1 Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., and Oz, Y., “Large N field theories, string theory and gravity”, Phys. Rep., 323, 183–386, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9905111.
2 Arcioni, G., and Lozano-Tellechea, E., “Stability and critical phenomena of black holes and black rings”, Phys. Rev. D, 72, 104021, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0412118.
3 Ashtekar, A., and Das, S., “Asymptotically anti-de Sitter space-times: Conserved quantities”, Class. Quantum Grav., 17, L17, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9911230.
4 Ashtekar, A., and Magnon, A., “Asymptotically anti-de Sitter space-times”, Class. Quantum Grav., 1, L39–L44, (1984).
5 Ashtekar, A., Pawlowski, T., and Van Den Broeck, C., “Mechanics of higher-dimensional black holes in asymptotically anti-de Sitter space-times”, Class. Quantum Grav., 24, 625, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0611049.
6 Astefanesei, D., and Radu, E., “Quasilocal formalism and black ring thermodynamics”, Phys. Rev. D, 73, 044014, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0509144.
7 Azuma, T., and Koikawa, T., “Infinite number of stationary soliton solutions to five-dimensional vacuum Einstein equation”, Prog. Theor. Phys., 116, 319, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0512350.
8 Barrabes, C., Frolov, V.P., and Lesigne, E., “Geometric inequalities and trapped surfaces in higher dimensional spacetimes”, Phys. Rev. D, 69, 101501, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0402081.
9 Behrndt, K., Cvetič, M., and Sabra, W.A., “Non-extreme black holes of five dimensional N = 2 AdS supergravity”, Nucl. Phys. B, 553, 317–332, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9810227.
10 Belinski, V., and Verdaguer, E., Gravitational Solitons, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2001).
11 Belinsky, V.A., and Zakharov, V.E., “Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions”, Sov. Phys. JETP, 48, 985, (1978). also in Zh. Eksp. Teor. Fiz., 75, (1953).
12 Bena, I., and Warner, N.P., “One ring to rule them all ... and in the darkness bind them?”, Adv. Theor. Math. Phys., 9, 667, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408106.
13 Berman, D.S., and Parikh, M.K., “Holography and rotating AdS black holes”, Phys. Lett. B, 463, 168, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9907003.
14 Bhattacharyya, S., Lahiri, S., Loganayagam, R., and Minwalla, S., “Large rotating AdS black holes from fluid mechanics”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.1770.
15 Birmingham, D., “Topological black holes in anti-de Sitter space”, Class. Quantum Grav., 16, 1197, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9808032.
16 Bouchareb, A., Clement, G., Chen, C.M., Gal’tsov, D.V., Scherbluk, N.G., and Wolf, T., “G2 generating technique for minimal D=5 supergravity and black rings”, Phys. Rev. D, 76, 104032, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.2361.
17 Breckenridge, J.C., Myers, R.C., Peet, A.W., and Vafa, C., “D-branes and spinning black holes”, Phys. Lett. B, 391, 93, (1997). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9602065.
18 Buchel, A., and Liu, J.T., “Gauged supergravity from type IIB string theory on Y p,q manifolds”, Nucl. Phys. B, 771, 93, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0608002.
19 Bunting, G.L., and Masood-ul Alam, A.K.M., “Nonexistence of multiple black holes is asymptotically Euclidean static vacuum space-times”, Gen. Relativ. Gravit., 19, 147–154, (1987).
20 Caldarelli, M.M., Cognola, G., and Klemm, D., “Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories”, Class. Quantum Grav., 17, 399, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9908022.
21 Caldarelli, M.M., and Klemm, D., “Supersymmetry of anti-de Sitter black holes”, Nucl. Phys. B, 545, 434, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9808097.
22 Candlish, G.N., and Reall, H.S., “On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory”, Class. Quantum Grav., 24, 6025, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0707.4420.
23 Cardoso, V., and Dias, Ó.J.C., “Small Kerr-anti-de Sitter black holes are unstable”, Phys. Rev. D, 70, 084011, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0405006.
24 Cardoso, V., Dias, Ó.J.C., and Lemos, J.P.S., “Gravitational radiation in D-dimensional spacetimes”, Phys. Rev. D, 67, 064026, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0212168.
25 Cardoso, V., Dias, Ó.J.C., Lemos, J.P.S., and Yoshida, S., “The black hole bomb and superradiant instabilities”, Phys. Rev. D, 70, 044039, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0404096.
26 Cardoso, V., Siopsis, G., and Yoshida, S., “Scalar perturbations of higher dimensional rotating and ultra-spinning black holes”, Phys. Rev. D, 71, 024019, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0412138.
27 Carter, B., “Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations”, Commun. Math. Phys., 10, 280, (1968).
28 Carter, B., “Essentials of classical brane dynamics”, Int. J. Theor. Phys., 40, 2099, (2001). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0012036.
29 Castejon-Amenedo, J., and Manko, V.S., “Superposition of the Kerr metric with the generalized Erez-Rosen solution”, Phys. Rev. D, 41, 2018–2020, (1990).
30 Cavaglià, M., “Black hole and brane production in TeV gravity: A review”, Int. J. Mod. Phys. A, 18, 1843–1882, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-ph/0210296.
31 Chamblin, A., Emparan, R., Johnson, C.V., and Myers, R.C., “Charged AdS black holes and catastrophic holography”, Phys. Rev. D, 60, 064018, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9902170.
32 Chamblin, A., Emparan, R., Johnson, C.V., and Myers, R.C., “Holography, thermodynamics and fluctuations of charged AdS black holes”, Phys. Rev. D, 60, 104026, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9904197.
33 Charmousis, C., “Higher order gravity theories and their black hole solutions”, (2008). URL (cited on 15 July 2008):
External Linkhttp://arXiv.org/abs/0805.0568.
34 Charmousis, C., and Gregory, R., “Axisymmetric metrics in arbitrary dimensions”, Class. Quantum Grav., 21, 527, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0306069.
35 Charmousis, C., Langlois, D., Steer, D., and Zegers, R., “Rotating spacetimes with a cosmological constant”, J. High Energy Phys., 2007(02), 064, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0610091.
36 Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Charged rotating black holes in four-dimensional gauged and ungauged supergravities”, Nucl. Phys. B, 717, 246, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0411045.
37 Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Five-dimensional gauged supergravity black holes with independent rotation parameters”, Phys. Rev. D, 72, 041901, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505112.
38 Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “General non-extremal rotating black holes in minimal five-dimensional gauged supergravity”, Phys. Rev. Lett., 95, 161301, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0506029.
39 Chong, Z.W., Cvetič, M., Lü, H., and Pope, C.N., “Non-extremal rotating black holes in five-dimensional gauged supergravity”, Phys. Lett. B, 644, 192, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0606213.
40 Chong, Z.W.H., Cvetič, M., Lü, H., and Pope, C.N., “Non-extremal charged rotating black holes in seven-dimensional gauged supergravity”, Phys. Lett. B, 626, 215, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0412094.
41 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993).
42 Choptuik, M.W., Lehner, L., Olabarrieta, I., Petryk, R., Pretorius, F., and Villegas, H., “Towards the final fate of an unstable black string”, Phys. Rev. D, 68, 044001, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0304085.
43 Chow, D.D.K., “Equal charge black holes and seven dimensional gauged supergravity”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0711.1975.
44 Chruściel, P.T., “The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16, 661, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9809088.
45 Chruściel, P.T., Reall, H.S., and Tod, P., “On Israel-Wilson-Perjes black holes”, Class. Quantum Grav., 23, 2519, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0512116.
46 Chruściel, P.T., Reall, H.S., and Tod, P., “On non-existence of static vacuum black holes with degenerate components of the event horizon”, Class. Quantum Grav., 23, 549, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0512041.
47 Chruściel, P.T., and Tod, P., “The classification of static electro-vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior”, Commun. Math. Phys., 271, 577, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0512043.
48 Chruściel, P.T., and Wald, R.M., “On the Topology of Stationary Black Holes”, Class. Quantum Grav., 11, L147–L152, (1994). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9410004.
49 Chu, Y.Z., Goldberger, W.D., and Rothstein, I.Z., “Asymptotics of d-dimensional Kaluza-Klein black holes: Beyond the newtonian approximation”, J. High Energy Phys., 2006(03), 013, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0602016.
50 Coley, A., Milson, R., Pravda, V., and Pravdova, A., “Classification of the Weyl tensor in higher-dimensions”, Class. Quantum Grav., 21, L35, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0401008.
51 Coley, A.A., “Classification of the Weyl Tensor in Higher Dimensions and Applications”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.1598.
52 Copsey, K., and Horowitz, G.T., “The role of dipole charges in black hole thermodynamics”, Phys. Rev. D, 73, 024015, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505278.
53 Cosgrove, C.M., “Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions”, J. Math. Phys., 21, 2417, (1980).
54 Cosgrove, C.M., “Relationship between the inverse scattering techniques of Belinskii-Zakharov and Hauser-Ernst in general relativity”, J. Math. Phys., 23, 615, (1982).
55 Cvetič, M., Duff, M.J., Hoxha, P., Liu, J.T., Lü, H., Lu, J.X., Martinez-Acosta, R., Pope, C.N., Sati, H., and Tran, T.A., “Embedding AdS black holes in ten and eleven dimensions”, Nucl. Phys. B, 558, 96–126, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9903214.
56 Cvetič, M., and Gubser, S.S., “Phases of R-charged black holes, spinning branes and strongly coupled gauge theories”, J. High Energy Phys., 1999(04), 024, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9902195.
57 Cvetič, M., and Gubser, S.S., “Thermodynamic stability and phases of general spinning branes”, J. High Energy Phys., 1999(07), 010, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9903132.
58 Cvetič, M., and Hull, C.M., “Black holes and U-duality”, Nucl. Phys. B, 480, 296, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9606193.
59 Cvetič, M., Lü, H., and Pope, C.N., “Gauged six-dimensional supergravity from massive type IIA”, Phys. Rev. Lett., 83, 5226, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9906221.
60 Cvetič, M., Lü, H., and Pope, C.N., “Charged Kerr-de Sitter black holes in five dimensions”, Phys. Lett. B, 598, 273, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0406196.
61 Cvetič, M., Lü, H., and Pope, C.N., “Charged rotating black holes in five dimensional U(1)**3 gauged N = 2 supergravity”, Phys. Rev. D, 70, 081502, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0407058.
62 Cvetič, M., Lü, H., Pope, C.N., Sadrzadeh, A., and Tran, T.A., “Consistent SO(6) reduction of type IIB supergravity on S5”, Nucl. Phys. B, 586, 275, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0003103.
63 Cvetič, M., and Youm, D., “General Rotating Five Dimensional Black Holes of Toroidally Compactified Heterotic String”, Nucl. Phys. B, 476, 118, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9603100.
64 Cvetič, M., and Youm, D., “Near-BPS-Saturated Rotating Electrically Charged Black Holes as String States”, Nucl. Phys. B, 477, 449, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9605051.
65 De Smet, P.J., “Black holes on cylinders are not algebraically special”, Class. Quantum Grav., 19, 4877, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0206106.
66 De Smet, P.J., “The Petrov type of the five-dimensional Myers-Perry metric”, Gen. Relativ. Gravit., 36, 1501, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0312021.
67 de Wit, B., and Nicolai, H., “The Consistency of the S**7 Truncation in D=11 Supergravity”, Nucl. Phys. B, 281, 211, (1987).
68 Dias, Ó.J.C., “Superradiant instability of large radius doubly spinning black rings”, Phys. Rev. D, 73, 124035, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0602064.
69 Duff, M.J., and Liu, J.T., “Anti-de Sitter black holes in gauged N = 8 supergravity”, Nucl. Phys. B, 554, 237–253, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9901149.
70 Elvang, H., “A charged rotating black ring”, Phys. Rev. D, 68, 124016, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0305247.
71 Elvang, H., and Emparan, R., “Black rings, supertubes, and a stringy resolution of black hole non-uniqueness”, J. High Energy Phys., 2003(11), 035, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0310008.
72 Elvang, H., Emparan, R., and Figueras, P., “Non-supersymmetric black rings as thermally excited supertubes”, J. High Energy Phys., 2005(02), 031, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0412130.
73 Elvang, H., Emparan, R., and Figueras, P., “Phases of Five-Dimensional Black Holes”, J. High Energy Phys., 2007(05), 056, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0702111.
74 Elvang, H., Emparan, R., Mateos, D., and Reall, H.S., “A supersymmetric black ring”, Phys. Rev. Lett., 93, 211302, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0407065.
75 Elvang, H., Emparan, R., Mateos, D., and Reall, H.S., “Supersymmetric black rings and three-charge supertubes”, Phys. Rev. D, 71, 024033, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408120.
76 Elvang, H., Emparan, R., and Virmani, A., “Dynamics and stability of black rings”, J. High Energy Phys., 2006(12), 074, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0608076.
77 Elvang, H., and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0701035.
78 Elvang, H., and Rodriguez, M.J., “Bicycling Black Rings”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.2425.
79 Emparan, R., “Rotating circular strings, and infinite non-uniqueness of black rings”, J. High Energy Phys., 2004(03), 064, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0402149.
80 Emparan, R., Harmark, T., Niarchos, V., Obers, N.A., and Rodríguez, M.J., “The Phase Structure of Higher-Dimensional Black Rings and Black Holes”, J. High Energy Phys., 2007(10), 110, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.2181.
81 Emparan, R., and Myers, R.C., “Instability of ultra-spinning black holes”, J. High Energy Phys., 2003(09), 025, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0308056.
82 Emparan, R., and Reall, H.S., “Generalized Weyl solutions”, Phys. Rev. D, 65, 084025, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0110258.
83 Emparan, R., and Reall, H.S., “A rotating black ring in five dimensions”, Phys. Rev. Lett., 88, 101101, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0110260.
84 Emparan, R., and Reall, H.S., “Black rings”, Class. Quantum Grav., 23, R169, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0608012.
85 Evslin, J., and Krishnan, C., “The Black Di-Ring: An Inverse Scattering Construction”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0706.1231.
86 Feinstein, A., and Vazquez-Mozo, M.A., “M-theory resolution of four-dimensional cosmological singularities”, Nucl. Phys. B, 568, 405, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9906006.
87 Figueras, P., “A black ring with a rotating 2-sphere”, J. High Energy Phys., 2005(07), 039, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505244.
88 Frolov, V.P., “Hidden Symmetries of Higher-Dimensional Black Hole Spacetimes”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.4157.
89 Frolov, V.P., and Goswami, R., “Surface geometry of 5D black holes and black rings”, Phys. Rev. D, 75, 124001, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0612033.
90 Frolov, V.P., Krtouš, P., and Kubizňák, D., “Separability of Hamilton-Jacobi and Klein-Gordon equations in general Kerr-NUT-AdS spacetimes”, J. High Energy Phys., 2007(02), 005, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0611245.
91 Frolov, V.P., and Kubizňák, D., “Hidden symmetries of higher-dimensional rotating black holes”, Phys. Rev. Lett., 98, 011101, (2007).
92 Frolov, V.P., Mazzitelli, F.D., and Paz, J.P., “Quantum effects near multidimensional black holes”, Phys. Rev. D, 40, 948, (1989).
93 Frolov, V.P., and Stojkovic, D., “Particle and light motion in a space-time of a five-dimensional rotating black hole”, Phys. Rev. D, 68, 064011, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0301016.
94 Frolov, V.P., and Stojkovic, D., “Quantum radiation from a 5-dimensional rotating black hole”, Phys. Rev. D, 67, 084004, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0211055.
95 Galloway, G.J., “On the topology of the domain of outer communication”, Class. Quantum Grav., 12, L99–L101, (1995).
96 Galloway, G.J., “Rigidity of outer horizons and the topology of black holes”, (2006). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0608118.
97 Galloway, G.J., Schleich, K., Witt, D.M., and Woolgar, E., “Topological censorship and higher genus black holes”, Phys. Rev. D, 60, 104039, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9902061.
98 Galloway, G.J., and Schoen, R., “A generalization of Hawking’s black hole topology theorem to higher dimensions”, Commun. Math. Phys., 266, 571, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0509107.
99 Gauntlett, J.P., and Gutowski, J.B., “Concentric black rings”, Phys. Rev. D, 71, 025013, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408010.
100 Gauntlett, J.P., and Gutowski, J.B., “General concentric black rings”, Phys. Rev. D, 71, 045002, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408122.
101 Gauntlett, J.P., Gutowski, J.B., Hull, C.M., Pakis, S., and Reall, H.S., “All supersymmetric solutions of minimal supergravity in five dimensions”, Class. Quantum Grav., 20, 4587, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0209114.
102 Gauntlett, J.P., Myers, R.C., and Townsend, P.K., “Black holes of D = 5 supergravity”, Class. Quantum Grav., 16, 1, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9810204.
103 Gauntlett, J.P., Ó Colgáin, E., and Varela, O., “Properties of some conformal field theories with M-theory duals”, J. High Energy Phys., 2007(02), 049, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0611219.
104 Gauntlett, J.P., and Varela, O., “Consistent Kaluza-Klein Reductions for General Supersymmetric AdS Solutions”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0707.2315.
105 Gibbons, G., and Hartnoll, S.A., “A gravitational instability in higher dimensions”, Phys. Rev. D, 66, 064024, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0206202.
106 Gibbons, G.W., and Herdeiro, C.A.R., “Supersymmetric rotating black holes and causality violation”, Class. Quantum Grav., 16, 3619, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9906098.
107 Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solitons in N = 2 supergravity”, Phys. Lett. B, 109, 190–194, (1982).
108 Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl. Phys. B, 218, 173–190, (1983).
109 Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and non-uniqueness of static black holes in higher dimensions”, Phys. Rev. Lett., 89, 041101, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0206049.
110 Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions”, Prog. Theor. Phys. Suppl., 148, 284, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0203004.
111 Gibbons, G.W., Lü, H., Page, D.N., and Pope, C.N., “Rotating black holes in higher dimensions with a cosmological constant”, Phys. Rev. Lett., 93, 171102, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0409155.
112 Gibbons, G.W., Lü, H., Page, D.N., and Pope, C.N., “The general Kerr-de Sitter metrics in all dimensions”, J. Geom. Phys., 53, 49, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0404008.
113 Gibbons, G.W., Perry, M.J., and Pope, C.N., “The first law of thermodynamics for Kerr–anti-de Sitter black holes”, Class. Quantum Grav., 22, 1503–1526, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408217.
114 Giusto, S., and Saxena, A., “Stationary axisymmetric solutions of five dimensional gravity”, Class. Quantum Grav., 24, 4269, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/0705.4484.
115 Gorbonos, D., and Kol, B., “A dialogue of multipoles: Matched asymptotic expansion for caged black holes”, J. High Energy Phys., 2004(06), 053, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0406002.
116 Gorbonos, D., and Kol, B., “Matched asymptotic expansion for caged black holes: Regularization of the post-Newtonian order”, Class. Quantum Grav., 22, 3935, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505009.
117 Gregory, R., and Laflamme, R., “Hypercylindrical black holes”, Phys. Rev. D, 37, 305, (1988).
118 Gregory, R., and Laflamme, R., “Black strings and p-branes are unstable”, Phys. Rev. Lett., 70, 2837, (1993). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9301052.
119 Gregory, R., and Laflamme, R., “The Instability of charged black strings and p-branes”, Nucl. Phys. B, 428, 399, (1994). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:hep-th/9404071.
120 Gubser, S.S., “On non-uniform black branes”, Class. Quantum Grav., 19, 4825, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0110193.
121 Gubser, S.S., and Mitra, I., “Instability of charged black holes in anti-de Sitter space”, (2000). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0009126.
122 Gubser, S.S., and Mitra, I., “The evolution of unstable black holes in anti-de Sitter space”, J. High Energy Phys., 2001(08), 018, (2001). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0011127.
123 Gutowski, J.B., “Uniqueness of five-dimensional supersymmetric black holes”, J. High Energy Phys., 2004(08), 049, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0404079.
124 Gutowski, J.B., and Reall, H.S., “General supersymmetric AdS5 black holes”, J. High Energy Phys., 2004(04), 048, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0401129.
125 Gutowski, J.B., and Reall, H.S., “Supersymmetric AdS5 black holes”, J. High Energy Phys., 2004(02), 006, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0401042.
126 Harmark, T., “Small black holes on cylinders”, Phys. Rev. D, 69, 104015, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0310259.
127 Harmark, T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys. Rev. D, 70, 124002, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0408141.
128 Harmark, T., Niarchos, V., and Obers, N.A., “Instabilities of black strings and branes”, Class. Quantum Grav., 24, R1, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0701022.
129 Harmark, T., and Obers, N.A., “Phases of Kaluza-Klein black holes: A brief review”, (2005). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0503020.
130 Harmark, T., and Olesen, P., “On the structure of stationary and axisymmetric metrics”, Phys. Rev. D, 72, 124017, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0508208.
131 Hartle, J.B., and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black holes”, Commun. Math. Phys., 26, 87–101, (1972).
132 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).
133 Hawking, S.W., Hunter, C.J., and Taylor-Robinson, M.M., “Rotation and the AdS/CFT correspondence”, Phys. Rev. D, 59, 064005, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9811056.
134 Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Anti-de Sitter Space”, Commun. Math. Phys., 87, 577–588, (1983).
135 Hawking, S.W., and Reall, H.S., “Charged and rotating AdS black holes and their CFT duals”, Phys. Rev. D, 61, 024014, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9908109.
136 Helfgott, C., Oz, Y., and Yanay, Y., “On the topology of black hole event horizons in higher dimensions”, J. High Energy Phys., 2006(02), 025, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0509013.
137 Hoenselaers, C., Kinnersley, W., and Xanthopoulos, B.C., “Symmetries of the stationary Einstein-Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments”, J. Math. Phys., 20, 2530, (1979).
138 Hollands, S., Ishibashi, A., and Wald, R.M., “A higher dimensional stationary rotating black hole must be axisymmetric”, Commun. Math. Phys., 271, 699, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0605106.
139 Hollands, S., and Yazadjiev, S., “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0707.2775.
140 Hong, K., and Teo, E., “A new form of the C-metric”, Class. Quantum Grav., 20, 3269, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0305089.
141 Horowitz, G.T., and Hubeny, V.E., “Note on small black holes in AdSp × Sq”, J. High Energy Phys., 0006, 031, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0005288.
142 Horowitz, G.T., and Maeda, K., “Fate of the black string instability”, Phys. Rev. Lett., 87, 131301, (2001). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0105111.
143 Hoskisson, J., “Particle motion in the rotating black ring metric”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.0117.
144 Hovdebo, J.L., and Myers, R.C., “Black rings, boosted strings and Gregory-Laflamme”, Phys. Rev. D, 73, 084013, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0601079.
145 Ida, D., and Nakao, K.-I., “Isoperimetric inequality for higher-dimensional black holes”, Phys. Rev. D, 66, 064026, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0204082.
146 Ida, D., and Uchida, Y., “Stationary Einstein-Maxwell fields in arbitrary dimensions”, Phys. Rev. D, 68, 104014, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0307095.
147 Ida, D., Uchida, Y., and Morisawa, Y., “The scalar perturbation of the higher-dimensional rotating black holes”, Phys. Rev. D, 67, 084019, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0212035.
148 Iguchi, H., and Mishima, T., “Solitonic generation of five-dimensional black ring solution”, Phys. Rev. D, 73, 121501, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0604050.
149 Iguchi, H., and Mishima, T., “Solitonic generation of vacuum solutions in five-dimensional general relativity”, Phys. Rev. D, 74, 024029, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0605090.
150 Iguchi, H., and Mishima, T., “Black di-ring and infinite nonuniqueness”, Phys. Rev. D, 75, 064018, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0701043.
151 Ishibashi, A., and Kodama, H., “Stability of higher-dimensional Schwarzschild black holes”, Prog. Theor. Phys., 110, 901, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0305185.
152 Izumi, K., “Orthogonal black di-ring solution”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.0902.
153 Jacobson, T., and Venkataramani, S., “Topology Of Event Horizons And Topological Censorship”, Class. Quantum Grav., 12, 1055, (1995). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9410023.
154 Jamsin, E., “A Note on Conserved Charges of Asymptotically Flat and Anti-de Sitter Spaces in Arbitrary Dimensions”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.0484.
155 Kanti, P., “Black holes in theories with large extra dimensions: A review”, Int. J. Mod. Phys. A, 19, 4899, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-ph/0402168.
156 Karasik, D., Sahabandu, C., Suranyi, P., and Wijewardhana, L.C.R., “Analytic approximation to 5 dimensional black holes with one compact dimension”, Phys. Rev. D, 71, 024024, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0410078.
157 Kay, B.S., and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon”, Phys. Rep., 207, 49–136, (1991).
158 Kimura, M., Murata, K., Ishihara, H., and Soda, J., “On the Stability of Squashed Kaluza-Klein Black Holes”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.4202.
159 Kinnersley, W., “Type D vacuum metrics”, J. Math. Phys., 10, 1195, (1969).
160 Kinney, J., Maldacena, J.M., Minwalla, S., and Raju, S., “An index for 4 dimensional super conformal theories”, Commun. Math. Phys., 275, 209, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0510251.
161 Kleihaus, B., Kunz, J., and Navarro-Lerida, F., “Rotating Black Holes in Higher Dimensions”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.2291.
162 Kodama, H., “Perturbative uniqueness of black holes near the static limit in arbitrary dimensions”, Prog. Theor. Phys., 112, 249, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0403239.
163 Kodama, H., and Ishibashi, A., “A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions”, Prog. Theor. Phys., 110, 701, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0305147.
164 Kodama, H., and Ishibashi, A., “Master equations for perturbations of generalized static black holes with charge in higher dimensions”, Prog. Theor. Phys., 111, 29, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0308128.
165 Koikawa, T., “Infinite number of soliton solutions to 5-dimensional vacuum Einstein equation”, Prog. Theor. Phys., 114, 793, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0501248.
166 Kol, B., “Speculative generalization of black hole uniqueness to higher dimensions”, (2002). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:hep-th/0208056.
167 Kol, B., “The phase transition between caged black holes and black strings: A review”, Phys. Rep., 422, 119, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0411240.
168 Kol, B., and Smolkin, M., “Classical Effective Field Theory and Caged Black Holes”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.2822.
169 Konoplya, R.A., and Zhidenko, A., “Stability of multidimensional black holes: Complete numerical analysis”, Nucl. Phys. B, 777, 182, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0703231.
170 Korzynski, M., Lewandowski, J., and Pawlowski, T., “Mechanics of multidimensional isolated horizons”, Class. Quantum Grav., 22, 2001, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0412108.
171 Kostelecky, V.A., and Perry, M.J., “Solitonic Black Holes in Gauged N=2 Supergravity”, Phys. Lett. B, 371, 191, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9512222.
172 Kottler, F., “The physical basis of Einstein’s theory of gravitation”, Ann. Phys. (Leipzig), 56, 401, (1918).
173 Krtouš, P., Kubizňák, D., Page, D.N., and Vasudevan, M., “Constants of geodesic motion in higher-dimensional black-hole spacetimes”, Phys. Rev. D, 76, 084034, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0707.0001.
174 Kubizňák, D., and Frolov, V.P., “Hidden symmetry of higher dimensional Kerr–NUT–AdS spacetimes”, Class. Quantum Grav., 24, F1–F6, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0610144.
175 Kunduri, H.K., and Lucietti, J., “Electrically charged dilatonic black rings”, Phys. Lett. B, 609, 143, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0412153.
176 Kunduri, H.K., and Lucietti, J., “Near-horizon geometries of supersymmetric AdS5 black holes”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.3695.
177 Kunduri, H.K., Lucietti, J., and Reall, H.S., “Gravitational perturbations of higher dimensional rotating black holes: Tensor Perturbations”, Phys. Rev. D, 74, 084021, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0606076.
178 Kunduri, H.K., Lucietti, J., and Reall, H.S., “Supersymmetric multi-charge AdS5 black holes”, J. High Energy Phys., 2006(04), 036, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0601156.
179 Kunduri, H.K., Lucietti, J., and Reall, H.S., “Do supersymmetric anti-de Sitter black rings exist?”, J. High Energy Phys., 2007(02), 026, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0611351.
180 Lahiri, S., and Minwalla, S., “Plasmarings as dual black rings”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.3404.
181 Larsen, F., “Entropy of thermally excited black rings”, J. High Energy Phys., 2005(10), 100, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505152.
182 Lewandowski, J., and Pawlowski, T., “Quasi-local rotating black holes in higher dimension: Geometry”, Class. Quantum Grav., 22, 1573, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0410146.
183 Liko, T., and Booth, I., “Supersymmetric isolated horizons”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.3308.
184 Llatas, P.M., “Electrically Charged Black-holes for the Heterotic String Compactified on a (10 D)-torus”, Phys. Lett. B, 397, 63, (1997). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9605058.
185 London, L.A.J., “Arbitrary dimensional cosmological multi-black holes”, Nucl. Phys. B, 434, 709–735, (1995).
186 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 18 February 2008):
http://www.livingreviews.org/lrr-2004-7.
187 Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2, 231–252, (1998). Related online version (cited on 4 July 2008):
External Linkhttp://arXiv.org/abs/hep-th/9711200.
188 Maldacena, J.M., and Strominger, A., “Black hole greybody factors and D-brane spectroscopy”, Phys. Rev. D, 55, 861–870, (1997). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9609026.
189 Manko, V.S., and Sibgatullin, N.R., “Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis”, Class. Quantum Grav., 10, 1383, (1993).
190 Marolf, D., “On the fate of black string instabilities: An observation”, Phys. Rev. D, 71, 127504, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0504045.
191 Mei, J., and Pope, C.N., “New Rotating Non-Extremal Black Holes in D=5 Maximal Gauged Supergravity”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.0559.
192 Mishima, T., and Iguchi, H., “New axisymmetric stationary solutions of five-dimensional vacuum Einstein equations with asymptotic flatness”, Phys. Rev. D, 73, 044030, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0504018.
193 Miyamoto, U., and Murata, K., “On Hawking radiation from black rings”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.3150.
194 Morisawa, Y., and Ida, D., “A boundary value problem for the five-dimensional stationary rotating black holes”, Phys. Rev. D, 69, 124005, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0401100.
195 Morisawa, Y., and Ida, D., “Scalar field perturbation on six-dimensional ultra-spinning black holes”, Phys. Rev. D, 71, 044022, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0412070.
196 Morisawa, Y., Tomizawa, S., and Yasui, Y., “Boundary Value Problem for Black Rings”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.4600.
197 Murata, K., and Soda, J., “A Note on Separability of Field Equations in Myers-Perry Spacetimes”, Class. Quantum Grav., 25, 035006, (2008). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.0221.
198 Myers, R.C., “Higher dimensional black holes in compactified space-times”, Phys. Rev. D, 35, 455, (1987).
199 Myers, R.C., “Black holes in higher curvature gravity”, (1998). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9811042.
200 Myers, R.C., and Perry, M.J., “Black Holes In Higher Dimensional Space-Times”, Ann. Phys. (N.Y.), 172, 304, (1986).
201 Nastase, H., Vaman, D., and van Nieuwenhuizen, P., “Consistent nonlinear K K reduction of 11d supergravity on AdS7 × S4”, Phys. Lett. B, 469, 96, (1999). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9905075.
202 Nastase, H., Vaman, D., and van Nieuwenhuizen, P., “Consistency of the AdS7 × S4”, Nucl. Phys. B, 581, 179, (2000). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9911238.
203 Neugebauer, G., “Bäcklund transformations of axially symmetric stationary gravitational fields”, J. Phys. A, 12, L67, (1979).
204 Nomura, H., Yoshida, S., Tanabe, M., and Maeda, K.-I., “The fate of a five-dimensional rotating black hole via Hawking radiation”, Prog. Theor. Phys., 114, 707, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0502179.
205 Nozawa, M., and Maeda, K.-I., “Energy extraction from higher dimensional black holes and black rings”, Phys. Rev. D, 71, 084028, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0502166.
206 Ooguri, H., “Spectrum of Hawking Radiation and Huygens’ Principle”, Phys. Rev. D, 33, 3573, (1986).
207 Page, D.N., Kubizňák, D., Vasudevan, M., and Krtouš, P., “Complete Integrability of Geodesic Motion in General Higher-Dimensional Rotating Black-Hole Spacetimes”, Phys. Rev. Lett., 98, 061102, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0611083.
208 Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134, (1973).
209 Podolsky, J., and Ortaggio, M., “Robinson-Trautman spacetimes in higher dimensions”, Class. Quantum Grav., 23, 5785, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0605136.
210 Polchinski, J., String Theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998).
211 Pomeransky, A.A., “Complete integrability of higher-dimensional Einstein equations with additional symmetry, and rotating black holes”, Phys. Rev. D, 73, 044004, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0507250.
212 Pomeransky, A.A., and Sen’kov, R.A., “Black ring with two angular momenta”, (2006). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0612005.
213 Pravda, V., and Pravdova, A., “WANDs of the black ring”, Gen. Relativ. Gravit., 37, 1277, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0501003.
214 Pravda, V., Pravdova, A., Coley, A., and Milson, R., “Bianchi identities in higher dimensions”, Class. Quantum Grav., 21, 1691, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0401013. Erratum Class. Quantum Grav., 24, (2007.
215 Pravda, V., Pravdova, A., and Ortaggio, M., “Type D Einstein spacetimes in higher dimensions”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0704.0435.
216 Reall, H.S., “Higher dimensional black holes and supersymmetry”, Phys. Rev. D, 68, 024024, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0211290. Erratum Phys. Rev. D, 70,089902 (2004).
217 Reall, H.S., “Counting the microstates of a vacuum black ring”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0712.3226.
218 Rogatko, M., “Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions”, Phys. Rev. D, 67, 084025, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0302091.
219 Rogatko, M., “Staticity theorem for higher dimensional generalized Einstein-Maxwell system”, Phys. Rev. D, 71, 024031, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0501216.
220 Rogatko, M., “Classification of static charged black holes in higher dimensions”, Phys. Rev. D, 73, 124027, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0606116.
221 Romans, L.J., “Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory”, Nucl. Phys. B, 383, 395, (1992). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9203018.
222 Schwartz, F., “Existence of outermost apparent horizons with product of spheres topology”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0704.2403.
223 Senovilla, J.M.M., “Trapped surfaces, horizons, and exact solutions in higher dimensions”, Class. Quantum Grav., 19, L113, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0204005.
224 Senovilla, J.M.M., “A Reformulation of the Hoop Conjecture”, (2007). URL (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.0695.
225 Shiromizu, T., and Tomizawa, S., “Comment on spatial infinity in higher dimensional spacetimes”, Phys. Rev. D, 69, 104012, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0401006.
226 Sibgatullin, N.R., Oscillations and Waves in Strong Gravitational and Electromagnetic Fields, (Springer, Berlin, Germany; New York, U.S.A., 1991). English translation of 1984 edition.
227 Sorkin, E., and Oren, Y., “On Choptuik’s scaling in higher dimensions”, Phys. Rev. D, 71, 124005, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0502034.
228 Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2003), 2nd edition.
229 Strominger, A., and Vafa, C., “Microscopic Origin of the Bekenstein–Hawking Entropy”, Phys. Lett. B, 379, 99–104, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9601029.
230 Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992).
231 Tan, H.S., and Teo, E., “Multi-black hole solutions in five dimensions”, Phys. Rev. D, 68, 044021, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0306044.
232 Tangherlini, F.R., “Schwarzschild field in n dimensions and the dimensionality of space problem”, Nuovo Cimento, 27, 636, (1963).
233 Teo, E., “Black diholes in five dimensions”, Phys. Rev. D, 68, 084003, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0307188.
234 Teukolsky, S.A., “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations”, Phys. Rev. Lett., 29, 1114–1118, (1972).
235 Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic, and neutrino field perturbations”, Astrophys. J., 185, 635–648, (1973).
236 Thorne, K.S., “Non-spherical gravitational collapse – A short review”, in Klauder, J., ed., Magic without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, U.S.A., 1972).
237 Tod, K.P., “All metrics admitting super-covariantly constant spinors”, Phys. Lett. B, 121, 241–244, (1983).
238 Tomizawa, S., Iguchi, H., and Mishima, T., “Relationship between solitonic solutions of five-dimensional Einstein equations”, Phys. Rev. D, 74, 104004, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0608169.
239 Tomizawa, S., Morisawa, Y., and Yasui, Y., “Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method”, Phys. Rev. D, 73, 064009, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0512252.
240 Tomizawa, S., and Nozawa, M., “Vaccum solutions of five-dimensional Einstein equations generated by inverse scattering method. II: Production of black ring solution”, Phys. Rev. D, 73, 124034, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0604067.
241 Tomizawa, S., Uchida, Y., and Shiromizu, T., “Twist of stationary black hole / ring in five dimensions”, Phys. Rev. D, 70, 064020, (2004). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0405134.
242 Tseytlin, A.A., “Extreme dyonic black holes in string theory”, Mod. Phys. Lett. A, 11, 689, (1996). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9601177.
243 Vasudevan, M., Stevens, K.A., and Page, D.N., “Particle motion and scalar field propagation in Myers-Perry black hole spacetimes in all dimensions”, Class. Quantum Grav., 22, 1469, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0407030.
244 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
245 Walker, M., and Penrose, R., “On Quadratic First Integrals of the Geodesic Equations for Type {22} Spacetimes”, Commun. Math. Phys., 18, 265–274, (1970). Related online version (cited on 7 July 2008):
External Linkhttp://projecteuclid.org/euclid.cmp/1103842577.
246 Welch, D.L., “On the smoothness of the horizons of multi - black hole solutions”, Phys. Rev. D, 52, 985, (1995). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9502146.
247 Weyl, H., “Zur Gravitationstheorie”, Ann. Phys. (Berlin), 54, 117–145, (1917).
248 Wiseman, T., “Static axisymmetric vacuum solutions and non-uniform black strings”, Class. Quantum Grav., 20, 1137, (2003). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0209051.
249 Witten, E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253, (1998). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9802150.
250 Witten, E., “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys., 2, 505, (1998). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/9803131.
251 Yazadjiev, S.S., “Rotating non-asymptotically flat black rings in charged dilaton gravity”, Phys. Rev. D, 72, 104014, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0511016.
252 Yazadjiev, S.S., “Completely integrable sector in 5D Einstein-Maxwell gravity and derivation of the dipole black ring solutions”, Phys. Rev. D, 73, 104007, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0602116.
253 Yazadjiev, S.S., “Generating dyonic solutions in 5D low-energy string theory and dyonic black rings”, Phys. Rev. D, 73, 124032, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0512229.
254 Yazadjiev, S.S., “Solution generating in 5D Einstein–Maxwell-dilaton gravity and derivation of dipole black ring solutions”, J. High Energy Phys., 2006(07), 036, (2006). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/hep-th/0604140.
255 Yazadjiev, S.S., “Black Saturn with dipole ring”, Phys. Rev. D, 76, 064011, (2007). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.1840.
256 Yoo, C.M., Nakao, K.-I., and Ida, D., “Hoop conjecture in five-dimensions: Violation of cosmic censorship”, Phys. Rev. D, 71, 104014, (2005). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0503008.
257 Yoshino, H., and Nambu, Y., “High-energy head-on collisions of particles and hoop conjecture”, Phys. Rev. D, 66, 065004, (2002). Related online version (cited on 14 February 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0204060.