1 Abramowicz, M.A., Calvani, M., and Nobili, L., “Runaway instability in accretion disks orbiting black holes”, Nature, 302, 597–599, (1983).
2 Abramowicz, M.A., Czerny, B., Lasota, J.P., and Szuszkiewicz, E., “Slim accretion disks”, Astrophys. J., 332, 646–658, (1988).
3 Abramowicz, M.A., Jaroszynski, M., and Sikora, M., “Relativistic, accreting disks”, Astron. Astrophys., 63, 221–224, (1978).
4 Agertz, O., Moore, B., Stadel, J., Potter, D., Miniati, F., Read, J., Mayer, L., Gawryszczak, A., Kravtsov, A., Nordlund, A., Pearce, F., Quilis, V., Rudd, D., Springel, V., Stone, J., Tasker, E., Teyssier, R., Wadsley, J., and Walder, R., “Fundamental differences between SPH and grid methods”, Mon. Not. R. Astron. Soc., 380, 963–978, (2007). Related online version (cited on 28 December 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0610051.
5 Alcubierre, M., “The status of numerical relativity”, in Florides, P., Nolan, B., and Ottewill, A., eds., General Relativity and Gravitation, p. 3, (World Scientific, London, U.K., 2005). Related online version (cited on 30 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0412019. Proceedings of the 17th International Conference held at RDS Convention Centre, Dublin, Ireland, July 18 – 23, 2004.
6 Alcubierre, M., Brügmann, B., Holz, D.E., Takahashi, R., Brandt, S., Seidel, E., and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids”, Int. J. Mod. Phys. D, 10, 273–289, (2001). Related online version (cited on 5 July 2002):
External Linkhttp://arXiv.org/abs/gr-qc/9908012.
7 Aloy, M.A., Ibáñez, J.M., Martí, J.M., and Müller, E., “GENESIS: A high-resolution code for three-dimensional relativistic hydrodynamics”, Astrophys. J. Suppl. Ser., 122, 151–166, (1999). Related online version (cited on 1 April 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9903352.
8 Aloy, M.A., Janka, H.-T., and Müller, E., “Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts”, Astron. Astrophys., 436, 273–311, (2005). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0408291.
9 Aloy, M.A., Müller, E., Ibáñez, J.M., Martí, J.M., and MacFadyen, A., “Relativistic Jets from Collapsars”, Astrophys. J. Lett., 531, L119–L122, (2000). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/9911098.
10 Aloy, M.A., Pons, J.A., and Ibáñez, J.M., “An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes”, Comput. Phys. Commun., 120, 115–121, (1999). Related online version (cited on 1 December 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9904195.
11 Aloy, M.A., and Rezzolla, L., “A Powerful Hydrodynamic Booster for Relativistic Jets”, Astrophys. J. Lett., 640, L115–L118, (2006). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0602437.
12 Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.W., Palenzuela, C., and Tohline, J.E., “Magnetized neutron star mergers and gravitational wave signals”, (2008). URL (cited on 5 February 2008):
External Linkhttp://arXiv.org/abs/0801.4387.
13 Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.W., Palenzuela, C., and Tohline, J.E., “Simulating binary neutron stars: Dynamics and gravitational waves”, Phys. Rev. D, 77, 024006, (2008). Related online version (cited on 1 December 2007):
External Linkhttp://arXiv.org/abs/0708.2720.
14 Anderson, M., Hirschmann, E.W., Liebling, S.L., and Neilsen, D.W., “Relativistic MHD with adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0605102.
15 Anile, A.M., Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
16 Anile, A.M., and Pennisi, S., “On the mathematical structure of test relativistic magnetofluiddynamics”, Ann. Inst. Henri Poincare, 46, 27–44, (1987).
17 Anninos, P., “Plane-symmetric cosmology with relativistic hydrodynamics”, Phys. Rev. D, 58, 064010, 1–12, (1998).
18 Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 5 July 2002):
http://www.livingreviews.org/lrr-2001-2.
19 Anninos, P., and Fragile, P.C., “Nonoscillatory Central Difference and Artificial Viscosity Schemes for Relativistic Hydrodynamics”, Astrophys. J. Suppl. Ser., 144, 243–257, (2003). Related online version (cited on 18 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0206265.
20 Anninos, P., Fragile, P.C., and Salmonson, J.D., “COSMOS++: Numerical relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement”, Astrophys. J., 635, 723–740, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0509254.
21 Ansorg, M., Kleinwächter, A., and Meinel, R., “Highly accurate calculation of rotating neutron stars”, Astron. Astrophys., 381, L49–L52, (2002). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0111080.
22 Ansorg, M., and Petroff, D., “Black holes surrounded by uniformly rotating rings”, Phys. Rev. D, 72, 024019, 1–12, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0505060.
23 Antón, L., Magnetohidrodinámica Relativista Numérica: Aplicaciones en Relatividad Especial y General, Ph.D. Thesis, (Universidad de Valencia, Valencia, Spain, 2008).
24 Anton, L., Zanotti, O., Miralles, J.A., Martí, J.M., Ibáñez, J.M., Font, J.A., and Pons, J.A., “Numerical 3+1 general relativistic magnetohydrodynamics: A local characteristic approach”, Astrophys. J., 637, 296–312, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0506063.
25 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, U.S.A., 1962).
26 Arras, P., Flanagan, É.É., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., and Wasserman, I., “Saturation of the r-mode instability”, Astrophys. J., 591, 1129–1151, (2003). Related online version (cited on 5 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0202345.
27 Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole”, Phys. Rev. D, 71, 024035, 1–30, (2005). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0403029.
28 Baiotti, L., Hawke, I., Rezzolla, L., and Schnetter, E., “Gravitational-Wave Emission from Rotating Gravitational Collapse in Three Dimensions”, Phys. Rev. Lett., 94, 131101, (2005). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0503016.
29 Baiotti, L., Pietri, R., Manca, G.M., and Rezzolla, L., “Accurate simulations of the dynamical bar-mode instability in full general relativity”, Phys. Rev. D, 75, 044023, 1–24, (2007). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609473.
30 Baiotti, L., and Rezzolla, L., “Challenging the Paradigm of Singularity Excision in Gravitational Collapse”, Phys. Rev. Lett., 97, 141101, (2006). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0608113.
31 Balbus, S.A., “Convective and Rotational Stability of a Dilute Plasma”, Astrophys. J., 562, 909–917, (2001). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0106283.
32 Balbus, S.A., and Hawley, J.F., “Instability, turbulence, and enhanced transport in accretion disks”, Rev. Mod. Phys., 70, 1–53, (1998).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1998RvMP...70....1B.
33 Balsara, D.S., “Riemann Solver for Relativistic Hydrodynamics”, J. Comput. Phys., 114, 284–297, (1994).
34 Balsara, D.S., “Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics”, Astrophys. J. Suppl. Ser., 132, 83–101, (2001).
35 Balsara, D.S., and Kim, J., “A Comparison between Divergence-Cleaning and Staggered-Mesh Formulations for Numerical Magnetohydrodynamics”, Astrophys. J., 602, 1079–1090, (2004). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0310728.
36 Banyuls, F., Font, J.A., Ibáñez, J.M., Marti, J.M., and Miralles, J.A., “Numerical 3+1 General Relativistic Hydrodynamics: a Local Characteristic Approach”, Astrophys. J., 476, 221–231, (1997).
37 Bardeen, J.M., and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., 14, 7–19, (1972).
38 Bardeen, M., and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205–250, (1983).
39 Baumgarte, T.W., and Shapiro, S.L., “On the numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, 1–7, (1999). Related online version (cited on 1 November 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9810065.
40 Baumgarte, T.W., and Shapiro, S.L., “General relativistic magnetohydrodynamics for the numerical construction of dynamical spacetimes”, Astrophys. J., 585, 921–929, (2003). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0211340.
41 Baumgarte, T.W., and Shapiro, S.L., “Numerical relativity and compact binaries”, Phys. Rep., 376, 41–131, (2003). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0211028.
42 Benensohn, J.S., Lamb, D.Q., and Taam, R.E., “Hydrodynamical studies of wind accretion onto compact objects: Two-dimensional calculations”, Astrophys. J., 478, 723–733, (1997). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9610245.
43 Bethe, H.A., “Supernova mechanisms”, Rev. Mod. Phys., 62, 801–866, (1990).
44 Bethe, H.A., and Wilson, J.R., “Revival of a stalled supernova shock by neutrino heating”, Astrophys. J., 295, 14–23, (1985).
45 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., and Winicour, J., “The incorporation of matter into characteristic numerical relativity”, Phys. Rev. D, 60, 024005, 1–11, (1999). Related online version (cited on 1 February 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9901056.
46 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., and Winicour, J., “Characteristic initial data for a star orbiting a black hole”, Phys. Rev. D, 72, 024002, 1–16, (2005). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0412080.
47 Blandford, R.D., “Relativistic Accretion”, in Sellwood, J.A., and Goodman, J., eds., Astrophysical Discs: An EC Summer School, Proceedings of a meeting held at Isaac Newton Institute for Mathematical Sciences, Cambridge, England, 22–26 June 1998, ASP Conference Series, vol. 160, p. 265, (Astronomical Society of the Pacific, San Francisco, U.S.A., 1999). Related online version (cited on 1 February 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9902001.
48 Blandford, R.D., and Begelman, M.C., “On the fate of gas accreting at a low rate on to a black hole”, Mon. Not. R. Astron. Soc., 303, L1–L5, (1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9809083.
49 Blandford, R.D., and Payne, D.G., “Hydromagnetic flows from accretion discs and the production of radio jets”, Mon. Not. R. Astron. Soc., 199, 883–903, (1982).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1982MNRAS.199..883B.
50 Blandford, R.D., and Znajek, R.L., “Electromagnetic extraction of energy from Kerr black holes”, Mon. Not. R. Astron. Soc., 179, 433–456, (1977).
51 Bocquet, M., Bonazzola, S., Gourgoulhon, E., and Novak, J., “Rotating neutron star models with a magnetic field”, Astron. Astrophys., 301, 757, (1995). Related online version (cited on 15 December 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9503044.
52 Bodenheimer, P., and Woosley, S.E., “A two-dimensional supernova model with rotation and nuclear burning”, Astrophys. J., 269, 281–291, (1983).
53 Bona, C., Ibáñez, J.M., Martí, J.M., and Massó, J., “Shock capturing methods in 1D Numerical Relativity”, in Chinea, F., and González-Romero, L.M., eds., Rotating Objects and Relativistic Physics, Proceedings of the El Escorial Summer School on Gravitation and General Relativity, 24–28 August 1992, Lecture Notes in Physics, vol. 423, pp. 218–226, (Springer, Berlin, Germany; New York, U.S.A., 1993).
54 Bona, C., and Massó, J., “Einstein’s evolution equations as a system of balance laws”, Phys. Rev. D, 40, 1022–1026, (1989).
55 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Spectral methods in general relativistic astrophysics”, J. Comput. Appl. Math., 109, 433–473, (1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9811089.
56 Bonazzola, S., and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I. Polytropic case”, Astron. Astrophys., 267, 623–633, (1993).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1993A&A...267..623B.
57 Bondi, H., “On spherically symmetric accretion”, Mon. Not. R. Astron. Soc., 112, 195–204, (1952).
58 Bondi, H., and Hoyle, F., “On the mechanism of accretion by stars”, Mon. Not. R. Astron. Soc., 104, 273–282, (1944).
59 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962).
60 Boris, J.P., and Book, D.L., “Flux corrected transport I. SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 11, 38–69, (1973).
61 Brio, M., and Wu, C.C., “An upwind differencing scheme for the equations of ideal magnetohydrodynamics”, J. Comput. Phys., 75, 400–422, (1988).
62 Bromley, B.C., Miller, W.A., and Pariev, V.I., “The inner edge of the accretion disk around a supermassive black hole”, Nature, 391, 54–56, (1998).
63 Brown, J.D., “Rotational instabilities in post-collapse stellar cores”, in Centrella, J.M., ed., Astrophysical Sources for Ground-Based Gravitational Wave Detectors, Philadelphia, Pennsylvania, 30 October – 1 November 2000, AIP Conference Proceedings, vol. 575, pp. 234–245, (American Institute of Physics, Melville, U.S.A., 2001). Related online version (cited on 24 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0012084.
64 Bruenn, S.W., “Stellar core collapse: numerical model and infall epoch”, Astrophys. J. Suppl. Ser., 58, 771–841, (1985).
65 Bruenn, S.W., “Numerical simulations of core collapse supernovae”, in Guidry, M.W., and Strayer, M.R., eds., Nuclear Physics in the Universe, Proceedings of the First Symposium on Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24 – 26 September 1992, pp. 31–50, (Institute of Physics, Bristol, U.K.; Philadelphia, U.S.A., 1993).
66 Bucciantini, N., Thompson, T.A., Arons, J., Quataert, E., and Del Zanna, L., “Numerical relativistic magnetohydrodynamics winds from rotating neutron stars”, Mon. Not. R. Astron. Soc., 368, 1717–1734, (2006). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0602475.
67 Buras, R., Rampp, M., Janka, H.-T., and Kifonidis, K., “Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?”, Phys. Rev. Lett., 90, 241101, (2003). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0303171.
68 Buras, R., Rampp, M., Janka, H-T., and Kifonidis, K., “Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star”, Astron. Astrophys., 447, 1049–1092, (2006). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0507135.
69 Burrows, A., Dessart, L., Livne, E., Ott, C.D., and Murphy, J., “Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation”, Astrophys. J., 664, 416–434, (2007). Related online version (cited on 2 December 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0702539.
70 Burrows, A., Livne, E., Dessart, L., Ott, C.D., and Murphy, J., “A New Mechanism for Core-Collapse Supernova Explosions”, Astrophys. J., 640, 878–890, (2006). Related online version (cited on 2 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510687.
71 Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, (Springer, Berlin, Germany; New York, U.S.A., 1988).
72 Centrella, J.M., and Wilson, J.R., “Planar numerical cosmology. I. The differential equations”, Astrophys. J., 273, 428–435, (1983).
73 Centrella, J.M., and Wilson, J.R., “Planar numerical cosmology. II. The difference equations and numerical tests”, Astrophys. J. Suppl. Ser., 54, 229–249, (1984).
74 Cerdá-Durán, P., Faye, G., Dimmelmeier, H., Font, J.A., Ibáñez, J.M., Müller, E., and Schäfer, G., “CFC+: improved dynamics and gravitational waveforms from relativistic core collapse simulations”, Astron. Astrophys., 439, 1033–1055, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0412611.
75 Cerdá-Durán, P., and Font, J.A., “Towards relativistic simulations of magneto-rotational core collapse”, Class. Quantum Grav., 24, S155–S169, (2007). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0703593.
76 Cerdá-Durán, P., Font, J.A., and Dimmelmeier, H., “General relativistic simulations of passive-magneto-rotational core collapse with microphysics”, Astron. Astrophys., 474, 169–191, (2007). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0703597.
77 Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of Monographs on Physics, vol. 69, (Clarendon, Oxford, U.K., 1983).
78 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993).
79 Chow, E., and Monaghan, J.J., “Ultrarelativistic SPH”, J. Comput. Phys., 134, 296–305, (1997).
80 Colella, P., and Woodward, P.R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54, 174–201, (1984).
81 Colgate, S.A., “Supernova: Hot bubbles drive explosions”, Nature, 341, 489–490, (1989).
82 Daigne, F., and Font, J.A., “The runaway instability of thick discs around black holes - II. Non-constant angular momentum discs”, Mon. Not. R. Astron. Soc., 349, 841–868, (2004). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0311618.
ADS: External Linkhttp://adsabs.harvard.edu/abs/2004MNRAS.349..841D.
83 Davis, S.F., A simplified TVD finite difference scheme via artificial viscosity, ICASE Report, No. 84-20, (Institute for Computer Applications in Science and Engineering (ICASE), Hampton, U.S.A., 1984).
84 De Villiers, J.-P., and Hawley, J.F., “Three-dimensional hydrodynamic simulations of accretion tori in Kerr spacetimes”, Astrophys. J., 577, 866–879, (2002). Related online version (cited on 14 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0204163.
85 De Villiers, J.-P., and Hawley, J.F., “Global general relativistic magnetohydrodynamic simulations of accretion tori”, Astrophys. J., 592, 1060–1077, (2003). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0303241.
86 De Villiers, J.-P., and Hawley, J.F., “A numerical method for general relativistic magnetohydrodynamics”, Astrophys. J., 589, 458–480, (2003). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0210518.
87 De Villiers, J.-P., Hawley, J.F., and Krolik, J.H., “Magnetically driven accretion flows in the Kerr metric. I. Models and overall structure”, Astrophys. J., 599, 1238–1253, (2003). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0307260.
88 De Villiers, J.-P., Hawley, J.F., Krolik, J.H., and Hirose, S., “Magnetically Driven Accretion in the Kerr Metric. III. Unbound Outflows”, Astrophys. J., 620, 878–888, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0407092.
89 Del Zanna, L., and Bucciantini, N., “An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics”, Astron. Astrophys., 390, 1177–1186, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0205290.
90 Del Zanna, L., Bucciantini, N., and Londrillo, P., “An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics”, Astron. Astrophys., 400, 397–413, (2003). Related online version (cited on 13 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0210618.
91 Del Zanna, L., Zanotti, O., Bucciantini, N., and Londrillo, P., “ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics”, Astron. Astrophys., 473, 11–30, (2007). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/0704.3206.
92 Dimmelmeier, H., Cerdá-Durán, P., Marek, A., and Faye, G., “New Methods for Approximating General Relativity in Numerical Simulations of Stellar Core Collapse”, in Alimi, J.-M., and Füzfa, A., eds., Albert Einstein Century International Conference, Paris, France, 18 – 22 July 2005, AIP Conference Proceedings, vol. 861, pp. 600–607, (American Institute of Physics, Melville, U.S.A., 2006). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0603760.
93 Dimmelmeier, H., Font, J.A., and Müller, E., “Gravitational waves from relativistic rotational core collapse”, Astrophys. J. Lett., 560, L163–L166, (2001). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0103088.
94 Dimmelmeier, H., Font, J.A., and Müller, E., “Gravitational waves from relativistic rotational core collapse in axisymmetry”, Class. Quantum Grav., 19, 1291–1296, (2002).
95 Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0204288.
96 Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0204289.
97 Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M., and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Phys. Rev. D, 71, 064023, 1–30, (2005). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0407174.
98 Dimmelmeier, H., Ott, C.D., Janka, H.-T., Marek, A., and Müller, E., “Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores”, Phys. Rev. Lett., 98, 251101, (2007). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0702305.
99 Dimmelmeier, H., Stergioulas, N., and Font, J.A., “Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation”, Mon. Not. R. Astron. Soc., 368, 1609–1630, (2006). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0511394.
100 Dolezal, A., and Wong, S.S.M., “Relativistic hydrodynamics and Essentially Non-Oscillatory shock capturing schemes”, J. Comput. Phys., 120, 266–277, (1995).
101 Donat, R., Font, J.A., Ibáñez, J.M., and Marquina, A., “A Flux-Split Algorithm applied to Relativistic Flows”, J. Comput. Phys., 146, 58–81, (1998).
102 Donat, R., and Marquina, A., “Capturing shock reflections: An improved flux formula”, J. Comput. Phys., 125, 42–58, (1996).
103 Dubal, M.R., d’Inverno, R.A., and Vickers, J.A., “Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical spacetime containing a perfect fluid”, Phys. Rev. D, 58, 044019, 1–12, (1998).
104 Duez, M.D., Baumgarte, T.W., Shapiro, S.L., Shibata, M., and Uryū, K., “Comparing the inspiral of irrotational and corotational binary neutron stars”, Phys. Rev. D, 65, 024016, 1–8, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0110006.
105 Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M., and Stephens, B.C., “Collapse of magnetized hypermassive neutron stars in general relativity”, Phys. Rev. Lett., 96, 031101, 1–4, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510653.
106 Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M., and Stephens, B.C., “Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity”, Phys. Rev. D, 73, 104015, 1–25, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0605331.
107 Duez, M.D., Liu, Y.T., Shapiro, S.L., and Stephens, B.C., “General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars”, Phys. Rev. D, 69, 104030, 1–24, (2004). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0402502.
108 Duez, M.D., Liu, Y.T., Shapiro, S.L., and Stephens, B.C., “Numerical relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests”, Phys. Rev. D, 72, 024028, 1–21, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0503420.
109 Duez, M.D., Marronetti, P., Shapiro, S.L., and Baumgarte, T.W., “Hydrodynamic simulations in 3+1 general relativity”, Phys. Rev. D, 67, 024004, 1–22, (2003). Related online version (cited on 2 October 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0209102.
110 Duez, M.D., Shapiro, S.L., and Yo, H-J., “Relativistic hydrodynamic evolutions with black hole excision”, Phys. Rev. D, 69, 104016, 1–16, (2004). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0401076.
111 Dykema, P.G., Numerical simulation of axisymmetric gravitational collapse, Ph.D. Thesis, (University of Texas at Austin, Austin, TX, 1980).
112 Einfeldt, B., “On Godunov-type methods for gas dynamics”, SIAM J. Numer. Anal., 25, 294–318, (1988).
113 Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L., Taniguchi, K., and Baumgarte, T.W., “Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers”, (2007). URL (cited on 20 December 2007):
External Linkhttp://arXiv.org/abs/0712.2460.
114 Etienne, Z.B., Liu, Y.T., and Shapiro, S.L., “General relativistic simulations of slowly and differentially rotating magnetized neutron stars”, Phys. Rev. D, 74, 044030, 1–17, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609634.
115 Eulderink, F., Numerical relativistic hydrodynamics, Ph.D. Thesis, (Rijksuniversiteit Leiden, Leiden, Netherlands, 1993).
116 Eulderink, F., and Mellema, G., “Special relativistic jet collimation by inertial confinement”, Astron. Astrophys., 284, 654–662, (1994).
117 Eulderink, F., and Mellema, G., “General relativistic hydrodynamics with a Roe solver”, Astron. Astrophys. Suppl., 110, 587–623, (1995). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9411056.
118 Evans, C.R., “An Approach for Calculating Axisymmetric Gravitational Collapse”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of a workshop held at Drexel University, October 7 – 11, 1985, pp. 3–39, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986).
119 Evans, C.R., and Hawley, J.F., “Simulation of magnetohydrodynamic flows: a constrained transport method”, Astrophys. J., 332, 659–677, (1988).
120 Evans, C.R., Smarr, L.L., and Wilson, J.R., “Numerical relativistic gravitational collapse with spatial time slices”, in Norman, M.L., and Winkler, K.-H.A., eds., Astrophysical Radiation Hydrodynamics, Proceedings of the NATO Advanced Research Workshop, Garching, Germany, August 2–13, 1982, NATO ASI Series C, vol. 188, pp. 491–529, (Reidel Publishing Company, Dordrecht, Netherlands, 1986).
121 Faber, J.A., Baumgarte, T.W., Shapiro, S.L., and Taniguchi, K., “General Relativistic Binary Merger Simulations and Short Gamma-Ray Bursts”, Astrophys. J., 641, L93–L96, (2006). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0603277.
122 Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K., and Rasio, F.A., “Dynamical evolution of black hole-neutron star binaries in general relativity: Simulations of tidal disruption”, Phys. Rev. D, 73, 024012, 1–31, (2006). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0511366.
123 Finn, L.S., and Evans, C.R., “Determining gravitational radiation from Newtonian self-gravitating systems”, Astrophys. J., 351, 588–600, (1990).
124 Flanagan, É.É., “Possible Explanation for Star-Crushing Effect in Binary Neutron Star Simulations”, Phys. Rev. Lett., 82, 1354–1357, (1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9811132.
125 Foglizzo, T., Galletti, P., and Ruffert, M., “A fresh look at the unstable simulations of Bondi-Hoyle-Lyttleton accretion”, Astron. Astrophys., 435, 397–411, (2005). Related online version (cited on 15 February 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0502168.
126 Font, J.A., “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 3, lrr-2000-2, (2000). URL (cited on 3 March 2008):
http://www.livingreviews.org/lrr-2000-2.
127 Font, J.A., “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 6, lrr-2003-4, (2003). URL (cited on 3 March 2008):
http://www.livingreviews.org/lrr-2003-4.
128 Font, J.A., and Daigne, F., “On the stability of thick accretion disks around black holes”, Astrophys. J., 581, L23–L26, (2002). Related online version (cited on 27 March 2003):
External Linkhttp://arXiv.org/abs/astro-ph/0211102.
129 Font, J.A., and Daigne, F., “The runaway instability of thick discs around black holes – I. The constant angular momentum case”, Mon. Not. R. Astron. Soc., 334, 383–400, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0203403.
130 Font, J.A., Dimmelmeier, H., Gupta, A., and Stergioulas, N., “Axisymmetric modes of rotating relativistic stars in the Cowling approximation”, Mon. Not. R. Astron. Soc., 325, 1463–1470, (2001). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0012477.
131 Font, J.A., Goodale, T., Iyer, S., Miller, M., Rezzolla, L., Seidel, E., Stergioulas, N., Suen, W.-M., and Tobias, M., “Three-dimensional general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars”, Phys. Rev. D, 65, 084024, 1–18, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0110047.
132 Font, J.A., and Ibáñez, J.M., “Non-axisymmetric Relativistic Bondi–Hoyle Accretion onto a Schwarzschild Black Hole”, Mon. Not. R. Astron. Soc., 298, 835–846, (1998). Related online version (cited on 1 May 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9804254.
133 Font, J.A., and Ibáñez, J.M., “A Numerical Study of Relativistic Bondi–Hoyle Accretion onto a Moving Black Hole: Axisymmetric Computations in a Schwarzschild Background”, Astrophys. J., 494, 297–316, (1998).
134 Font, J.A., Ibáñez, J.M., Martí, J.M., and Marquina, A., “Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes”, Astron. Astrophys., 282, 304–314, (1994).
135 Font, J.A., Ibáñez, J.M., and Papadopoulos, P., “A horizon-adapted approach to the study of relativistic accretion flows onto rotating black holes”, Astrophys. J. Lett., 507, L67–L70, (1998). Related online version (cited on 1 June 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9805269.
136 Font, J.A., Ibáñez, J.M., and Papadopoulos, P., “Non-axisymmetric Relativistic Bondi–Hoyle Accretion onto a Kerr Black Hole”, Mon. Not. R. Astron. Soc., 305, 920–936, (1999). Related online version (cited on 1 November 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9810344.
137 Font, J.A., Miller, M., Suen, W.-M., and Tobias, M., “Three-dimensional numerical general relativistic hydrodynamics: Formulations, methods and code tests”, Phys. Rev. D, 61, 044011, 1–26, (2000). Related online version (cited on 1 December 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9811015.
138 Font, J.A., Stergioulas, N., and Kokkotas, K.D., “Nonlinear hydrodynamical evolution of rotating relativistic stars: Numerical methods and code tests”, Mon. Not. R. Astron. Soc., 313, 678–688, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9908010.
139 Fragile, P.C., and Anninos, P., “Hydrodynamic Simulations of Tilted Thick-Disk Accretion onto a Kerr Black Hole”, Astrophys. J., 623, 347–361, (2005). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0403356.
140 Fragile, P.C., Blaes, O.M., Anninos, P., and Salmonson, J.D., “Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk”, Astrophys. J., 668, 417–429, (2007). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/0706.4303.
141 Frederiksen, J.T., Hededal, C.B., Haugboelle, T., and Nordlund, A., “Magnetic Field Generation in Collisionless Shocks: Pattern Growth and Transport”, Astrophys. J., 608, L13–L16, (2004). Related online version (cited on 27 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0308104.
142 Friedrich, H., “Conformal Einstein Evolution”, in Friedrich, H., and Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Lecture Notes in Physics, vol. 604, pp. 1–50, (Springer, Berlin, Germany; New York, U.S.A., 2002). Related online version (cited on 15 April 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209018.
143 Friedrichs, K.O., “On the laws of relativistic electro-magneto-fluid dynamics”, Commun. Pure Appl. Math., 27, 749–808, (1974).
144 Fryer, C.L., and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541, 1033–1050, (2000). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/9907433.
145 Fryer, C.L., Holz, D.E., and Hughes, S.A., “Gravitational Wave Emission from Core Collapse of Massive Stars”, Astrophys. J., 565, 430–446, (2002). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0106113.
146 Fryer, C.L., and New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, lrr-2003-2, (2003). URL (cited on 18 June 2002):
http://www.livingreviews.org/lrr-2003-2.
147 Fryer, C.L., and Warren, M.S., “The Collapse of Rotating Massive Stars in Three Dimensions”, Astrophys. J., 601, 391–404, (2004). Related online version (cited on 15 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0309539.
148 Fryxell, B.A., Müller, E., and Arnett, W.D., Hydrodynamics and nuclear burning, MPA 449, (Max-Planck-Institut für Astrophysik, Garching, Germany, 1989).
149 Gammie, C.F., McKinney, J.C., and Tóth, G., “HARM: A numerical scheme for general relativistic magnetohydrodynamics”, Astrophys. J., 589, 444–457, (2003). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0301509.
150 Giacomazzo, B., and Rezzolla, L., “The exact solution of the Riemann problem in relativistic magnetohydrodynamics”, J. Fluid Mech., 562, 223–259, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0507102.
151 Giacomazzo, B., and Rezzolla, L., “WhiskyMHD: A new numerical code for general relativistic magnetohydrodynamics”, Class. Quantum Grav., 24, S235–S258, (2007). Related online version (cited on 18 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0701109.
152 Gingold, R.A., and Monaghan, J.J., “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Mon. Not. R. Astron. Soc., 181, 375–389, (1977).
153 Gingold, R.A., and Monaghan, J.J., “Kernel estimates as a basis for general particle methods in hydrodynamics”, J. Comput. Phys., 46(3), 429–453, (1982).
154 Glaister, P., “An approximate linearised Riemann solver for the Euler equations for real gases”, J. Comput. Phys., 74, 382–408, (1988).
155 Godunov, S.K., “A finite difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics”, Mat. Sb., 47, 271–306, (1959). In Russian.
156 Gottlieb, D., and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applications, Regional Conference Series in Applied Mathematics, vol. 26, (SIAM, Philadelphia, U.S.A., 1977).
157 Gourgoulhon, E., “Simple equations for general relativistic hydrodynamics in spherical symmetry applied to neutron star collapse”, Astron. Astrophys., 252, 651–663, (1991).
158 Gourgoulhon, E., “3+1 Formalism and Bases of Numerical Relativity”, (2007). URL (cited on 30 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0703035.
159 Grandclement, P., and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev. Relativity, submitted, (2008). Related online version (cited on 30 September 2007):
External Linkhttp://arXiv.org/abs/0706.2286.
160 Gressman, P., Lin, L.-M., Suen, W.-M., Stergioulas, N., and Friedman, J.L., “Nonlinear r-modes in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303, 1–5, (2002). Related online version (cited on 27 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0301014.
161 Gundlach, C., and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 10, lrr-2007-5, (2007). URL (cited on 20 December 2007):
http://www.livingreviews.org/lrr-2007-5.
162 Harten, A., “On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes”, SIAM J. Numer. Anal., 21, 1–23, (1984).
163 Harten, A., Engquist, B., Osher, S., and Chakrabarthy, S.R., “Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III”, J. Comput. Phys., 71, 231–303, (1987).
164 Harten, A., Lax, P.D., and van Leer, B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25, 35–61, (1983).
165 Haugan, M.P., Shapiro, S.L., and Wasserman, I., “The suppression of gravitational radiation from finite-size stars falling into black holes”, Astrophys. J., 257, 283–290, (1982).
166 Hawke, I., Löffler, F., and Nerozzi, A., “Excision methods for high resolution shock capturing schemes applied to general relativistic hydrodynamics”, Phys. Rev. D, 71, 104006, 1–12, (2005). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0501054.
167 Hawley, J.F., “General relativistic hydrodynamics near black holes”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the Workshop on Dynamical Spacetimes and Numerical Relativity held at Drexel University on October 7–11, 1985, pp. 101–122, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986).
168 Hawley, J.F., “Three-dimensional simulations of black hole tori”, Astrophys. J., 381, 496–507, (1991).
169 Hawley, J.F., and Krolik, J.H., “Magnetically driven jets in the Kerr metric”, Astrophys. J., 641, 103–116, (2006). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0512227.
170 Hawley, J.F., Smarr, L.L., and Wilson, J.R., “A numerical study of nonspherical black hole accretion. I. Equations and test problems”, Astrophys. J., 277, 296–311, (1984).
171 Hawley, J.F., Smarr, L.L., and Wilson, J.R., “A numerical study of nonspherical black hole accretion. II. Finite differencing and code calibration”, Astrophys. J. Suppl. Ser., 55, 211–246, (1984).
172 Heger, A., Woosley, S.E., and Spruit, H.C., “Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields”, Astrophys. J., 626, 350–363, (2005). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0409422.
173 Hirose, S., Krolik, J.H., De Villiers, J.-P., and Hawley, “Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the magnetic field”, Astrophys. J., 606, 1083–1097, (2004). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0311500.
174 Honkkila, V., and Janhunen, P., “HLLC solver for ideal relativistic MHD”, J. Comput. Phys., 223, 643–656, (2007).
175 Hoyle, F., and Lyttleton, R.A., “The Effect of Interstellar Matter on Climatic Variation”, Proc. Cambridge Philos. Soc., 35, 405–415, (1939).
176 Ibáñez, J.M., Aloy, M.A., Font, J.A., Martí, J.M., Miralles, J.A., and Pons, J.A., “Riemann solvers in general relativistic hydrodynamics”, in Toro, E.F., ed., Godunov Methods: Theory and Applications, Proceedings of the International Conference on Godunov Methods, held October 18–22, 1999, in Oxford, U.K., to honor Professor S.K. Godunov in the year of his 70th birthday, pp. 485–496, (Kluwer Academic/Plenum, New York, U.S.A.; London, U.K., 2001). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/9911034.
177 Ibáñez, J.M., and Martí, J.M., “Riemann solvers in relativistic astrophysics”, J. Comput. Appl. Math., 109, 173–211, (1999).
178 Ibáñez, J.M., Martí, J.M., Miralles, J.A., and Romero, J.V., “Godunov-type methods applied to general relativistic stellar collapse”, in d’Inverno, R., ed., Approaches to numerical relativity, pp. 223–229, (Cambridge University Press, Cambridge, U.K., 1992).
179 Igumenshchev, I.V., Abramowicz, M.A., and Narayan, R., “Numerical Simulations of Convective Accretion Flows in Three Dimensions”, Astrophys. J. Lett., 537, L27–L30, (2000). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0004006.
180 Igumenshchev, I.V., and Belodorov, A.M., “Numerical simulations of thick disc accretion on to a rotating black hole”, Mon. Not. R. Astron. Soc., 284, 767–772, (1997).
181 Imshennik, V.S., and Nadezhin, D.K., “SN 1987A and rotating neutron star formation”, Sov. Astron. Lett., 18, 79–88, (1992).
182 Isaacson, R.A., Welling, J.S., and Winicour, J., “Null cone computation of gravitational radiation”, J. Math. Phys., 24, 1824–1834, (1983).
183 Janka, H.-T., Kifonidis, K., and Rampp, M., “Supernova explosions and neutron star formation”, in Blaschke, D., Glendenning, N. K., and Sedrakian, A., eds., Physics of Neutron Star Interiors, Proceedings of a Workshop on Physics of Neutron Star Interiors (ECT, Trento, June 19 – July 7, 2000), Lecture Notes in Physics, vol. 578, pp. 333–363, (Springer, Berlin, Germany; New York, U.S.A., 2001). Related online version (cited on 21 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0103015.
184 Janka, H.-T., Marek, A., and Kitaura, F.-S., “Neutrino-Driven Explosions Twenty Years After SN 1987A”, in Immler, S., Weiler, K., and McCray, R., eds., Supernova 1987A - 20 Years After: Supernovae and Gamma-Ray Bursters, Aspen, Colorado, 19 – 23 February 2007, AIP Conference Proceedings, vol. 937, (American Institute of Physics, Melville, U.S.A., 2007). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/0706.3056.
185 Janka, H.-T., and Mönchmeyer, R., “Hydrostatic post bounce configurations of collapse rotating cores: neutrino emission”, Astron. Astrophys., 226, 69–87, (1989).
186 Janka, H.-T., Zwerger, T., and Mönchmeyer, R., “Does artificial viscosity destroy prompt type-II supernova explosions?”, Astron. Astrophys., 268, 360–368, (1993).
187 Jin, K.-J., and Suen, W.-M., “Critical Phenomena in Head-On Collisions of Neutron Stars”, Phys. Rev. Lett., 98, 131101, 1–4, (2007). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0603094.
188 Kastaun, W., “High-resolution shock capturing scheme for ideal hydrodynamics in general relativity optimized for quasistationary solutions”, Phys. Rev. D, 74, 124024, 1–15, (2006).
189 Kheyfets, A., Miller, W.A., and Zurek, W.H., “Covariant smoothed particle hydrodynamics on a curved background”, Phys. Rev. D, 41, 451–454, (1990).
190 Kifonidis, K., Plewa, T., Janka, H.-T., and Müller, E., “Nucleosynthesis and clump formation in a core collapse supernova”, Astrophys. J. Lett., 531, L123–L126, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9911183.
191 King, A.R., Frank, J., and Raine, D., Accretion Power in Astrophysics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2002), 3rd edition.
192 Kitaura, F.-S., Janka, H.-T., and Hillebrandt, W., “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, Astron. Astrophys., 450, 345–350, (2006). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0512065.
193 Kley, W., and Schäfer, G., “Relativistic dust disks and the Wilson–Mathews approach”, Phys. Rev. D, 60, 027501, 1–4, (1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9812068.
194 Koide, S., “Magnetic extraction of black hole rotational energy: Method and results of general relativistic magnetohydrodynamic simulations in Kerr space-time”, Phys. Rev. D, 67, 104010, 1–15, (2003).
195 Koide, S., Meier, D.L., Shibata, K., and Kudoh, T., “General relativistic simulations of early jet formation in a rapidly rotating black hole magnetosphere”, Astrophys. J., 536, 668–674, (2000). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/9907435.
196 Koide, S., Shibata, K., and Kudoh, T., “General relativistic magnetohydrodynamic simulations of jets from black hole accretion disks: Two-component jets driven by nonsteady accretion of magnetized disks”, Astrophys. J. Lett., 495, L63–L66, (1998).
197 Koide, S., Shibata, K., Kudoh, T., and Meier, D.L., “Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets”, Science, 295, 1688–1691, (2002).
198 Koldoba, A.V., Kuznetsov, O.A., and Ustyugova, G.V., “An approximate Riemann solver for relativistic magnetohydrodynamics”, Mon. Not. R. Astron. Soc., 333, 932–942, (2002).
199 Komissarov, S.S., “A Godunov-Type Scheme for Relativistic Magnetohydrodynamics”, Mon. Not. R. Astron. Soc., 303, 343–366, (1999).
200 Komissarov, S.S., “General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes”, Mon. Not. R. Astron. Soc., 350, 1431–1436, (2004). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0402430.
201 Komissarov, S.S., “Observations of the Blandford-Znajek process and the magnetohydrodynamics Penrose process in computer simulations of black hole magnetospheres”, Mon. Not. R. Astron. Soc., 359, 801–808, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0501599.
202 Komissarov, S.S., “Magnetized tori around Kerr black holes: analytic solutions with a toroidal magnetic field”, Mon. Not. R. Astron. Soc., 368, 993–1000, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0601678.
203 Komissarov, S.S., “Simulations of the axisymmetric magnetospheres of neutron stars”, Mon. Not. R. Astron. Soc., 367, 19–31, (2006). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510310.
204 Komissarov, S.S., “Multi-dimensional Numerical Scheme for Resistive Relativistic MHD”, (2007). URL (cited on 10 October 2007):
External Linkhttp://arXiv.org/abs/0708.0323.
205 Komissarov, S.S., and Lyubarsky, Y.E., “Synchrotron nebulae created by anisotropic magnetized pulsar winds”, Mon. Not. R. Astron. Soc., 349, 779–792, (2004).
206 Komissarov, S.S., and McKinney, J.C., “The ‘Meissner effect’ and the Blandford-Znajek mechanism in conductive black hole magnetospheres”, Mon. Not. R. Astron. Soc., 377, L49–L53, (2007). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0702269.
207 Kormendy, J., and Richstone, D., “Inward Bound – The Search For Supermassive Black Holes In Galactic Nuclei”, Annu. Rev. Astron. Astrophys., 33, 581–624, (1995).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1995ARA&A..33..581K.
208 Kotake, K., Yamada, S., and Sato, K., “Gravitational radiation from axisymmetric rotational core collapse”, Phys. Rev. D, 68, 044023, (2003). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0306430.
209 Kotake, K., Yamada, S., Sato, K., Sumiyoshi, K., Ono, H., and Suzuki, H., “Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state”, Phys. Rev. D, 69, 124004, (2009). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0401563.
210 Krolik, J.H., Hawley, J.F., and Hirose, S., “Magnetically driven accretion flows in the Kerr metric. IV. Dynamical properties of the inner disk”, Astrophys. J., 622, 1008–1023, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0409231.
211 Kurganov, A., and Tadmor, E., “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, J. Comput. Phys., 160, 241–282, (2000).
212 Laguna, P., Miller, W.A., and Zurek, W.H., “Smoothed particle hydrodynamics near a black hole”, Astrophys. J., 404, 678–685, (1993).
213 Laguna, P., Miller, W.A., Zurek, W.H., and Davies, M.B., “Tidal disruptions by supermassive black holes: Hydrodynamic evolution of stars on a Schwarzschild background”, Astrophys. J., 410, L83–L86, (1993).
214 Lattimer, J.M., and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl. Phys. A, 535, 331–376, (1991).
215 Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 11, (Society for Industrial and Applied Mathematics, Philadelphia, U.S.A., 1973).
216 Lax, P.D., and Wendroff, B., “Systems of conservation laws”, Commun. Pure Appl. Math., 13, 217–237, (1960).
217 Lehner, L., “Numerical relativity: a review”, Class. Quantum Grav., 18, R25–R86, (2001). Related online version (cited on 11 September 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0106072.
218 LeVeque, R.J., Numerical Methods for Conservation Laws, (Birkhäuser, Basel, Switzerland; Boston, U.S.A., 1992), 2nd edition.
219 LeVeque, R.J., “Nonlinear Conservation Laws and Finite Volume Methods for Astrophysical Fluid Flow”, in LeVeque, R.J., Mihalas, D., Dorfi, E.A., Müller, E., Steiner, O., and Gautschy, A., eds., Computational Methods for Astrophysical Fluid Flow, Lecture Notes of the Saas-Fee Advanced Course 27, Les Diablerets, Switzerland, March 3–8, 1997, Saas-Fee Advanced Courses, vol. 27, pp. 1–159, (Springer, Berlin, Germany; New York, U.S.A., 1998).
220 Lichnerowicz, A., Relativistic hydrodynamics and magnetohydrodynamics, (Benjamin, New York, 1967).
221 Liebendörfer, M., “A Simple Parameterization of the Consequences of Deleptonization for Simulations of Stellar Core Collapse”, Astrophys. J., 633, 1042–1051, (2005). Related online version (cited on 21 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0504072.
222 Liebendörfer, M., Mezzacappa, A., Thielemann, F.-K., Messer, O.E.B., Hix, W.R., and Bruenn, S.W., “Probing the gravitational well: No supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport”, Phys. Rev. D, 63, 103004, 1–13, (2001). Related online version (cited on 21 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0006418.
223 Liebendörfer, M., Rampp, M., Janka, H.-T., and Mezzacappa, A., “Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods”, Astrophys. J., 620, 840–860, (2005). Related online version (cited on 1 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0310662.
224 Lindblom, L., Tohline, J.E., and Vallisneri, M., “Nonlinear evolution of the r-modes in neutron stars”, Phys. Rev. Lett., 86, 1152–1155, (2001). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0010653.
225 Linke, F., Font, J.A., Janka, H.-T., Müller, E., and Papadopoulos, P., “Spherical collapse of supermassive stars: Neutrino emission and gamma ray bursts”, Astron. Astrophys., 376, 568–579, (2001). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0103144.
226 Liu, X.D., and Osher, S., “Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids”, J. Comput. Phys., 142, 304–330, (1998).
227 L’Observatoire de Paris, “Langage Objet pour la RElativité NumériquE”, project homepage. URL (cited on 13 September 2002):
External Linkhttp://www.lorene.obspm.fr.
228 Löffler, F., Rezzolla, L., and Ansorg, M., “Numerical evolutions of a black hole-neutron star system in full general relativity: Head-on collision”, Phys. Rev. D, 74, 104018, 1–16, (2006). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0606104.
229 Londrillo, P., and del Zanna, L., “On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method”, J. Comput. Phys., 195, 17–48, (2004). Related online version (cited on 1 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0310183.
230 Lucas-Serrano, A., Font, J.A., Ibáñez, J.M., and Martí, J.M., “Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamic equations”, Astron. Astrophys., 428, 703–715, (2004). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0407541.
231 Lucy, L.B., “A numerical approach to the testing of the fission hypothesis”, Astron. J., 82, 1013–1024, (1977).
232 Mann, P.J., “A relativistic smoothed particle hydrodynamics method tested with the shock tube”, Comput. Phys. Commun., 67, 245–260, (1991).
233 Marek, A., Dimmelmeier, H., Janka, H.-T., Müller, E., and Buras, R., “Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations”, Astron. Astrophys., 445, 273–289, (2006). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0502161.
234 Marronetti, P., Duez, M.D., Shapiro, S.L., and Baumgarte, T.W., “Dynamical Determination of the Innermost Stable Circular Orbit of Binary Neutron Stars”, Phys. Rev. Lett., 92, 141101, (2004). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0312036.
235 Martí, J.M., Hidrodinámica relativista numérica: aplicaciones al colapso estelar, Ph.D. Thesis, (Universidad de Valencia, Valencia, Spain, 1991).
236 Martí, J.M., Ibáñez, J.M., and Miralles, J.A., “Godunov-type methods for stellar collapse”, Astron. Astrophys., 235, 535–542, (1990).
237 Martí, J.M., Ibáñez, J.M., and Miralles, J.A., “Numerical relativistic hydrodynamics: Local characteristic approach”, Phys. Rev. D, 43, 3794–3801, (1991).
238 Martí, J.M., and Müller, E., “The analytical solution of the Riemann problem in relativistic hydrodynamics”, J. Fluid Mech., 258, 317–333, (1994).
239 Martí, J.M., and Müller, E., “Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics”, J. Comput. Phys., 123, 1–14, (1996).
240 Martí, J.M., and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity, 6, lrr-2003-7, (2003). URL (cited on 1 July 2007):
http://www.livingreviews.org/lrr-2003-7.
241 Martí, J.M., Müller, E., Font, J.A., Ibáñez, J.M., and Marquina, A., “Morphology and dynamics of relativistic jets”, Astrophys. J., 479, 151–163, (1997).
242 Mathews, G.J., and Wilson, J.R., “Revised relativistic hydrodynamical model for neutron-star binaries”, Phys. Rev. D, 61, 127304, 1–4, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9911047.
243 Max Planck Institute for Astrophysics, “MPA Hydro Gang Homepage”, project homepage. URL (cited on 13 September 2007):
External Linkhttp://www.mpa-garching.mpg.de/hydro/index.shtml.
244 Max Planck Institute for Gravitational Physics, “The Cactus Code Server”, project homepage. URL (cited on 13 September 2002):
External Linkhttp://www.cactuscode.org.
245 Max Planck Institute for Gravitational Physics, “Movie: /NCSA1999/NeutronStars/Headon”, project homepage. URL (cited on 18 February 2008):
External Linkhttp://jean-luc.aei.mpg.de/Movies/NCSA1999/NeutronStars/Headon/.
246 Max Planck Institute for Gravitational Physics, “Whisky - the EU Network GR Hydrodynamics code”, project homepage. URL (cited on 2 December 2007):
External Linkhttp://www.whiskycode.org/.
247 May, M.M., and White, R.H., “Hydrodynamic calculations of general-relativistic collapse”, Phys. Rev., 141, 1232–1241, (1966).
248 May, M.M., and White, R.H., “Stellar dynamics and gravitational collapse”, Methods Comput. Phys., 7, 219–258, (1967).
249 McAbee, T.L., and Wilson, J.R., “Mean-field pion calculations of heavy-ion collisions at Bevalac energies”, Nucl. Phys. A, 576, 626–638, (1994).
250 McKinney, J.C., “General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres”, Mon. Not. R. Astron. Soc., 367, 1797–1807, (2006). Related online version (cited on 10 July 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0601411.
251 McKinney, J.C., “General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems”, Mon. Not. R. Astron. Soc., 368, 1561–1582, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0603045.
252 McKinney, J.C., and Gammie, C.F., “A measurement of the electromagnetic luminosity of a Kerr black hole”, Astrophys. J., 611, 977–995, (2004). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0404512.
253 Meier, D.L., “Multidimensional astrophysical structural and dynamical analysis. I. Development of a nonlinear finite element approach”, Astrophys. J., 518, 788–813, (1999).
254 Mezzacappa, A., Liebendörfer, M., Messer, O.E.B., Hix, W.R., Thielemann, F.-K., and Bruenn, S.W., “Simulation of the spherically symmetric stellar core collapse, bounce and postbounce evolution of a 13 solar mass star with Boltzmann neutrino transport and its implications for the supernova mechanism”, Phys. Rev. Lett., 86, 1935–1938, (2001). Related online version (cited on 21 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0005366.
255 Michel, F.C., “Accretion of matter by condensed objects”, Astrophys. Space Sci., 15, 153–160, (1972).
256 Mignone, A., and McKinney, J.C., “Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index”, Mon. Not. R. Astron. Soc., 378, 1118–1130, (2007). Related online version (cited on 21 September 2007):
External Linkhttp://arXiv.org/abs/0704.1679.
257 Mihalas, D., and Mihalas, B., Foundations of radiation hydrodynamics, (Oxford University Press, Oxford, U.K., 1984).
258 Miller, J.C., and Motta, S., “Computations of spherical gravitational collapse using null slicing”, Class. Quantum Grav., 6, 185–193, (1989).
259 Miller, J.M., “Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes”, Annu. Rev. Astron. Astrophys., 45, 441–479, (2007). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/0705.0540.
260 Miller, J.M., Raymond, J., Fabian, A., Steeghs, D., Homan, J., Reynolds, C., van der Klis, M., and Wijnands, R., “The magnetic nature of disk accretion onto black holes”, Nature, 441, 953–955, (2006). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0605390.
261 Miller, M., Suen, W.-M., and Tobias, M., “Shapiro conjecture: Prompt or delayed collapse in the head-on collision of neutron stars?”, Phys. Rev. D, 63, 121501, 1–5, (2001). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9904041.
262 Miralles, J.A., Ibáñez, J.M., Martí, J.M., and Pérez, A., “Incompressibility of hot nuclear matter, general relativistic stellar collapse and shock propagation”, Astron. Astrophys. Suppl., 90, 283–299, (1991).
263 Misner, C.W., and Sharp, D.H., “Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse”, Phys. Rev., 136, B571–B576, (1964).
264 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
265 Mizuno, Y., Nishikawa, K., Koide, S., Hardee, P., and Fishman, G.J., “RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code”, (2006). URL (cited on 31 August 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0609004.
266 Mizuno, Y., Yamada, S., Koide, S., and Shibata, K., “General Relativistic Magnetohydrodynamic Simulations of Collapsars: Rotating Black Hole Cases”, Astrophys. J., 615, 389–401, (2004). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/astro-ph/0310017.
267 Monaghan, J.J., “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrophys., 30, 543–574, (1992).
268 Mönchmeyer, R., Schäfer, G., Müller, E., and Kates, R.E., “Gravitational waves from the collapse of rotating stellar cores”, Astron. Astrophys., 246, 417–440, (1991).
269 Montero, P.J., Zanotti, O., Font, J.A., and Rezzolla, L., “Dynamics of magnetized relativistic tori oscillating around black holes”, Mon. Not. R. Astron. Soc., 378, 1101–1110, (2007). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/astro-ph/0702485.
270 Müller, E, “Gravitational radiation from collapsing rotating stellar cores”, Astron. Astrophys., 114, 53–59, (1982).
271 Müller, E., “Simulation of Astrophysical Fluid Flow”, in LeVeque, R.J., Mihalas, D., Dorfi, E.A., Müller, E., Steiner, O., and Gautschy, A., eds., Computational Methods for Astrophysical Fluid Flow, Lecture Notes of the Saas-Fee Advanced Course 27, Les Diablerets, Switzerland, March 3–8, 1997, Saas-Fee Advanced Courses, vol. 27, pp. 343–494, (Springer, Berlin, Germany; New York, U.S.A., 1998).
272 Müller, E., and Hillebrandt, W., “A magnetohydrodynamical supernova model”, Astron. Astrophys., 80, 147–154, (1979).
273 Müller, E., Rampp, M., Buras, R., Janka, H.-T., and Shoemaker, D., “Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models”, Astrophys. J., 603, 221–230, (2004). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0309833.
274 Müller, I., “Speeds of Propagation in Classical and Relativistic Extended Thermodynamics”, Living Rev. Relativity, 2, lrr-1999-1, (1999). URL (cited on 17 April 2003):
http://www.livingreviews.org/lrr-1999-1.
275 Nagar, A., Font, J.A., Zanotti, O., and de Pietri, R., “Gravitational waves from oscillating accretion tori: Comparison between different approaches”, Phys. Rev. D, 72, 024007, 1–6, (2005). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0506070.
276 Nagar, A., Zanotti, O., Font, J.A., and Rezzolla, L., “Accretion-induced quasinormal mode excitation of a Schwarzschild black hole”, Phys. Rev. D, 75, 044016, 1–17, (2007). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0610131.
277 Nakamura, T., “General Relativistic Collapse of Axially Symmetric Stars Leading to the Formation of Rotating Black Holes”, Prog. Theor. Phys., 65, 1876–1890, (1981).
278 Nakamura, T., “General Relativistic Collapse of Accreting Neutron Stars with Rotation”, Prog. Theor. Phys., 70, 1144–1147, (1983).
279 Nakamura, T., Maeda, K., Miyama, S., and Sasaki, M., “General Relativistic Collapse of an Axially Symmetric Star. I – The Formulation and the Initial Value Equations –”, Prog. Theor. Phys., 63, 1229–1244, (1980).
280 Nakamura, T., and Oohara, K., “A Way to 3D Numerical Relativity”, in Miyama, S.M., Tomisaka, K., and Hanawa, T., eds., Numerical Astrophysics, Proceedings of the International Conference on Numerical Astrophysics 1998 (Nap98), held at the National Olympic Memorial Youth Center, Tokyo, Japan, March 10 – 13, 1998, Astrophysics and Space Science Library, vol. 240, p. 247, (Kluwer Academic, Dordrecht, Netherlands; Boston, U.S.A., 1999). Related online version (cited on 1 February 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9812054.
281 Nakamura, T., Oohara, K., and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–218, (1987).
282 Nakamura, T., and Sasaki, M., “Is collapse of a deformed star always effectual for gravitational radiation?”, Phys. Lett. B, 106, 69–72, (1981).
283 Nakamura, T., and Sato, H., “General Relativistic Collapse of Non-Rotating, Axisymmetric Stars”, Prog. Theor. Phys., 67, 1396–1405, (1982).
284 Narayan, R., Mahadevan, R., and Quataert, E., “Advection-Dominated Accretion around Black Holes”, in Abramowicz, M.A., Björnsson, G., and Pringle, J.E., eds., Theory of Black Hole Accretion Disks, Cambridge Contemporary Astrophysics, p. 148, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9803141.
285 Narayan, R., and Yi, I., “Advection-dominated accretion: A self-similar solution”, Astrophys. J., 428, L13–L16, (1994). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9403052.
286 Neilsen, D.W., Hirschmann, E.W., and Millward, R.S., “Relativistic MHD and excision: formulation and initial tests”, Class. Quantum Grav., 23, S505–S527, (2006). Related online version (cited on 31 August 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0512147.
287 Nessyahu, H., and Tadmor, E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87, 408–463, (1990).
288 Nishikawa, K.-I., Richardson, G., Koide, S., Shibata, K., Kudoh, T., Hardee, P., and Fishman, G.J., “A General Relativistic Magnetohydrodynamic Simulation of Jet Formation”, Astrophys. J., 625, 60–71, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0403032.
289 Noble, S.C., Gammie, C.F., McKinney, J.C., and Del Zanna, L., “Primitive variable solvers for conservative general relativistic magnetohydrodynamics”, Astrophys. J., 641, 626–637, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0512420.
290 Noh, W.F., “Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux”, J. Comput. Phys., 72, 78–120, (1987).
291 Norman, M.L., and Winkler, K.-H.A., “Why Ultrarelativistic Numerical Hydrodynamics is Difficult”, in Winkler, K.-H.A., and Norman, M.L., eds., Astrophysical Radiation Hydrodynamics, Proceedings of the NATO Advanced Research Workshop, Garching, Germany, August 2–13, 1982, NATO ASI Series C, vol. 188, pp. 449–475, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1986).
292 Novak, J., “Spherical neutron star collapse in tensor-scalar theory of gravity”, Phys. Rev. D, 57, 4789–4801, (1998). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9707041.
293 Novak, J., “Velocity-induced collapses of stable neutron stars”, Astron. Astrophys., 376, 606–613, (2001). Related online version (cited on 24 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0107045.
294 Novak, J., and Ibáñez, J.M., “Gravitational waves from the collapse and bounce of a stellar core in tensor-scalar gravity”, Astrophys. J., 533, 392–405, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9911298.
295 Obergaulinger, M., Aloy, M.A., Dimmelmeier, H., and Müller, E., “Axisymmetric simulations of magnetorotational core collapse: Approximate inclusion of general relativistic effects”, Astron. Astrophys., 457, 209–222, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0602187.
296 Obergaulinger, M., Aloy, M.A., and Müller, E., “Axisymmetric simulations of magneto-rotational core collapse: dynamics and gravitational wave signal”, Astron. Astrophys., 450, 1107–1134, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510184.
297 Oechslin, R.and Janka, H.-T., “Torus formation in neutron star mergers and well-localized short gamma-ray bursts”, Mon. Not. R. Astron. Soc., 368, 1489–1499, (2006). Related online version (cited on 5 December 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0507099.
298 Oechslin, R.and Janka, H.-T., “Gravitational Waves from Relativistic Neutron-Star Mergers with Microphysical Equations of State”, Phys. Rev. Lett., 99, 121102, (2007). Related online version (cited on 5 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0702228.
299 Oechslin, R.and Janka, H.-T., and Marek, A., “Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state”, Astron. Astrophys., 467, 395–409, (2007). Related online version (cited on 5 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0611047.
300 Oechslin, R., Rosswog, S., and Thielemann, F.-K., “Conformally flat smoothed particle hydrodynamics application to neutron star mergers”, Phys. Rev. D, 65, 103005, (2002). Related online version (cited on 5 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0111005.
301 Oleinik, O., “Discontinuous solutions and non-linear differential equations”, Am. Math. Soc. Transl., 26, 95–172, (1957).
302 Oohara, K., and Nakamura, T., “Gravitational radiation from a particle scattered by a non-rotating black hole”, Phys. Lett. A, 98, 407–410, (1983).
303 Oohara, K., and Nakamura, T., “Coalescence of Binary Neutron Stars”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 309–334, (Cambridge University Press, Cambridge, U.K., 1997). Related online version (cited on 1 September 1996):
External Linkhttp://arXiv.org/abs/astro-ph/9606179.
304 Oohara, K., and Nakamura, T., “3D General Relativistic Simulations of Coalescing Binary Neutron Stars”, Prog. Theor. Phys. Suppl., 136, 270–286, (1999). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9912085.
305 Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Hawke, I., Zink, B., and Schnetter, E., “3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State”, Phys. Rev. Lett., 98, 261101, (2007). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609819.
306 Ott, C.D., Ou, S., Tohline, J.E., and Burrows, A., “One-armed Spiral Instability in a Low-T∕|W| Postbounce Supernova Core”, Astrophys. J. Lett., 625, L119–L122, (2005). Related online version (cited on 15 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0503187.
307 Paczyński, B., and Wiita, P.J., “Thick accretion disks and supercritical luminosities”, Astron. Astrophys., 88, 23–31, (1980).
308 Papadopoulos, P., and Font, J.A., “Relativistic hydrodynamics around black holes and horizon adapted coordinate systems”, Phys. Rev. D, 58, 024005, 1–10, (1998). Related online version (cited on 1 April 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9803087.
309 Papadopoulos, P., and Font, J.A., “Analysis of relativistic hydrodynamics in conservation form”, (1999). URL (cited on 1 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9912054.
310 Papadopoulos, P., and Font, J.A., “Matter flows around black holes and gravitational radiation”, Phys. Rev. D, 59, 044014, 1–17, (1999). Related online version (cited on 1 September 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9808054.
311 Papadopoulos, P., and Font, J.A., “Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes”, Phys. Rev. D, 61, 024015, 1–15, (2000). Related online version (cited on 1 March 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9902018.
312 Papadopoulos, P., and Font, J.A., “Imprints of accretion on gravitational waves from black holes”, Phys. Rev. D, 63, 044016, 1–5, (2001). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0009024.
313 Papaloizou, J.C.B., and Pringle, J.E., “The dynamical stability of differentially rotating discs with constant specific angular momentum”, Mon. Not. R. Astron. Soc., 208, 721–750, (1984).
314 Park, M.-G., “Equations of general relativistic radiation hydrodynamics from a tensor formalism”, Mon. Not. R. Astron. Soc., 367, 1739–1745, (2006). Related online version (cited on 25 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0601635.
315 Peitz, J., and Appl, S., “Dissipative fluid dynamics in the 3+1 formalism”, Class. Quantum Grav., 16, 979–989, (1999).
316 Penrose, R., “Gravitational collapse: The role of general relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969).
317 Petrich, L.I., Shapiro, S.L., Stark, R.F., and Teukolsky, S.A., “Accretion onto a moving black hole: a fully relativistic treatment”, Astrophys. J., 336, 313–349, (1989).
318 Petrich, L.I., Shapiro, S.L., and Wasserman, I., “Gravitational radiation from nonspherical infall into black holes. II. A catalog of ‘exact’ waveforms”, Astrophys. J. Suppl. Ser., 58, 297–320, (1985).
319 Piran, T., and Stark, R.F., “Numerical relativity, rotating gravitational collapse, and gravitational radiation”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of a workshop held at Drexel University, October 7 – 11, 1985, pp. 40–73, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986).
320 Pons, J.A., Font, J.A., Ibáñez, J.M., Martí, J.M., and Miralles, J.A., “General Relativistic Hydrodynamics with Special Relativistic Riemann Solvers”, Astron. Astrophys., 339, 638–642, (1998). Related online version (cited on 1 August 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9807215.
321 Pons, J.A., Ibáñez, J.M., and Miralles, J.A., “Hyperbolic character of the angular moment equations of radiative transfer and numerical methods”, Mon. Not. R. Astron. Soc., 317, 550–562, (2000). Related online version (cited on 28 October 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0005310.
322 Pons, J.A., Martí, J.M., and Müller, E., “The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics”, J. Fluid Mech., 422, 125–139, (2000). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0005038.
323 Pretorius, F., “Binary Black Hole Coalescence”, (2007). URL (cited on 10 October 2007):
External Linkhttp://arXiv.org/abs/0710.1338.
324 Price, D.J., and Rosswog, S., “Producing Ultrastrong Magnetic Fields in Neutron Star Mergers”, Science, 312, 719–722, (2006). Related online version (cited on 10 July 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0603845.
325 Punsly, B., “Three-dimensional Simulations of Ergospheric Disk-driven Poynting Jets”, Astrophys. J. Lett., 661, L21–L24, (2007). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/0704.0816.
326 Rampp, M., and Janka, H.-T., “Spherically symmetric simulation with Boltzmann neutrino transport of core-collapse and post-bounce evolution of a 15 solar mass star”, Astrophys. J., 539, L33–L36, (2000). Related online version (cited on 14 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0005438.
327 Rampp, M., and Janka, H.-T., “Radiation hydrodynamics with neutrinos: Variable Eddington factor method for core-collapse supernova simulations”, Astron. Astrophys., 396, 361–392, (2002). Related online version (cited on 14 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0203101.
328 Rampp, M., Müller, E., and Ruffert, M., “Simulations of non-axisymmetric rotational core collapse”, Astron. Astrophys., 332, 969–983, (1998). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/9711122.
329 Rasio, F.A., and Shapiro, S.L., “Coalescing binary neutron stars”, Class. Quantum Grav., 16, R1–R29, (1999). Related online version (cited on 1 March 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9902019.
330 Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS. URL (cited on 15 October 2002):
External Linkhttp://people.sissa.it/~rezzolla/movies.html.
331 Rezzolla, L., and Miller, J.C., “Relativistic radiative transfer for spherical flows”, Class. Quantum Grav., 11, 1815–1832, (1994).
332 Rezzolla, L., Yoshida, S., Maccarone, T.J., and Zanotti, O., “A new simple model for high-frequency quasi-periodic oscillations in black hole candidates”, Mon. Not. R. Astron. Soc., 344, L37–L41, (2003). Related online version (cited on 15 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0307487.
333 Rezzolla, L., and Zanotti, O., “An improved exact Riemann solver for relativistic hydrodynamics”, J. Fluid Mech., 449, 395–411, (2001). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0103005.
334 Rezzolla, L., Zanotti, O., and Pons, J.A., “An Improved Exact Riemann Solver for Multidimensional Relativistic Flows”, J. Fluid Mech., 479, 199–219, (2003). Related online version (cited on 15 July 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0205034.
335 Richardson, G.A., and Chung, T.J., “Computational relativistic astrophysics using the flow field-dependent variation theory”, Astrophys. J. Suppl. Ser., 139, 539–563, (2002).
336 Richtmyer, R.D., and Morton, K.W., Difference methods for initial-value problems, Interscience Tracts in Pure and Applied Mathematics, vol. 4, (Interscience, New York, U.S.A., 1967), 2nd edition.
337 Roe, P.L., “Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comput. Phys., 43, 357–372, (1981).
338 Roe, P.L., Generalized formulation of TVD Lax–Wendroff schemes, ICASE Report, No. 84-53, (Institute for Computer Applications in Science and Engineering (ICASE), Hampton, U.S.A., 1984).
339 Romero, J.V., Ibáñez, J.M., Martí, J.M., and Miralles, J.A., “A new spherically symmetric general relativistic hydrodynamical code”, Astrophys. J., 462, 839–854, (1996). Related online version (cited on 1 October 1995):
External Linkhttp://arXiv.org/abs/astro-ph/9509121.
340 Romero, R., Martí, J.M., Pons, J.A., Ibánez, J.M., and Miralles, J.A., “The exact solution of the Riemann problem in relativistic magnetohydrodynamics with tangential magnetic fields”, J. Fluid Mech., 544, 323–338, (2005). Related online version (cited on 31 August 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0506527.
341 Ruffert, M., and Arnett, D., “Three-dimensional hydrodynamic Bondi–Hoyle accretion. 2: Homogeneous medium at Mach 3 with gamma = 5/3”, Astrophys. J., 427, 351–376, (1994).
342 Ruffert, M., and Janka, H.-T., “Colliding neutron stars. Gravitational waves, neutrino emission, and gamma-ray bursts”, Astron. Astrophys., 338, 535–555, (1998). Related online version (cited on 1 May 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9804132.
343 Ryu, D., Miniati, F., Jones, T.W., and Frank, A., “A divergence-free upwind code for multidimensional magnetohydrodynamic flows”, Astrophys. J., 509, 244–255, (1998). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9807228.
344 Sachs, R.K., “Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962).
345 Schneider, V., Katscher, V., Rischke, D.H., Waldhauser, B., Marhun, J.A., and Munz, C.-D., “New algorithms for ultra-relativistic numerical hydrodynamics”, J. Comput. Phys., 105, 92–107, (1993).
346 Seidel, E., and Moore, T., “Gravitational radiation from realistic relativistic stars: Odd-parity fluid perturbations”, Phys. Rev. D, 35, 2287–2296, (1987).
347 Seidel, E., Myra, E.S., and Moore, T., “Gravitational radiation from type-II supernovae: The effect of the high-density equation of state”, Phys. Rev. D, 38, 2349–2356, (1988).
348 Shakura, N.I., and Sunyaev, R.A., “Black holes in binary systems. Observational appearance”, Astron. Astrophys., 24, 337–355, (1973).
349 Shapiro, S.L., “Head-on collision of neutron stars as a thought experiment”, Phys. Rev. D, 58, 103002, 1–5, (1998). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9809060.
350 Shapiro, S.L., and Wasserman, I., “Gravitational radiation from nonspherical infall into black holes”, Astrophys. J., 260, 838–848, (1982).
351 Shen, H., Toki, H., Oyamatsu, K., and Sumiyoshi, K., “Relativistic Equation of State of Nuclear Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031, (1998). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9806095.
352 Shibata, M., “Homepage of Masaru Shibata: Animations”, personal homepage, University of Tokyo. URL (cited on 13 September 2002):
External Linkhttp://esa.c.u-tokyo.ac.jp/~shibata/anim.html.
353 Shibata, M., “Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests”, Phys. Rev. D, 60, 104052, 1–25, (1999). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9908027.
354 Shibata, M., “Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity – Criteria for Prompt Collapse to Black Holes –”, Prog. Theor. Phys., 104, 325–358, (2000). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0007049.
355 Shibata, M., “Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes”, Phys. Rev. D, 67, 024033, 1–24, (2003). Related online version (cited on 17 April 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0301103.
356 Shibata, M., “Collapse of Rotating Supramassive Neutron Stars to Black Holes: Fully General Relativistic Simulations”, Astrophys. J., 595, 992–999, (2003). Related online version (cited on 17 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0310020.
357 Shibata, M., “Constraining Nuclear Equations of State Using Gravitational Waves from Hypermassive Neutron Stars”, Phys. Rev. Lett., 94, 201101, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0504082.
358 Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “The bar-mode instability in differentially rotating neutron stars: Simulations in full general relativity”, Astrophys. J., 542, 453–463, (2000). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0005378.
359 Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity”, Phys. Rev. D, 61, 044012, 1–11, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9911308.
360 Shibata, M., Duez, M.D., Liu, Y.T., Shapiro, S.L., and Stephens, B.C., “Magnetized Hypermassive Neutron-Star Collapse: A Central Engine for Short Gamma-Ray Bursts”, Phys. Rev. Lett., 96, 031102, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0511142.
361 Shibata, M., and Font, J.A., “Robustness of a high-resolution central scheme for hydrodynamic simulations in full general relativity”, Phys. Rev. D, 72, 047501, 1–4, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0507099.
362 Shibata, M., Liu, Y.T., Shapiro, S.L., and Stephens, B.C., “Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity”, Phys. Rev. D, 74, 104026, 1–28, (2006). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0610840.
363 Shibata, M., and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995).
364 Shibata, M., and Sekiguchi, Y., “Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations”, Phys. Rev. D, 68, 104020, (2003). Related online version (cited on 5 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0402184.
365 Shibata, M., and Sekiguchi, Y., “Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024, (2004). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0402040.
366 Shibata, M., and Sekiguchi, Y., “Magnetohydrodynamics in full general relativity: Formulation and tests”, Phys. Rev. D, 72, 044014, 1–24, (2005). Related online version (cited on 5 July 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0507383.
367 Shibata, M., and Sekiguchi, Y., “Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities”, Phys. Rev. D, 71, 024014, 1–32, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0412243.
368 Shibata, M., Sekiguchi, Y., and Takahashi, R., “Magnetohydrodynamics of Neutrino-Cooled Accretion Tori around a Rotating Black Hole in General Relativity”, Prog. Theor. Phys., 118, 257–302, (2007). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/0709.1766.
369 Shibata, M., and Shapiro, S.L., “Collapse of a rotating supermassive star to a supermassive black hole: Fully relativistic simulations”, Astrophys. J. Lett., 572, L39–L43, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0205091.
370 Shibata, M., and Taniguchi, K., “Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing”, Phys. Rev. D, 73, 064027, 1–29, (2006). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0603145.
371 Shibata, M., and Taniguchi, K., “Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves”, (2007). URL (cited on 5 December 2007):
External Linkhttp://arXiv.org/abs/0711.1410.
372 Shibata, M., Taniguchi, K., and Uryū, K., “Merger of binary neutron stars with realistic equations of state in full general relativity”, Phys. Rev. D, 71, 084021–1–084021–26, (2005). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0503119.
373 Shibata, M., and Uryū, K., “Simulation of merging binary neutron stars in full general relativity: Γ = 2 case”, Phys. Rev. D, 61, 064001, 1–18, (2000). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9911058.
374 Shibata, M., and Uryū, K., “Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation”, Prog. Theor. Phys., 107, 265–303, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0203037.
375 Shibata, M., and Uryu, K., “Merger of black hole-neutron star binaries: nonspinning black hole case”, Phys. Rev. D, 74, 121503(R), (2006). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612142.
376 Shibata, M., and Uryu, K., “Merger of black hole neutron star binaries in full general relativity”, Class. Quantum Grav., 24, S125–S137, (2007). Related online version (cited on 5 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0611522.
377 Shu, C.W., “TVB uniformly high-order schemes for conservation laws”, Math. Comput., 49, 105–121, (1987).
378 Siebel, F., Font, J.A., Müller, E., and Papadopoulos, P., “Simulating the dynamics of relativistic stars via a light-cone approach”, Phys. Rev. D, 65, 064038, 1–15, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0111093.
379 Siebel, F., Font, J.A., Müller, E., and Papadopoulos, P., “Axisymmetric core collapse simulations using characteristic numerical relativity”, Phys. Rev. D, 67, 124018, 1–16, (2003). Related online version (cited on 1 June 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0301127.
380 Siebel, F., Font, J.A., and Papadopoulos, P., “Scalar field induced oscillations of relativistic stars and gravitational collapse”, Phys. Rev. D, 65, 024021, 1–10, (2002). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0108006.
381 Siegler, S., and Riffert, H., “Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity”, Astrophys. J., 531, 1053–1066, (2000). Related online version (cited on 1 May 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9904070.
382 Smarr, L.L., The structure of general relativity with a numerical illustration: the collision of two black holes, Ph.D. Thesis, (University of Texas, Austin, U.S.A., 1975).
383 Sperhake, U., Papadopoulos, P., and Andersson, N., “Non-linear radial oscillations of neutron stars: Mode-coupling results”, (2001). URL (cited on 5 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0110487.
384 Spruit, H.C., and Phinney, E.S., “Birth kicks as the origin of pulsar rotation”, Nature, 393, 139, (1998).
385 Stark, R.F., “Non-axisymmetric rotating gravitational collapse and gravitational radiation”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, pp. 281–296, (Cambridge University Press, Cambridge; New York, 1989).
386 Stark, R.F., and Piran, T., “Gravitational-Wave Emission from Rotating Gravitational Collapse”, Phys. Rev. Lett., 55, 891–894, (1985).
387 Stark, R.F., and Piran, T., “A General Relativistic Code for Rotating Axisymmetric Configurations and Gravitational Radiation: Numerical Methods and Tests”, Comput. Phys. Rep., 5, 221–264, (1987).
388 Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 6, lrr-2003-3, (2002). URL (cited on 4 March 2008):
http://www.livingreviews.org/lrr-2003-3.
389 Stergioulas, N., Apostolatos, T.A., and Font, J.A., “Nonlinear pulsations in differentially rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental mode”, Mon. Not. R. Astron. Soc., 352, 1089–1101, (2004). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0312648.
390 Stergioulas, N., and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys. Rev. Lett., 86, 1148–1151, (2001). Related online version (cited on 13 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0007086.
391 Swesty, F.D., Lattimer, J.M., and Myra, E.S., “The role of the equation of state in the ‘prompt’ phase of type II supernovae”, Astrophys. J., 425, 195–204, (1994).
392 Tadmor, E., “Eitan Tadmor Home Page”, personal homepage, University of Maryland. URL (cited on 4 September 2008):
External Linkhttp://www.cscamm.umd.edu/people/faculty/tadmor/.
393 Takahashi, M., Nitta, S., Tatematsu, Y., and Tomimatsu, A., “Magnetohydrodynamic flows in Kerr geometry - Energy extraction from black holes”, Astrophys. J., 363, 206–217, (1990).
394 Tanaka, Y., Nandra, K., Fabian, A.C., Inoue, H., Otani, C., Dotani, T., Hayashida, K., Iwasawa, K., Kii, T., Kunieda, H., Makino, F., and Matsuoka, M., “Gravitationally Redshifted Emission implying an accretion disk and massive black-hole in the active galaxy MCG-6-30-15”, Nature, 375, 659–661, (1995).
395 Taniguchi, K., Baumgarte, T.W., Faber, J.A., and Shapiro, S.L., “Quasiequilibrium black hole-neutron star binaries in general relativity”, Phys. Rev. D, 75, 084005, 1–17, (2007). Related online version (cited on 1 September 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0701110.
396 Tchekhovskoy, A., McKinney, J.C., and Narayan, R., “WHAM: a WENO-based general relativistic numerical scheme - I. Hydrodynamics”, Mon. Not. R. Astron. Soc., 379, 469–497, (2007). Related online version (cited on 15 October 2007):
External Linkhttp://arXiv.org/abs/arXiv:0704.2608.
397 Teukolsky, S.A., “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations”, Phys. Rev. Lett., 29, 1114–1118, (1972).
398 Toro, E.F., Riemann solvers and numerical methods for fluid dynamics – a practical introduction, (Springer, Berlin, Germany, 1997).
399 Toropina, O.D., Romanova, M.M., and Lovelace, R.V.E., “Spinning-down of moving magnetars in the propeller regime”, Mon. Not. R. Astron. Soc., 371, 569–576, (2006). Related online version (cited on 15 February 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0606254.
400 Torrilhon, M., “Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics”, J. Comput. Phys., 192, 73–94, (2003).
401 Tóth, G., “The ∇⋅ B = 0 constraint in shock-capturing magnetohydrodynamics codes”, J. Comput. Phys., 161, 605–652, (2000).
402 van der Klis, M., “Millisecond oscillations in X-ray binaries”, Annu. Rev. Astron. Astrophys., 38, 717–760, (2000). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0001167.
403 van Leer, B.J., “Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method”, J. Comput. Phys., 32, 101–136, (1979).
404 van Putten, M.H.P.M., “Maxwell’s equations in divergence form for general media with applications to MHD”, Commun. Math. Phys., 141, 63–77, (1991).
405 van Putten, M.H.P.M., and Levinson, A., “Detecting Energy Emissions from a Rotating Black Hole”, Science, 295, 1874–1877, (2002).
406 van Riper, K.A., “General relativistic hydrodynamics and the adiabatic collapse of stellar cores”, Astrophys. J., 232, 558–571, (1979).
407 von Neumann, J., and Richtmyer, R.D., “A method for the numerical calculation of hydrodynamic shocks”, J. Appl. Phys., 21, 232–247, (1950).
408 Walder, R., Burrows, A., Ott, C.D., Livne, E., Lichtenstadt, I., and Jarrah, M., “Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multigroup Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae”, Astrophys. J., 626, 317–332, (2005). Related online version (cited on 15 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0412187.
409 Watanabe, N., and Yokoyama, T., “Two-dimensional Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection”, Astrophys. J. Lett., 647, L123–L126, (2006). Related online version (cited on 15 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0607285.
410 Wen, L., Panaitescu, A., and Laguna, P., “A shock-patching code for ultrarelativistic fluid flows”, Astrophys. J., 486, 919–927, (1997). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9612045.
411 Wilson, J.R., “Numerical study of fluid flow in a Kerr space”, Astrophys. J., 173, 431–438, (1972).
412 Wilson, J.R., “Magnetohydrodynamics near a black hole”, in Ruffini, R., ed., First Marcel Grossmann Meeting on General Relativity, Proceedings of the meeting held at the International Centre for Theoretical Physics, Trieste and Istituto di fisica, University of Trieste, 7 – 12 July 1975, pp. 393–413, (North-Holland, Amsterdam, Netherlands, 1977).
413 Wilson, J.R., “A Numerical Method for Relativistic Hydrodynamics”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 423–445, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979).
414 Wilson, J.R., “Supernovae and post-collapse behaviour”, in Centrella, J.M., LeBlanc, J.M., and Bowers, R.L., eds., Numerical astrophysics, Proceedings of a symposium in honor of James R. Wilson, held at the University of Illinois in October, 1982, pp. 422–434, (Jones and Bartlett, Boston, U.S.A., 1985).
415 Wilson, J.R., and Mathews, G.J., “Relativistic hydrodynamics”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, USA, 9 – 13 May 1988, pp. 306–314, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
416 Wilson, J.R., and Mathews, G.J., “Instabilities in Close Neutron Star Binaries”, Phys. Rev. Lett., 75, 4161–4164, (1995).
417 Wilson, J.R., and Mathews, G.J., Relativistic numerical hydrodynamics, (Cambridge University Press, Cambridge, England, 2003).
418 Wilson, J.R., Mathews, G.J., and Marronetti, P., “Relativisitic Numerical Model for Close Neutron Star Binaries”, Phys. Rev. D, 54, 1317–1331, (1996). Related online version (cited on 1 September 1996):
External Linkhttp://arXiv.org/abs/gr-qc/9601017.
419 Winicour, J., “Characteristic evolution and matching”, Living Rev. Relativity, 10, lrr-2005-10, (2005). URL (cited on 1 October 2007):
http://www.livingreviews.org/lrr-2005-10.
420 Woodward, P.R., and Colella, P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54, 115–173, (1984).
421 Woosley, S.E., “Gamma-ray bursts from stellar mass accretion disks around black holes”, Astrophys. J., 405, 273–277, (1993).
422 Woosley, S.E., and Janka, H.-T., “The physics of core-collapse supernovae”, Nature Phys., 1, 147–154, (2005). Related online version (cited on 15 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0601261.
423 Woosley, S.E., Pinto, P.A., and Ensman, L., “Supernova 1987A: Six weeks later”, Astrophys. J., 324, 466–489, (1988).
424 Yamada, S., “An implicit Lagrangian code for spherically symmetric general relativistic hydrodynamics with an approximate Riemann solver”, Astrophys. J., 475, 720–739, (1997). Related online version (cited on 15 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/9601042.
425 Yamada, S., and Sato, K., “Numerical study of rotating core collapse in supernova explosions”, Astrophys. J., 434, 268–276, (1994).
426 Yamada, S., and Sawai, H., “Numerical Study on the Rotational Collapse of Strongly Magnetized Cores of Massive Stars”, Astrophys. J., 608, 907–924, (2004).
427 Yee, H.C., “Construction of explicit and implicit symmetric TVD schemes and their applications”, J. Comput. Phys., 68, 151–179, (1987).