Go to previous page Go up Go to next page

3.5 Lorentzian and hyperbolic Coxeter groups

Coxeter groups that are neither of finite nor of affine type are said to be of indefinite type. An important property of Coxeter groups of indefinite type is the following. There exists a positive vector (ci) such that ∑ Bijcj j is negative [116Jump To The Next Citation Point]. A vector is said to be positive (respectively, negative) if all its components are strictly positive (respectively, strictly negative). This is denoted ci > 0 (respectively, ci < 0). Note that a vector may be neither positive nor negative, if some of its components are positive while some others are negative. Note also that these concepts refer to a specific basis. This property is demonstrated in Appendix A.

We assume, as already stated, that the scalar product B is nondegenerate. Let { ω } i be the basis dual to the basis {αi } in the scalar product B,

B(αi,ωj ) = δij. (3.38 )
The ω i’s are called “fundamental weights”. (The fundamental weights are really defined by Equation (3.38View Equation) up to normalization, as we will see in Section 3.6 on crystallographic Coxeter groups. They thus differ from the solutions of Equation (3.38View Equation) only by a positive multiplicative factor, irrelevant for the present discussion.)

Consider the vector ∑ v = ciαi i, where the vector ci is such that ci > 0 and ∑ Bijcj < 0 j. This vector exists since we assume the Coxeter group to be of indefinite type. Let Σ be the hyperplane orthogonal to v. Because ci > 0, the vectors ωi’s all lie on the positive side of Σ, B (v,ωi) = ci > 0. By contrast, the vectors αi’s all lie on the negative side of Σ since ∑ B (αi,v) = j Bijcj < 0. Furthermore, v has negative norm squared, ∑ ∑ B (v,v) = ici( j Bijcj) < 0. Thus, in the case of Coxeter groups of indefinite type (with a nondegenerate metric), one can choose a hyperplane such that the positive roots lie on one side of it and the fundamental weights on the other side. The converse is true for Coxeter group of finite type: In that case, there exists ci > 0 such that ∑ j Bijcj is positive, implying that the positive roots and the fundamental weights are on the same side of the hyperplane Σ.

We now consider a particular subclass of Coxeter groups of indefinite type, called Lorentzian Coxeter groups. These are Coxeter groups such that the scalar product B is of Lorentzian signature (n − 1,1 ). They are discrete subgroups of the orthochronous Lorentz group O+ (n − 1,1 ) preserving the time orientation. Since the α i are spacelike, the reflection hyperplanes are timelike and thus the generating reflections si preserve the time orientation. The hyperplane Σ from the previous paragraph is spacelike. In this section, we shall adopt Lorentzian coordinates so that Σ has equation x0 = 0 and we shall choose the time orientation so that the positive roots have a negative time component. The fundamental weights have then a positive time component. This choice is purely conventional and is made here for convenience. Depending on the circumstances, the other time orientation might be more useful and will sometimes be adopted later (see for instance Section 4.8).

Turn now to the cone ℰ defined by Equation (3.35View Equation). This cone is clearly given by

{ ∑ } ℰ = {λ ∈ V |∀ αi B (λ,αi) > 0} = diωi|di > 0 . (3.39 )
Similarly, its closure ℱ is given by
{ ∑ } ℱ = {λ ∈ V |∀ αi B (λ,αi) ≥ 0} = diωi|di ≥ 0 . (3.40 )
The cone ℱ is thus the convex hull of the vectors ωi, which are on the boundary of ℱ.

By definition, a hyperbolic Coxeter group is a Lorentzian Coxeter group such that the vectors in ℰ are all timelike, B (λ,λ ) < 0 for all λ ∈ ℰ. Hyperbolic Coxeter groups are precisely the groups that emerge in the gravitational billiards of physical interest. The hyperbolicity condition forces B (λ,λ ) ≤ 0 for all λ ∈ ℱ, and in particular, B (ωi,ωi) ≤ 0: The fundamental weights are timelike or null. The cone ℱ then lies within the light cone. This does not occur for generic (non-hyperbolic) Lorentzian algebras.

The following theorem enables one to decide whether a Coxeter group is hyperbolic by mere inspection of its Coxeter graph.

Theorem: Let ℭ be a Coxeter group with irreducible Coxeter graph Γ. The Coxeter group is hyperbolic if and only if the following two conditions hold:

(Note: By removing a node, one might get a non-irreducible diagram even if the original diagram is connected. A reducible diagram defines a Coxeter group of finite type if and only if each irreducible component is of finite type, and a Coxeter group of affine type if and only if each irreducible component is of finite or affine type with at least one component of affine type.)

Proof:

We now show that ℰ ⊂ N. Because the signature of B is Lorentzian, N is the inside of the standard light cone and has two components, the “future” component and the “past” component. From the second condition of the theorem, each ωi lies on or inside the light cone since the orthogonal hyperplane is non-timelike. Furthermore, all the ωi’s are future pointing, which implies that the cone ℰ lies in N, as had to be shown (a positive sum of future pointing non spacelike vectors is non-spacelike). This concludes the proof of the theorem.

In particular, this theorem is useful for determining all hyperbolic Coxeter groups once one knows the list of all finite and affine ones. To illustrate its power, consider the Coxeter diagram of Figure 8View Image, with 8 nodes on the loop and one extra node attached to it (we shall see later that it is called ++ A 7).

View Image

Figure 8: The Coxeter graph of the group ++ A 7.

The bilinear form is given by

( 2 − 1 0 0 0 0 0 − 1 0) | | | − 1 2 − 1 0 0 0 0 0 0| || 0 − 1 2 − 1 0 0 0 0 0|| || 0 0 − 1 2 − 1 0 0 0 0|| 1-| 0 0 0 − 1 2 − 1 0 0 0| . (3.41 ) 2 || 0 0 0 0 − 1 2 − 1 0 0|| || || | 0 0 0 0 0 − 1 2 − 1 0| ( − 1 0 0 0 0 0 − 1 2 − 1) 0 0 0 0 0 0 0 − 1 2
and is of Lorentzian signature. If one removes the node labelled 9, one gets the affine diagram + A7 (see Figure 9View Image). If one removes the node labelled 8, one gets the finite diagram of the direct product group A1 × A7 (see Figure 10View Image). Deleting the nodes labelled 1 or 7 yields the finite diagram of A8 (see Figure 11View Image). Removing the nodes labelled 2 or 6 gives the finite diagram of D 8 (see Figure 12View Image). If one removes the nodes labelled 3 or 5, one obtains the finite diagram of E8 (see Figure 13View Image). Finally, deleting the node labelled 4 yields the affine diagram of + E 7 (see Figure 14View Image). Hence, the Coxeter group is hyperbolic.
View Image

Figure 9: The Coxeter graph of A+7.
View Image

Figure 10: The Coxeter graph of A7 × A1.
View Image

Figure 11: The Coxeter graph of A 8.
View Image

Figure 12: The Coxeter graph of D8.
View Image

Figure 13: The Coxeter graph of E8.
View Image

Figure 14: The Coxeter graph of + E 7.

Consider now the same diagram, with one more node in the loop (++ A 8). In that case, if one removes one of the middle nodes 4 or 5, one gets the Coxeter group ++ E 7, which is neither finite nor affine. Hence, A++8 is not hyperbolic.

Using the two conditions in the theorem, one can in fact provide the list of all irreducible hyperbolic Coxeter groups. The striking fact about this classification is that hyperbolic Coxeter groups exist only in ranks 3 ≤ n ≤ 10, and, moreover, for 4 ≤ n ≤ 10 there is only a finite number. In the n = 3 case, on the other hand, there exists an infinite class of hyperbolic Coxeter groups. In Figure 15View Image we give a general form of the Coxeter graphs corresponding to all rank 3 hyperbolic Coxeter groups, and in Tables 39 we give the complete classification for 4 ≤ n ≤ 10.

Note that the inverse metric −1 (B )ij, which gives the scalar products of the fundamental weights, has only negative entries in the hyperbolic case since the scalar product of two future-pointing non-spacelike vectors is strictly negative (it is zero only when the vectors are both null and parallel, which does not occur here).

One can also show [116Jump To The Next Citation Point107Jump To The Next Citation Point] that in the hyperbolic case, the Tits cone 𝒳 coincides with the future light cone. (In fact, it coincides with either the future light cone or the past light cone. We assume that the time orientation in V has been chosen as in the proof of the theorem, so that the Tits cone coincides with the future light cone.) This is at the origin of an interesting connection with discrete reflection groups in hyperbolic space (which justifies the terminology). One may realize hyperbolic space ℋ n− 1 as the upper sheet of the hyperboloid B(λ, λ) = − 1 in V. Since the Coxeter group is a subgroup of + O (n − 1,1), it leaves this sheet invariant and defines a group of reflections in ℋn −1. The fundamental reflections are reflections through the hyperplanes in hyperbolic space obtained by taking the intersection of the Minkowskian hyperplanes B (αi,λ) = 0 with hyperbolic space. These hyperplanes bound the fundamental region, which is the domain to the positive side of each of these hyperplanes. The fundamental region is a simplex with vertices ¯ωi, where ¯ωi are the intersection points of the lines ℝ ωi with hyperbolic space. This intersection is at infinity in hyperbolic space if ωi is lightlike. The fundamental region has finite volume but is compact only if the ωi are timelike.

Thus, we see that the hyperbolic Coxeter groups are the reflection groups in hyperbolic space with a fundamental domain which (i) is a simplex, and which (ii) has finite volume. The fact that the fundamental domain is a simplex (n vectors in ℋn −1) follows from our geometric construction where it is assumed that the n vectors αi form a basis of V.

The group PGL (2,ℤ) relevant to pure gravity in four dimensions is easily verified to be hyperbolic.

For general information, we point out the following facts:

View Image

Figure 15: This Coxeter graph corresponds to hyperbolic Coxeter groups for all values of m and n for which the associated bilinear form B is not of positive definite or positive semidefinite type. This therefore gives rise to an infinite class of rank 3 hyperbolic Coxeter groups.


Table 3: Hyperbolic Coxeter groups of rank 4.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC



Table 4: Hyperbolic Coxeter groups of rank 5.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC



Table 5: Hyperbolic Coxeter groups of rank 6.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC



Table 6: Hyperbolic Coxeter groups of rank 7.

PIC

PIC

PIC



Table 7: Hyperbolic Coxeter groups of rank 8.

PIC

PIC

PIC

PIC



Table 8: Hyperbolic Coxeter groups of rank 9.

PIC

PIC

PIC

PIC



Table 9: Hyperbolic Coxeter groups of rank 10.

PIC

PIC

PIC



  Go to previous page Go up Go to next page