711.4612 [gr-qc]].
197 Thornburg, J., Lechner, C., Pürrer, M., Aichelburg, P.C., and Husa, S., “Type II Critical Collapse of a Self-Gravitating Nonlinear σ Model”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 1645–1646, (World Scientific, Singapore; River Edge, NJ, 2001). [External Linkgr-qc/0012043].
198 Tod, P., personal communication.
199 van Putten, M.H.P.M., “Approximate black holes for numerical relativity”, Phys. Rev. D, 54, R5931–R5934, (1996). [External LinkDOI], [External Linkgr-qc/9607074].
200 Ventrella, J.F., and Choptuik, M.W., “Critical phenomena in the Einstein–massless–Dirac system”, Phys. Rev. D, 68, 044020, 1–10, (2003). [External LinkDOI], [External Linkgr-qc/0304007].
201 Volkov, M.S., Brodbeck, O., Lavrelashvili, G., and Straumann, N., “The number of sphaleron instabilities of the Bartnik–McKinnon solitons and non-Abelian black holes”, Phys. Lett. B, 349, 438–442, (1995). [External LinkDOI], [External Linkhep-th/9502045].
202 Volkov, M.S., and Gal’tsov, D.V., “Non-Abelian Einstein–Yang–Mills Black Holes”, J. Exp. Theor. Phys. Lett., 50, 346–350, (1989).
203 Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv e-print, (1997). [External Linkgr-qc/9710068].
204 Wan, M.-B., Jin, K.-J., and Suen, W.-M., “Dynamical analysis of the structure of neutron star critical collapses”, Poster version presented at the ‘2nd Course of the International School on Astrophysical Relativity’, Erice, Italy, June 27 – July 5, 2008, conference paper, (2008). [External LinkarXiv:0807.1710 [gr-qc]].
205 Wang, A., “Critical collapse of cylindrically symmetric scalar field in four-dimensional Einstein’s theory of gravity”, Phys. Rev. D, 68, 064006, 1–12, (2003). [External LinkDOI], [External Linkgr-qc/0307071].
206 Wang, A., and de Oliveira, H.P., “Critical phenomena of collapsing massless scalar wave packets”, Phys. Rev. D, 56, 753–761, (1997). [External Linkgr-qc/9608063].
207 Wyman, M., “Static spherically symmetric scalar fields in general relativity”, Phys. Rev. D, 24, 839–841, (1981). [External LinkDOI].
208 Yeomans, J.M., Statistical Mechanics of Phase Transitions, Oxford Science Publications, (Clarendon Press; Oxford University Press, Oxford; New York, 1992). [External LinkGoogle Books].
209 Yokoyama, J., “Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse”, Phys. Rev. D, 58, 107502, (1998). [External Linkgr-qc/9804041].
210 Zhou, J.-G., Müller-Kirsten, H.J.W., and Yang, M.-Z., “New look at the critical behaviour near the threshold of black hole formation in the Russo–Susskind–Thorlacius model”, Phys. Rev. D, 51, R314–R318, (1995).
211 Ziprick, J., and Kunstatter, G., “Dynamical singularity resolution in spherically symmetric black hole formation”, Phys. Rev. D, 80, 024032, (2009). [External LinkDOI], [External LinkarXiv:0902.3224 [gr-qc]].
212 Ziprick, J., and Kunstatter, G., “Spherically symmetric black hole formation in Painlevé-Gullstrand coordinates”, Phys. Rev. D, 79, 101503(R), (2009). [External LinkDOI], [External LinkarXiv:0812.0993 [gr-qc]].