1  Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., and Oz, Y., “Large N field theories,
string theory and gravity”, Phys. Rep., 323, 183–386, (2000). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/hepth/9905111. 

2  Arcioni, G., and LozanoTellechea, E., “Stability and critical phenomena of black holes and
black rings”, Phys. Rev. D, 72, 104021, (2005). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0412118. 

3  Ashtekar, A., and Das, S., “Asymptotically antide Sitter spacetimes: Conserved quantities”,
Class. Quantum Grav., 17, L17, (2000). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9911230. 

4  Ashtekar, A., and Magnon, A., “Asymptotically antide Sitter spacetimes”, Class. Quantum Grav., 1, L39–L44, (1984).  
5  Ashtekar, A., Pawlowski, T., and Van Den Broeck, C., “Mechanics of higherdimensional black
holes in asymptotically antide Sitter spacetimes”, Class. Quantum Grav., 24, 625, (2007).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0611049. 

6  Astefanesei, D., and Radu, E., “Quasilocal formalism and black ring thermodynamics”, Phys.
Rev. D, 73, 044014, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0509144. 

7  Azuma, T., and Koikawa, T., “Infinite number of stationary soliton solutions to fivedimensional
vacuum Einstein equation”, Prog. Theor. Phys., 116, 319, (2006). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0512350. 

8  Barrabes, C., Frolov, V.P., and Lesigne, E., “Geometric inequalities and trapped surfaces in
higher dimensional spacetimes”, Phys. Rev. D, 69, 101501, (2004). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/grqc/0402081. 

9  Behrndt, K., Cvetič, M., and Sabra, W.A., “Nonextreme black holes of five dimensional
N = 2 AdS supergravity”, Nucl. Phys. B, 553, 317–332, (1999). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/9810227. 

10  Belinski, V., and Verdaguer, E., Gravitational Solitons, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2001).  
11  Belinsky, V.A., and Zakharov, V.E., “Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions”, Sov. Phys. JETP, 48, 985, (1978). also in Zh. Eksp. Teor. Fiz., 75, (1953).  
12  Bena, I., and Warner, N.P., “One ring to rule them all ... and in the darkness bind them?”,
Adv. Theor. Math. Phys., 9, 667, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0408106. 

13  Berman, D.S., and Parikh, M.K., “Holography and rotating AdS black holes”, Phys. Lett. B,
463, 168, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9907003. 

14  Bhattacharyya, S., Lahiri, S., Loganayagam, R., and Minwalla, S., “Large rotating AdS black
holes from fluid mechanics”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0708.1770. 

15  Birmingham, D., “Topological black holes in antide Sitter space”, Class. Quantum Grav., 16,
1197, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9808032. 

16  Bouchareb, A., Clement, G., Chen, C.M., Gal’tsov, D.V., Scherbluk, N.G., and Wolf, T., “G_{2}
generating technique for minimal D=5 supergravity and black rings”, Phys. Rev. D, 76, 104032,
(2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0708.2361. 

17  Breckenridge, J.C., Myers, R.C., Peet, A.W., and Vafa, C., “Dbranes and spinning black
holes”, Phys. Lett. B, 391, 93, (1997). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9602065. 

18  Buchel, A., and Liu, J.T., “Gauged supergravity from type IIB string theory on Y ^{p,q} manifolds”,
Nucl. Phys. B, 771, 93, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0608002. 

19  Bunting, G.L., and Masoodul Alam, A.K.M., “Nonexistence of multiple black holes is asymptotically Euclidean static vacuum spacetimes”, Gen. Relativ. Gravit., 19, 147–154, (1987).  
20  Caldarelli, M.M., Cognola, G., and Klemm, D., “Thermodynamics of KerrNewmanAdS black
holes and conformal field theories”, Class. Quantum Grav., 17, 399, (2000). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9908022. 

21  Caldarelli, M.M., and Klemm, D., “Supersymmetry of antide Sitter black holes”, Nucl. Phys.
B, 545, 434, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9808097. 

22  Candlish, G.N., and Reall, H.S., “On the smoothness of static multiblack hole solutions of
higherdimensional EinsteinMaxwell theory”, Class. Quantum Grav., 24, 6025, (2007). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0707.4420. 

23  Cardoso, V., and Dias, Ó.J.C., “Small Kerrantide Sitter black holes are unstable”, Phys.
Rev. D, 70, 084011, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0405006. 

24  Cardoso, V., Dias, Ó.J.C., and Lemos, J.P.S., “Gravitational radiation in Ddimensional
spacetimes”, Phys. Rev. D, 67, 064026, (2003). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0212168. 

25  Cardoso, V., Dias, Ó.J.C., Lemos, J.P.S., and Yoshida, S., “The black hole bomb and
superradiant instabilities”, Phys. Rev. D, 70, 044039, (2004). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/hepth/0404096. 

26  Cardoso, V., Siopsis, G., and Yoshida, S., “Scalar perturbations of higher dimensional rotating
and ultraspinning black holes”, Phys. Rev. D, 71, 024019, (2005). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0412138. 

27  Carter, B., “HamiltonJacobi and Schrodinger separable solutions of Einstein’s equations”, Commun. Math. Phys., 10, 280, (1968).  
28  Carter, B., “Essentials of classical brane dynamics”, Int. J. Theor. Phys., 40, 2099, (2001).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0012036. 

29  CastejonAmenedo, J., and Manko, V.S., “Superposition of the Kerr metric with the generalized ErezRosen solution”, Phys. Rev. D, 41, 2018–2020, (1990).  
30  Cavaglià, M., “Black hole and brane production in TeV gravity: A review”, Int. J. Mod. Phys.
A, 18, 1843–1882, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepph/0210296. 

31  Chamblin, A., Emparan, R., Johnson, C.V., and Myers, R.C., “Charged AdS black holes and
catastrophic holography”, Phys. Rev. D, 60, 064018, (1999). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/hepth/9902170. 

32  Chamblin, A., Emparan, R., Johnson, C.V., and Myers, R.C., “Holography, thermodynamics
and fluctuations of charged AdS black holes”, Phys. Rev. D, 60, 104026, (1999). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9904197. 

33  Charmousis, C., “Higher order gravity theories and their black hole solutions”, (2008). URL
(cited on 15 July 2008):
http://arXiv.org/abs/0805.0568. 

34  Charmousis, C., and Gregory, R., “Axisymmetric metrics in arbitrary dimensions”, Class.
Quantum Grav., 21, 527, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0306069. 

35  Charmousis, C., Langlois, D., Steer, D., and Zegers, R., “Rotating spacetimes with a
cosmological constant”, J. High Energy Phys., 2007(02), 064, (2007). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/grqc/0610091. 

36  Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Charged rotating black holes in
fourdimensional gauged and ungauged supergravities”, Nucl. Phys. B, 717, 246, (2005).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0411045. 

37  Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Fivedimensional gauged supergravity
black holes with independent rotation parameters”, Phys. Rev. D, 72, 041901, (2005). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0505112. 

38  Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “General nonextremal rotating black
holes in minimal fivedimensional gauged supergravity”, Phys. Rev. Lett., 95, 161301, (2005).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0506029. 

39  Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Nonextremal rotating black holes in
fivedimensional gauged supergravity”, Phys. Lett. B, 644, 192, (2007). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0606213. 

40  Chong, Z.W.H., Cvetič, M., Lü, H., and Pope, C.N., “Nonextremal charged rotating black
holes in sevendimensional gauged supergravity”, Phys. Lett. B, 626, 215, (2005). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0412094. 

41  Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993).  
42  Choptuik, M.W., Lehner, L., Olabarrieta, I., Petryk, R., Pretorius, F., and Villegas, H.,
“Towards the final fate of an unstable black string”, Phys. Rev. D, 68, 044001, (2003). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0304085. 

43  Chow, D.D.K., “Equal charge black holes and seven dimensional gauged supergravity”, (2007).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0711.1975. 

44  Chruściel, P.T., “The classification of static vacuum spacetimes containing an asymptotically
flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16, 661, (1999).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/9809088. 

45  Chruściel, P.T., Reall, H.S., and Tod, P., “On IsraelWilsonPerjes black holes”, Class.
Quantum Grav., 23, 2519, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0512116. 

46  Chruściel, P.T., Reall, H.S., and Tod, P., “On nonexistence of static vacuum black holes with
degenerate components of the event horizon”, Class. Quantum Grav., 23, 549, (2006). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0512041. 

47  Chruściel, P.T., and Tod, P., “The classification of static electrovacuum spacetimes
containing an asymptotically flat spacelike hypersurface with compact interior”, Commun.
Math. Phys., 271, 577, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0512043. 

48  Chruściel, P.T., and Wald, R.M., “On the Topology of Stationary Black Holes”, Class.
Quantum Grav., 11, L147–L152, (1994). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/9410004. 

49  Chu, Y.Z., Goldberger, W.D., and Rothstein, I.Z., “Asymptotics of ddimensional KaluzaKlein
black holes: Beyond the newtonian approximation”, J. High Energy Phys., 2006(03), 013,
(2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0602016. 

50  Coley, A., Milson, R., Pravda, V., and Pravdova, A., “Classification of the Weyl tensor in
higherdimensions”, Class. Quantum Grav., 21, L35, (2004). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/grqc/0401008. 

51  Coley, A.A., “Classification of the Weyl Tensor in Higher Dimensions and Applications”, (2007).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0710.1598. 

52  Copsey, K., and Horowitz, G.T., “The role of dipole charges in black hole thermodynamics”,
Phys. Rev. D, 73, 024015, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0505278. 

53  Cosgrove, C.M., “Relationships between the grouptheoretic and solitontheoretic techniques for generating stationary axisymmetric gravitational solutions”, J. Math. Phys., 21, 2417, (1980).  
54  Cosgrove, C.M., “Relationship between the inverse scattering techniques of BelinskiiZakharov and HauserErnst in general relativity”, J. Math. Phys., 23, 615, (1982).  
55  Cvetič, M., Duff, M.J., Hoxha, P., Liu, J.T., Lü, H., Lu, J.X., MartinezAcosta, R., Pope,
C.N., Sati, H., and Tran, T.A., “Embedding AdS black holes in ten and eleven dimensions”,
Nucl. Phys. B, 558, 96–126, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9903214. 

56  Cvetič, M., and Gubser, S.S., “Phases of Rcharged black holes, spinning branes and strongly
coupled gauge theories”, J. High Energy Phys., 1999(04), 024, (1999). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/9902195. 

57  Cvetič, M., and Gubser, S.S., “Thermodynamic stability and phases of general spinning
branes”, J. High Energy Phys., 1999(07), 010, (1999). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/9903132. 

58  Cvetič, M., and Hull, C.M., “Black holes and Uduality”, Nucl. Phys. B, 480, 296, (1996).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9606193. 

59  Cvetič, M., Lü, H., and Pope, C.N., “Gauged sixdimensional supergravity from massive
type IIA”, Phys. Rev. Lett., 83, 5226, (1999). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/9906221. 

60  Cvetič, M., Lü, H., and Pope, C.N., “Charged Kerrde Sitter black holes in five dimensions”,
Phys. Lett. B, 598, 273, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0406196. 

61  Cvetič, M., Lü, H., and Pope, C.N., “Charged rotating black holes in five dimensional
U(1)**3 gauged N = 2 supergravity”, Phys. Rev. D, 70, 081502, (2004). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0407058. 

62  Cvetič, M., Lü, H., Pope, C.N., Sadrzadeh, A., and Tran, T.A., “Consistent SO(6) reduction
of type IIB supergravity on S^{5}”, Nucl. Phys. B, 586, 275, (2000). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0003103. 

63  Cvetič, M., and Youm, D., “General Rotating Five Dimensional Black Holes of Toroidally
Compactified Heterotic String”, Nucl. Phys. B, 476, 118, (1996). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/9603100. 

64  Cvetič, M., and Youm, D., “NearBPSSaturated Rotating Electrically Charged Black Holes
as String States”, Nucl. Phys. B, 477, 449, (1996). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/9605051. 

65  De Smet, P.J., “Black holes on cylinders are not algebraically special”, Class. Quantum Grav.,
19, 4877, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0206106. 

66  De Smet, P.J., “The Petrov type of the fivedimensional MyersPerry metric”, Gen. Relativ.
Gravit., 36, 1501, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0312021. 

67  de Wit, B., and Nicolai, H., “The Consistency of the S**7 Truncation in D=11 Supergravity”, Nucl. Phys. B, 281, 211, (1987).  
68  Dias, Ó.J.C., “Superradiant instability of large radius doubly spinning black rings”, Phys. Rev.
D, 73, 124035, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0602064. 

69  Duff, M.J., and Liu, J.T., “Antide Sitter black holes in gauged N = 8 supergravity”, Nucl.
Phys. B, 554, 237–253, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9901149. 

70  Elvang, H., “A charged rotating black ring”, Phys. Rev. D, 68, 124016, (2003). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0305247. 

71  Elvang, H., and Emparan, R., “Black rings, supertubes, and a stringy resolution of black hole
nonuniqueness”, J. High Energy Phys., 2003(11), 035, (2003). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0310008. 

72  Elvang, H., Emparan, R., and Figueras, P., “Nonsupersymmetric black rings as thermally
excited supertubes”, J. High Energy Phys., 2005(02), 031, (2005). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0412130. 

73  Elvang, H., Emparan, R., and Figueras, P., “Phases of FiveDimensional Black Holes”, J. High
Energy Phys., 2007(05), 056, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0702111. 

74  Elvang, H., Emparan, R., Mateos, D., and Reall, H.S., “A supersymmetric black ring”, Phys.
Rev. Lett., 93, 211302, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0407065. 

75  Elvang, H., Emparan, R., Mateos, D., and Reall, H.S., “Supersymmetric black rings and
threecharge supertubes”, Phys. Rev. D, 71, 024033, (2005). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/hepth/0408120. 

76  Elvang, H., Emparan, R., and Virmani, A., “Dynamics and stability of black rings”, J. High
Energy Phys., 2006(12), 074, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0608076. 

77  Elvang, H., and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050, (2007).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0701035. 

78  Elvang, H., and Rodriguez, M.J., “Bicycling Black Rings”, (2007). URL (cited on 14 February
2008):
http://arXiv.org/abs/arXiv:0712.2425. 

79  Emparan, R., “Rotating circular strings, and infinite nonuniqueness of black rings”, J. High
Energy Phys., 2004(03), 064, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0402149. 

80  Emparan, R., Harmark, T., Niarchos, V., Obers, N.A., and Rodríguez, M.J., “The Phase
Structure of HigherDimensional Black Rings and Black Holes”, J. High Energy Phys.,
2007(10), 110, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0708.2181. 

81  Emparan, R., and Myers, R.C., “Instability of ultraspinning black holes”, J. High Energy
Phys., 2003(09), 025, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0308056. 

82  Emparan, R., and Reall, H.S., “Generalized Weyl solutions”, Phys. Rev. D, 65, 084025, (2002).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0110258. 

83  Emparan, R., and Reall, H.S., “A rotating black ring in five dimensions”, Phys. Rev. Lett., 88,
101101, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0110260. 

84  Emparan, R., and Reall, H.S., “Black rings”, Class. Quantum Grav., 23, R169, (2006). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0608012. 

85  Evslin, J., and Krishnan, C., “The Black DiRing: An Inverse Scattering Construction”, (2007).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0706.1231. 

86  Feinstein, A., and VazquezMozo, M.A., “Mtheory resolution of fourdimensional cosmological
singularities”, Nucl. Phys. B, 568, 405, (2000). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/9906006. 

87  Figueras, P., “A black ring with a rotating 2sphere”, J. High Energy Phys., 2005(07), 039,
(2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0505244. 

88  Frolov, V.P., “Hidden Symmetries of HigherDimensional Black Hole Spacetimes”, (2007). URL
(cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0712.4157. 

89  Frolov, V.P., and Goswami, R., “Surface geometry of 5D black holes and black rings”, Phys.
Rev. D, 75, 124001, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0612033. 

90  Frolov, V.P., Krtouš, P., and Kubizňák, D., “Separability of HamiltonJacobi and
KleinGordon equations in general KerrNUTAdS spacetimes”, J. High Energy Phys.,
2007(02), 005, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0611245. 

91  Frolov, V.P., and Kubizňák, D., “Hidden symmetries of higherdimensional rotating black holes”, Phys. Rev. Lett., 98, 011101, (2007).  
92  Frolov, V.P., Mazzitelli, F.D., and Paz, J.P., “Quantum effects near multidimensional black holes”, Phys. Rev. D, 40, 948, (1989).  
93  Frolov, V.P., and Stojkovic, D., “Particle and light motion in a spacetime of a fivedimensional
rotating black hole”, Phys. Rev. D, 68, 064011, (2003). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/0301016. 

94  Frolov, V.P., and Stojkovic, D., “Quantum radiation from a 5dimensional rotating black hole”,
Phys. Rev. D, 67, 084004, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0211055. 

95  Galloway, G.J., “On the topology of the domain of outer communication”, Class. Quantum Grav., 12, L99–L101, (1995).  
96  Galloway, G.J., “Rigidity of outer horizons and the topology of black holes”, (2006). URL (cited
on 14 February 2008):
http://arXiv.org/abs/grqc/0608118. 

97  Galloway, G.J., Schleich, K., Witt, D.M., and Woolgar, E., “Topological censorship and higher
genus black holes”, Phys. Rev. D, 60, 104039, (1999). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/9902061. 

98  Galloway, G.J., and Schoen, R., “A generalization of Hawking’s black hole topology theorem
to higher dimensions”, Commun. Math. Phys., 266, 571, (2006). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/grqc/0509107. 

99  Gauntlett, J.P., and Gutowski, J.B., “Concentric black rings”, Phys. Rev. D, 71, 025013, (2005).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0408010. 

100  Gauntlett, J.P., and Gutowski, J.B., “General concentric black rings”, Phys. Rev. D, 71, 045002,
(2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0408122. 

101  Gauntlett, J.P., Gutowski, J.B., Hull, C.M., Pakis, S., and Reall, H.S., “All supersymmetric
solutions of minimal supergravity in five dimensions”, Class. Quantum Grav., 20, 4587, (2003).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0209114. 

102  Gauntlett, J.P., Myers, R.C., and Townsend, P.K., “Black holes of D = 5 supergravity”, Class.
Quantum Grav., 16, 1, (1999). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9810204. 

103  Gauntlett, J.P., Ó Colgáin, E., and Varela, O., “Properties of some conformal field theories
with Mtheory duals”, J. High Energy Phys., 2007(02), 049, (2007). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0611219. 

104  Gauntlett, J.P., and Varela, O., “Consistent KaluzaKlein Reductions for General
Supersymmetric AdS Solutions”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0707.2315. 

105  Gibbons, G., and Hartnoll, S.A., “A gravitational instability in higher dimensions”, Phys. Rev.
D, 66, 064024, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0206202. 

106  Gibbons, G.W., and Herdeiro, C.A.R., “Supersymmetric rotating black holes and causality
violation”, Class. Quantum Grav., 16, 3619, (1999). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/9906098. 

107  Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solitons in N = 2 supergravity”, Phys. Lett. B, 109, 190–194, (1982).  
108  Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl. Phys. B, 218, 173–190, (1983).  
109  Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and nonuniqueness of static black
holes in higher dimensions”, Phys. Rev. Lett., 89, 041101, (2002). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0206049. 

110  Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and nonuniqueness of static vacuum
black holes in higher dimensions”, Prog. Theor. Phys. Suppl., 148, 284, (2003). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0203004. 

111  Gibbons, G.W., Lü, H., Page, D.N., and Pope, C.N., “Rotating black holes in higher
dimensions with a cosmological constant”, Phys. Rev. Lett., 93, 171102, (2004). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0409155. 

112  Gibbons, G.W., Lü, H., Page, D.N., and Pope, C.N., “The general Kerrde Sitter metrics in
all dimensions”, J. Geom. Phys., 53, 49, (2005). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0404008. 

113  Gibbons, G.W., Perry, M.J., and Pope, C.N., “The first law of thermodynamics for Kerr–antide
Sitter black holes”, Class. Quantum Grav., 22, 1503–1526, (2005). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/0408217. 

114  Giusto, S., and Saxena, A., “Stationary axisymmetric solutions of five dimensional gravity”,
Class. Quantum Grav., 24, 4269, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/0705.4484. 

115  Gorbonos, D., and Kol, B., “A dialogue of multipoles: Matched asymptotic expansion for caged
black holes”, J. High Energy Phys., 2004(06), 053, (2004). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0406002. 

116  Gorbonos, D., and Kol, B., “Matched asymptotic expansion for caged black holes:
Regularization of the postNewtonian order”, Class. Quantum Grav., 22, 3935, (2005). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0505009. 

117  Gregory, R., and Laflamme, R., “Hypercylindrical black holes”, Phys. Rev. D, 37, 305, (1988).  
118  Gregory, R., and Laflamme, R., “Black strings and pbranes are unstable”, Phys. Rev. Lett.,
70, 2837, (1993). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9301052. 

119  Gregory, R., and Laflamme, R., “The Instability of charged black strings and pbranes”, Nucl.
Phys. B, 428, 399, (1994). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:hepth/9404071. 

120  Gubser, S.S., “On nonuniform black branes”, Class. Quantum Grav., 19, 4825, (2002). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0110193. 

121  Gubser, S.S., and Mitra, I., “Instability of charged black holes in antide Sitter space”, (2000).
URL (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0009126. 

122  Gubser, S.S., and Mitra, I., “The evolution of unstable black holes in antide Sitter space”, J.
High Energy Phys., 2001(08), 018, (2001). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0011127. 

123  Gutowski, J.B., “Uniqueness of fivedimensional supersymmetric black holes”, J. High Energy
Phys., 2004(08), 049, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0404079. 

124  Gutowski, J.B., and Reall, H.S., “General supersymmetric AdS_{5} black holes”, J. High Energy
Phys., 2004(04), 048, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0401129. 

125  Gutowski, J.B., and Reall, H.S., “Supersymmetric AdS_{5} black holes”, J. High Energy Phys.,
2004(02), 006, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0401042. 

126  Harmark, T., “Small black holes on cylinders”, Phys. Rev. D, 69, 104015, (2004). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0310259. 

127  Harmark, T., “Stationary and axisymmetric solutions of higherdimensional general relativity”,
Phys. Rev. D, 70, 124002, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0408141. 

128  Harmark, T., Niarchos, V., and Obers, N.A., “Instabilities of black strings and branes”, Class.
Quantum Grav., 24, R1, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0701022. 

129  Harmark, T., and Obers, N.A., “Phases of KaluzaKlein black holes: A brief review”, (2005).
URL (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0503020. 

130  Harmark, T., and Olesen, P., “On the structure of stationary and axisymmetric metrics”, Phys.
Rev. D, 72, 124017, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0508208. 

131  Hartle, J.B., and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black holes”, Commun. Math. Phys., 26, 87–101, (1972).  
132  Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of SpaceTime, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).  
133  Hawking, S.W., Hunter, C.J., and TaylorRobinson, M.M., “Rotation and the AdS/CFT
correspondence”, Phys. Rev. D, 59, 064005, (1999). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/9811056. 

134  Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Antide Sitter Space”, Commun. Math. Phys., 87, 577–588, (1983).  
135  Hawking, S.W., and Reall, H.S., “Charged and rotating AdS black holes and their CFT duals”,
Phys. Rev. D, 61, 024014, (2000). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9908109. 

136  Helfgott, C., Oz, Y., and Yanay, Y., “On the topology of black hole event horizons in higher
dimensions”, J. High Energy Phys., 2006(02), 025, (2006). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0509013. 

137  Hoenselaers, C., Kinnersley, W., and Xanthopoulos, B.C., “Symmetries of the stationary EinsteinMaxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments”, J. Math. Phys., 20, 2530, (1979).  
138  Hollands, S., Ishibashi, A., and Wald, R.M., “A higher dimensional stationary rotating black
hole must be axisymmetric”, Commun. Math. Phys., 271, 699, (2007). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/grqc/0605106. 

139  Hollands, S., and Yazadjiev, S., “Uniqueness theorem for 5dimensional black holes with two
axial Killing fields”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0707.2775. 

140  Hong, K., and Teo, E., “A new form of the Cmetric”, Class. Quantum Grav., 20, 3269, (2003).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0305089. 

141  Horowitz, G.T., and Hubeny, V.E., “Note on small black holes in AdS_{p} × S^{q}”, J. High Energy
Phys., 0006, 031, (2000). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0005288. 

142  Horowitz, G.T., and Maeda, K., “Fate of the black string instability”, Phys. Rev. Lett., 87,
131301, (2001). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0105111. 

143  Hoskisson, J., “Particle motion in the rotating black ring metric”, (2007). URL (cited on 14
February 2008):
http://arXiv.org/abs/arXiv:0705.0117. 

144  Hovdebo, J.L., and Myers, R.C., “Black rings, boosted strings and GregoryLaflamme”, Phys.
Rev. D, 73, 084013, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0601079. 

145  Ida, D., and Nakao, K.I., “Isoperimetric inequality for higherdimensional black holes”, Phys.
Rev. D, 66, 064026, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0204082. 

146  Ida, D., and Uchida, Y., “Stationary EinsteinMaxwell fields in arbitrary dimensions”, Phys.
Rev. D, 68, 104014, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0307095. 

147  Ida, D., Uchida, Y., and Morisawa, Y., “The scalar perturbation of the higherdimensional
rotating black holes”, Phys. Rev. D, 67, 084019, (2003). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/0212035. 

148  Iguchi, H., and Mishima, T., “Solitonic generation of fivedimensional black ring solution”,
Phys. Rev. D, 73, 121501, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0604050. 

149  Iguchi, H., and Mishima, T., “Solitonic generation of vacuum solutions in fivedimensional
general relativity”, Phys. Rev. D, 74, 024029, (2006). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0605090. 

150  Iguchi, H., and Mishima, T., “Black diring and infinite nonuniqueness”, Phys. Rev. D, 75,
064018, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0701043. 

151  Ishibashi, A., and Kodama, H., “Stability of higherdimensional Schwarzschild black holes”,
Prog. Theor. Phys., 110, 901, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0305185. 

152  Izumi, K., “Orthogonal black diring solution”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0712.0902. 

153  Jacobson, T., and Venkataramani, S., “Topology Of Event Horizons And Topological
Censorship”, Class. Quantum Grav., 12, 1055, (1995). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/9410023. 

154  Jamsin, E., “A Note on Conserved Charges of Asymptotically Flat and Antide Sitter Spaces
in Arbitrary Dimensions”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0705.0484. 

155  Kanti, P., “Black holes in theories with large extra dimensions: A review”, Int. J. Mod. Phys.
A, 19, 4899, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepph/0402168. 

156  Karasik, D., Sahabandu, C., Suranyi, P., and Wijewardhana, L.C.R., “Analytic approximation
to 5 dimensional black holes with one compact dimension”, Phys. Rev. D, 71, 024024, (2005).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0410078. 

157  Kay, B.S., and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on SpaceTimes with a Bifurcate Killing Horizon”, Phys. Rep., 207, 49–136, (1991).  
158  Kimura, M., Murata, K., Ishihara, H., and Soda, J., “On the Stability of Squashed KaluzaKlein
Black Holes”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0712.4202. 

159  Kinnersley, W., “Type D vacuum metrics”, J. Math. Phys., 10, 1195, (1969).  
160  Kinney, J., Maldacena, J.M., Minwalla, S., and Raju, S., “An index for 4 dimensional super
conformal theories”, Commun. Math. Phys., 275, 209, (2007). Related online version (cited on
14 February 2008):
http://arXiv.org/abs/hepth/0510251. 

161  Kleihaus, B., Kunz, J., and NavarroLerida, F., “Rotating Black Holes in Higher Dimensions”,
(2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0710.2291. 

162  Kodama, H., “Perturbative uniqueness of black holes near the static limit in arbitrary
dimensions”, Prog. Theor. Phys., 112, 249, (2004). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0403239. 

163  Kodama, H., and Ishibashi, A., “A master equation for gravitational perturbations of maximally
symmetric black holes in higher dimensions”, Prog. Theor. Phys., 110, 701, (2003). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0305147. 

164  Kodama, H., and Ishibashi, A., “Master equations for perturbations of generalized static black
holes with charge in higher dimensions”, Prog. Theor. Phys., 111, 29, (2004). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0308128. 

165  Koikawa, T., “Infinite number of soliton solutions to 5dimensional vacuum Einstein equation”,
Prog. Theor. Phys., 114, 793, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0501248. 

166  Kol, B., “Speculative generalization of black hole uniqueness to higher dimensions”, (2002).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:hepth/0208056. 

167  Kol, B., “The phase transition between caged black holes and black strings: A review”, Phys.
Rep., 422, 119, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0411240. 

168  Kol, B., and Smolkin, M., “Classical Effective Field Theory and Caged Black Holes”, (2007).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0712.2822. 

169  Konoplya, R.A., and Zhidenko, A., “Stability of multidimensional black holes: Complete
numerical analysis”, Nucl. Phys. B, 777, 182, (2007). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0703231. 

170  Korzynski, M., Lewandowski, J., and Pawlowski, T., “Mechanics of multidimensional isolated
horizons”, Class. Quantum Grav., 22, 2001, (2005). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/grqc/0412108. 

171  Kostelecky, V.A., and Perry, M.J., “Solitonic Black Holes in Gauged N=2 Supergravity”, Phys.
Lett. B, 371, 191, (1996). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9512222. 

172  Kottler, F., “The physical basis of Einstein’s theory of gravitation”, Ann. Phys. (Leipzig), 56, 401, (1918).  
173  Krtouš, P., Kubizňák, D., Page, D.N., and Vasudevan, M., “Constants of geodesic motion
in higherdimensional blackhole spacetimes”, Phys. Rev. D, 76, 084034, (2007). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0707.0001. 

174  Kubizňák, D., and Frolov, V.P., “Hidden symmetry of higher dimensional Kerr–NUT–AdS
spacetimes”, Class. Quantum Grav., 24, F1–F6, (2007). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/0610144. 

175  Kunduri, H.K., and Lucietti, J., “Electrically charged dilatonic black rings”, Phys. Lett. B,
609, 143, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0412153. 

176  Kunduri, H.K., and Lucietti, J., “Nearhorizon geometries of supersymmetric AdS_{5} black
holes”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0708.3695. 

177  Kunduri, H.K., Lucietti, J., and Reall, H.S., “Gravitational perturbations of higher dimensional
rotating black holes: Tensor Perturbations”, Phys. Rev. D, 74, 084021, (2006). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0606076. 

178  Kunduri, H.K., Lucietti, J., and Reall, H.S., “Supersymmetric multicharge AdS_{5} black holes”,
J. High Energy Phys., 2006(04), 036, (2006). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0601156. 

179  Kunduri, H.K., Lucietti, J., and Reall, H.S., “Do supersymmetric antide Sitter black rings
exist?”, J. High Energy Phys., 2007(02), 026, (2007). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0611351. 

180  Lahiri, S., and Minwalla, S., “Plasmarings as dual black rings”, (2007). URL (cited on 14
February 2008):
http://arXiv.org/abs/arXiv:0705.3404. 

181  Larsen, F., “Entropy of thermally excited black rings”, J. High Energy Phys., 2005(10), 100,
(2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0505152. 

182  Lewandowski, J., and Pawlowski, T., “Quasilocal rotating black holes in higher dimension:
Geometry”, Class. Quantum Grav., 22, 1573, (2005). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/0410146. 

183  Liko, T., and Booth, I., “Supersymmetric isolated horizons”, (2007). URL (cited on 14 February
2008):
http://arXiv.org/abs/arXiv:0712.3308. 

184  Llatas, P.M., “Electrically Charged Blackholes for the Heterotic String Compactified on a
(10 − D)torus”, Phys. Lett. B, 397, 63, (1997). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/9605058. 

185  London, L.A.J., “Arbitrary dimensional cosmological multiblack holes”, Nucl. Phys. B, 434, 709–735, (1995).  
186  Maartens, R., “BraneWorld Gravity”, Living Rev. Relativity, 7, lrr20047, (2004). URL (cited
on 18 February 2008):
http://www.livingreviews.org/lrr20047. 

187  Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv.
Theor. Math. Phys., 2, 231–252, (1998). Related online version (cited on 4 July 2008):
http://arXiv.org/abs/hepth/9711200. 

188  Maldacena, J.M., and Strominger, A., “Black hole greybody factors and Dbrane spectroscopy”,
Phys. Rev. D, 55, 861–870, (1997). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9609026. 

189  Manko, V.S., and Sibgatullin, N.R., “Construction of exact solutions of the EinsteinMaxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis”, Class. Quantum Grav., 10, 1383, (1993).  
190  Marolf, D., “On the fate of black string instabilities: An observation”, Phys. Rev. D, 71, 127504,
(2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0504045. 

191  Mei, J., and Pope, C.N., “New Rotating NonExtremal Black Holes in D=5 Maximal Gauged
Supergravity”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0709.0559. 

192  Mishima, T., and Iguchi, H., “New axisymmetric stationary solutions of fivedimensional
vacuum Einstein equations with asymptotic flatness”, Phys. Rev. D, 73, 044030, (2006). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0504018. 

193  Miyamoto, U., and Murata, K., “On Hawking radiation from black rings”, (2007). URL (cited
on 14 February 2008):
http://arXiv.org/abs/arXiv:0705.3150. 

194  Morisawa, Y., and Ida, D., “A boundary value problem for the fivedimensional stationary
rotating black holes”, Phys. Rev. D, 69, 124005, (2004). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/grqc/0401100. 

195  Morisawa, Y., and Ida, D., “Scalar field perturbation on sixdimensional ultraspinning black
holes”, Phys. Rev. D, 71, 044022, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0412070. 

196  Morisawa, Y., Tomizawa, S., and Yasui, Y., “Boundary Value Problem for Black Rings”, (2007).
URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0710.4600. 

197  Murata, K., and Soda, J., “A Note on Separability of Field Equations in MyersPerry
Spacetimes”, Class. Quantum Grav., 25, 035006, (2008). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/arXiv:0710.0221. 

198  Myers, R.C., “Higher dimensional black holes in compactified spacetimes”, Phys. Rev. D, 35, 455, (1987).  
199  Myers, R.C., “Black holes in higher curvature gravity”, (1998). URL (cited on 14 February
2008):
http://arXiv.org/abs/grqc/9811042. 

200  Myers, R.C., and Perry, M.J., “Black Holes In Higher Dimensional SpaceTimes”, Ann. Phys. (N.Y.), 172, 304, (1986).  
201  Nastase, H., Vaman, D., and van Nieuwenhuizen, P., “Consistent nonlinear K K reduction of
11d supergravity on AdS_{7} × S_{4}”, Phys. Lett. B, 469, 96, (1999). Related online version (cited
on 14 February 2008):
http://arXiv.org/abs/hepth/9905075. 

202  Nastase, H., Vaman, D., and van Nieuwenhuizen, P., “Consistency of the AdS_{7} × S_{4}”, Nucl.
Phys. B, 581, 179, (2000). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9911238. 

203  Neugebauer, G., “Bäcklund transformations of axially symmetric stationary gravitational fields”, J. Phys. A, 12, L67, (1979).  
204  Nomura, H., Yoshida, S., Tanabe, M., and Maeda, K.I., “The fate of a fivedimensional rotating
black hole via Hawking radiation”, Prog. Theor. Phys., 114, 707, (2005). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0502179. 

205  Nozawa, M., and Maeda, K.I., “Energy extraction from higher dimensional black holes and
black rings”, Phys. Rev. D, 71, 084028, (2005). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/hepth/0502166. 

206  Ooguri, H., “Spectrum of Hawking Radiation and Huygens’ Principle”, Phys. Rev. D, 33, 3573, (1986).  
207  Page, D.N., Kubizňák, D., Vasudevan, M., and Krtouš, P., “Complete Integrability of
Geodesic Motion in General HigherDimensional Rotating BlackHole Spacetimes”, Phys. Rev.
Lett., 98, 061102, (2007). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0611083. 

208  Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134, (1973).  
209  Podolsky, J., and Ortaggio, M., “RobinsonTrautman spacetimes in higher dimensions”, Class.
Quantum Grav., 23, 5785, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0605136. 

210  Polchinski, J., String Theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998).  
211  Pomeransky, A.A., “Complete integrability of higherdimensional Einstein equations with
additional symmetry, and rotating black holes”, Phys. Rev. D, 73, 044004, (2006). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0507250. 

212  Pomeransky, A.A., and Sen’kov, R.A., “Black ring with two angular momenta”, (2006). URL
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0612005. 

213  Pravda, V., and Pravdova, A., “WANDs of the black ring”, Gen. Relativ. Gravit., 37, 1277,
(2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0501003. 

214  Pravda, V., Pravdova, A., Coley, A., and Milson, R., “Bianchi identities in higher dimensions”,
Class. Quantum Grav., 21, 1691, (2004). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0401013. Erratum Class. Quantum Grav., 24, (2007. 

215  Pravda, V., Pravdova, A., and Ortaggio, M., “Type D Einstein spacetimes in higher
dimensions”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0704.0435. 

216  Reall, H.S., “Higher dimensional black holes and supersymmetry”, Phys. Rev. D, 68, 024024,
(2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0211290. Erratum Phys. Rev. D, 70,089902 (2004). 

217  Reall, H.S., “Counting the microstates of a vacuum black ring”, (2007). URL (cited on 14
February 2008):
http://arXiv.org/abs/arXiv:0712.3226. 

218  Rogatko, M., “Uniqueness theorem of static degenerate and nondegenerate charged black holes
in higher dimensions”, Phys. Rev. D, 67, 084025, (2003). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/0302091. 

219  Rogatko, M., “Staticity theorem for higher dimensional generalized EinsteinMaxwell system”,
Phys. Rev. D, 71, 024031, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0501216. 

220  Rogatko, M., “Classification of static charged black holes in higher dimensions”, Phys. Rev. D,
73, 124027, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0606116. 

221  Romans, L.J., “Supersymmetric, cold and lukewarm black holes in cosmological
EinsteinMaxwell theory”, Nucl. Phys. B, 383, 395, (1992). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hepth/9203018. 

222  Schwartz, F., “Existence of outermost apparent horizons with product of spheres topology”,
(2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0704.2403. 

223  Senovilla, J.M.M., “Trapped surfaces, horizons, and exact solutions in higher dimensions”,
Class. Quantum Grav., 19, L113, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0204005. 

224  Senovilla, J.M.M., “A Reformulation of the Hoop Conjecture”, (2007). URL (cited on 14
February 2008):
http://arXiv.org/abs/arXiv:0709.0695. 

225  Shiromizu, T., and Tomizawa, S., “Comment on spatial infinity in higher dimensional
spacetimes”, Phys. Rev. D, 69, 104012, (2004). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/grqc/0401006. 

226  Sibgatullin, N.R., Oscillations and Waves in Strong Gravitational and Electromagnetic Fields, (Springer, Berlin, Germany; New York, U.S.A., 1991). English translation of 1984 edition.  
227  Sorkin, E., and Oren, Y., “On Choptuik’s scaling in higher dimensions”, Phys. Rev. D, 71,
124005, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0502034. 

228  Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2003), 2nd edition.  
229  Strominger, A., and Vafa, C., “Microscopic Origin of the Bekenstein–Hawking Entropy”, Phys.
Lett. B, 379, 99–104, (1996). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9601029. 

230  Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992).  
231  Tan, H.S., and Teo, E., “Multiblack hole solutions in five dimensions”, Phys. Rev. D, 68,
044021, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0306044. 

232  Tangherlini, F.R., “Schwarzschild field in n dimensions and the dimensionality of space problem”, Nuovo Cimento, 27, 636, (1963).  
233  Teo, E., “Black diholes in five dimensions”, Phys. Rev. D, 68, 084003, (2003). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0307188. 

234  Teukolsky, S.A., “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations”, Phys. Rev. Lett., 29, 1114–1118, (1972).  
235  Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic, and neutrino field perturbations”, Astrophys. J., 185, 635–648, (1973).  
236  Thorne, K.S., “Nonspherical gravitational collapse – A short review”, in Klauder, J., ed., Magic without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, U.S.A., 1972).  
237  Tod, K.P., “All metrics admitting supercovariantly constant spinors”, Phys. Lett. B, 121, 241–244, (1983).  
238  Tomizawa, S., Iguchi, H., and Mishima, T., “Relationship between solitonic solutions of
fivedimensional Einstein equations”, Phys. Rev. D, 74, 104004, (2006). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0608169. 

239  Tomizawa, S., Morisawa, Y., and Yasui, Y., “Vacuum solutions of five dimensional Einstein
equations generated by inverse scattering method”, Phys. Rev. D, 73, 064009, (2006). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0512252. 

240  Tomizawa, S., and Nozawa, M., “Vaccum solutions of fivedimensional Einstein equations
generated by inverse scattering method. II: Production of black ring solution”, Phys. Rev. D,
73, 124034, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0604067. 

241  Tomizawa, S., Uchida, Y., and Shiromizu, T., “Twist of stationary black hole / ring in five
dimensions”, Phys. Rev. D, 70, 064020, (2004). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/grqc/0405134. 

242  Tseytlin, A.A., “Extreme dyonic black holes in string theory”, Mod. Phys. Lett. A, 11, 689,
(1996). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9601177. 

243  Vasudevan, M., Stevens, K.A., and Page, D.N., “Particle motion and scalar field propagation in
MyersPerry black hole spacetimes in all dimensions”, Class. Quantum Grav., 22, 1469, (2005).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0407030. 

244  Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).  
245  Walker, M., and Penrose, R., “On Quadratic First Integrals of the Geodesic Equations for Type
{22} Spacetimes”, Commun. Math. Phys., 18, 265–274, (1970). Related online version (cited
on 7 July 2008):
http://projecteuclid.org/euclid.cmp/1103842577. 

246  Welch, D.L., “On the smoothness of the horizons of multi  black hole solutions”, Phys. Rev.
D, 52, 985, (1995). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9502146. 

247  Weyl, H., “Zur Gravitationstheorie”, Ann. Phys. (Berlin), 54, 117–145, (1917).  
248  Wiseman, T., “Static axisymmetric vacuum solutions and nonuniform black strings”, Class.
Quantum Grav., 20, 1137, (2003). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0209051. 

249  Witten, E., “Antide Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253, (1998).
Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9802150. 

250  Witten, E., “Antide Sitter space, thermal phase transition, and confinement in gauge theories”,
Adv. Theor. Math. Phys., 2, 505, (1998). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/9803131. 

251  Yazadjiev, S.S., “Rotating nonasymptotically flat black rings in charged dilaton gravity”, Phys.
Rev. D, 72, 104014, (2005). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0511016. 

252  Yazadjiev, S.S., “Completely integrable sector in 5D EinsteinMaxwell gravity and derivation
of the dipole black ring solutions”, Phys. Rev. D, 73, 104007, (2006). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hepth/0602116. 

253  Yazadjiev, S.S., “Generating dyonic solutions in 5D lowenergy string theory and dyonic black
rings”, Phys. Rev. D, 73, 124032, (2006). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0512229. 

254  Yazadjiev, S.S., “Solution generating in 5D Einstein–Maxwelldilaton gravity and derivation
of dipole black ring solutions”, J. High Energy Phys., 2006(07), 036, (2006). Related online
version (cited on 14 February 2008):
http://arXiv.org/abs/hepth/0604140. 

255  Yazadjiev, S.S., “Black Saturn with dipole ring”, Phys. Rev. D, 76, 064011, (2007). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0705.1840. 

256  Yoo, C.M., Nakao, K.I., and Ida, D., “Hoop conjecture in fivedimensions: Violation of cosmic
censorship”, Phys. Rev. D, 71, 104014, (2005). Related online version (cited on 14 February
2008):
http://arXiv.org/abs/grqc/0503008. 

257  Yoshino, H., and Nambu, Y., “Highenergy headon collisions of particles and hoop conjecture”,
Phys. Rev. D, 66, 065004, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/grqc/0204060. 
http://www.livingreviews.org/lrr20086 
This work is licensed under a Creative Commons AttributionNoncommercialNo Derivative Works 2.0 Germany License. Problems/comments to 