References

1 Alcubierre, M., Brandt, S., Brügmann, B., Gundlach, C., Massó, J., Seidel, E. and Walker, P., “Test-beds and applications for apparent horizon finders in numerical relativity”, Class. Quantum Grav., 17, 2159–2190, (2000). [External LinkDOI], [External LinkADS].
2 Alcubierre, M. et al., “Towards standard testbeds for numerical relativity”, Class. Quantum Grav., 21, 589–613, (2004). [External LinkDOI], [External LinkADS].
3 Amsterdamski, P., Bulik, T., Gondek-Rosińska, D. and Kluźniak, W., “Marginally stable orbits around Maclaurin spheroids and low-mass quark stars”, Astron. Astrophys., 381, L21–L24, (2002). [External LinkDOI], [External LinkADS].
4 Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela, C. and Tohline, J.E., “Simulating binary neutron stars: Dynamics and gravitational waves”, Phys. Rev. D, 77, 024006, (2008). [External LinkDOI], [External LinkADS].
5 Andersson, N. and Comer, G.L., “Relativistic Fluid Dynamics: Physics for Many Different Scales”, Living Rev. Relativity, 10, lrr-2007-1, (2007). URL (accessed 20 February 2007):
http://www.livingreviews.org/lrr-2007-1.
6 Ansorg, M., “Double-domain spectral method for black hole excision data”, Phys. Rev. D, 72, 024018, 1–10, (2005). [External LinkDOI], [External LinkADS].
7 Ansorg, M., “A multi-domain spectral method for initial data of arbitrary binaries in general relativity”, Class. Quantum Grav., 24, S1–S14, (2007). [External LinkDOI], [External LinkADS].
8 Ansorg, M., Brügmann, B. and Tichy, W., “Single-domain spectral method for black hole puncture data”, Phys. Rev. D, 70, 064011, 1–13, (2004). [External LinkDOI], [External LinkADS].
9 Ansorg, M., Kleinwächter, A. and Meinel, R., “Highly accurate calculation of rotating neutron stars”, Astron. Astrophys., 381, L49–L52, (2002). [External LinkDOI], [External LinkADS].
10 Ansorg, M., Kleinwächter, A. and Meinel, R., “Highly accurate calculation of rotating neutron stars: Detailed description of the numerical methods”, Astron. Astrophys., 405, 711–721, (2003). [External LinkDOI], [External LinkADS].
11 Ansorg, M., Kleinwächter, A. and Meinel, R., “Relativistic Dyson Rings and Their Black Hole Limit”, Astrophys. J. Lett., 582, L87–L90, (2003). [External LinkDOI], [External LinkADS].
12 Ansorg, M., Kleinwächter, A. and Meinel, R., “Uniformly rotating axisymmetric fluid configurations bifurcating from highly flattened Maclaurin spheroids”, Mon. Not. R. Astron. Soc., 339, 515–523, (2003). [External LinkDOI], [External LinkADS].
13 Ansorg, M. and Petroff, D., “Black holes surrounded by uniformly rotating rings”, Phys. Rev. D, 72, 024019, 1–12, (2005). [External LinkDOI], [External Linkgr-qc/0505060v4].
14 Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0405109].
15 Babiuc, M.C., Szilágyi, B., Hawke, I. and Zlochower, Y., “Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22, 5089–5107, (2005). [External LinkDOI], [External LinkADS].
16 Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiraling neutron-star binaries: Prompt and delayed collapse to a black hole”, Phys. Rev. D, 78, 084033, (2008). [External LinkDOI], [External LinkarXiv:0804.0594].
17 Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A. and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole”, Phys. Rev. D, 71, 024035, 1–30, (2005). [External LinkDOI], [External LinkADS].
18 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102, (2006). [External LinkDOI].
19 Bardeen, J.M. and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205–250, (1983). [External LinkDOI], [External LinkADS].
20 Bartnik, R., “Einstein equations in the null quasispherical gauge”, Class. Quantum Grav., 14, 2185–2194, (1997). [External LinkDOI], [External LinkADS].
21 Bartnik, R. and Norton, A.H., “Numerical Methods for the Einstein Equations in Null Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [External LinkDOI].
22 Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018, 1–8, (2000). [External LinkDOI], [External LinkADS].
23 Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Implementing an apparent-horizon finder in three dimensions”, Phys. Rev. D, 54, 4849–4857, (1996). [External LinkDOI], [External LinkADS].
24 Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “General relativistic models of binary neutron stars in quasiequilibrium”, Phys. Rev. D, 57, 7299–7311, (1998). [External LinkDOI], [External LinkADS].
25 Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equation”, Phys. Rev. D, 59, 024007, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9810065].
26 Bejger, M., Gondek-Rosińska, D., Gourgoulhon, E., Haensel, P., Taniguchi, K. and Zdunik, J.L., “Impact of the nuclear equation of state on the last orbits of binary neutron stars”, Astron. Astrophys., 431, 297–306, (2005). [External LinkDOI], [External LinkADS].
27 Bejger, M., Haensel, P. and Zdunik, J.L., “Rotation at 1122 Hz and the neutron star structure”, Astron. Astrophys., 464, L49–L52, (2007). [External LinkDOI], [External LinkADS].
28 Belczynski, K., Kalogera, V. and Bulik, T., “A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties”, Astrophys. J., 572, 407–431, (2002). [External LinkDOI], [External LinkADS].
29 Ben Belgacem, F. and Bernardi, C., “Spectral Element Discretization of the Maxwell Equations”, Math. Comput., 68, 1497–1520, (1999). [External LinkADS].
30 Bičák, J., “Einstein equations: exact solutions”, in Françoise, J.-P., Naber, G.L. and Tsou, S.T., eds., Encyclopedia of Mathematical Physics,  2, pp. 165–173, (Elsevier, Amsterdam, 2006). [External Linkgr-qc/0604102].
31 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2006-4.
32 Bocquet, M., Bonazzola, S., Gourgoulhon, E. and Novak, J., “Rotating neutron star models with a magnetic field”, Astron. Astrophys., 301, 757–775, (1995). [External LinkADS].
33 Bonazzola, S., “Cyclotron lines in compact X-ray sources”, in Perola, G.C. and Salvati, M., eds., Non-thermal and very high temperature phenomena in X-ray astronomy, Proceedings of an international workshop, held in Rome, Italy, December 19 – 20, 1983, pp. 55–75, (Università ‘La Sapienza’, Rome, 1985).
34 Bonazzola, S., Frieben, J. and Gourgoulhon, E., “Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity”, Astrophys. J., 460, 379–389, (1996). [External LinkDOI], [External LinkADS].
35 Bonazzola, S., Frieben, J. and Gourgoulhon, E., “Spontaneous symmetry breaking of rapidly rotating stars in general relativity: influence of the 3D-shift vector”, Astron. Astrophys., 331, 280–290, (1998). [External LinkADS].
36 Bonazzola, S. and Gourgoulhon, E., “Gravitational waves from pulsars: emission by the magnetic-field-induced distortion”, Astron. Astrophys., 312, 675–690, (1996). [External LinkADS].
37 Bonazzola, S., Gourgoulhon, E., Grandclément, P. and Novak, J., “Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates”, Phys. Rev. D, 70, 104007, 1–24, (2004). [External LinkDOI], [External LinkADS].
38 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical approach for high presicion 3D relativistic star models”, Phys. Rev. D, 58, 104020, (1998). [External LinkDOI], [External LinkADS].
39 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical Models of Irrotational Binary Neutron Stars in General Relativity”, Phys. Rev. Lett., 82, 892–895, (1999). [External LinkDOI], [External LinkADS].
40 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Spectral methods in general astrophysics”, J. Comput. Appl. Math., 109, 433–473, (1999). [External LinkDOI], [External LinkADS].
41 Bonazzola, S., Gourgoulhon, E., Salgado, M. and Marck, J.-A., “Axisymmetric rotating relativistic bodies: A new numerical approach for ‘exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993). [External LinkADS].
42 Bonazzola, S., Jaramillo, J.L. and Novak, J., “A fast stroboscopic spectral method for rotating systems in numerical relativity”, Class. Quantum Grav., 24, 4037–4051, (2007). [External LinkDOI], [External LinkADS].
43 Bonazzola, S. and Marck, J.-A., “Pseudo-spectral technique applied to numerical solutions for stellar collapse”, Astron. Astrophys., 164, 300–309, (1986). [External LinkADS].
44 Bonazzola, S. and Marck, J.-A., “Three-dimensional gas dynamics in a sphere”, J. Comput. Phys., 87, 201–230, (1990). [External LinkDOI], [External LinkADS].
45 Bonazzola, S. and Marck, J.-A., “A 1D exact treatment of shock waves within spectral methods in plane geometry”, J. Comput. Phys., 97, 535–552, (1991). [External LinkDOI], [External LinkADS].
46 Bonazzola, S. and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I. Polytropic case”, Astron. Astrophys., 267, 623–633, (1993). [External LinkADS].
47 Boronski, P. and Tuckerman, L.S., “Poloidal toroidal decomposition in a finite cylinder. I: Influence matrices for the magnetohydrodynamic equations”, J. Comput. Phys., 227, 1523–1543, (2007). [External LinkDOI], [External LinkADS].
48 Boyd, J.B., Chebyshev and Fourier Spectral Methods, (Dover Publications, Mineola, N.Y., 2001), 2nd edition. [External LinkGoogle Books].
49 Boyle, M., Lindblom, L., Pfeiffer, H., Scheel, M. and Kidder, L.E., “Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity”, Phys. Rev. D, 75, 024006, (2007). [External LinkDOI], [External Linkgr-qc/0609047].
50 Brill, D.R. and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476, (1963). [External LinkDOI], [External LinkADS].
51 Brizuela, D., Martín-García, J.M. and Marugán, G.A.M., “Second- and higher-order perturbations of a spherical spacetime”, Phys. Rev. D, 74, 044039, 1–17, (2006). [External LinkDOI], [External LinkADS].
52 Brun, A.S., Miesch, M.S. and Toomre, J., “Global-scale turbulent convection and magnetic dynamo action in the solar envelope”, Astrophys. J., 614, 1073–1098, (2004). [External LinkDOI], [External LinkADS].
53 Buchman, L.T. and Sarbach, O., “Improved outer boundary conditions for Einstein’s field equations”, Class. Quantum Grav., 24, S307–S326, (2007). [External LinkDOI], [External LinkADS].
54 Calabrese, G., Pullin, J., Reula, O., Sarbach, O. and Tiglio, M., “Well Posed Constraint-Preserving Boundary Conditions for the Linearized Einstein Equations”, Commun. Math. Phys., 240, 377–395, (2003). [External LinkDOI], [External LinkADS].
55 Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate evolutions of orbiting black-hole binaries without excision”, Phys. Rev. Lett., 96, 111101, (2006). [External LinkDOI], [External LinkADS].
56 Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, (Springer, Berlin; New York, 1988).
57 Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., Spectral Methods: Fundamentals in Single Domains, Scientific Computation, (Springer, Berlin; New York, 2006). [External LinkGoogle Books].
58 Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, (Springer, Berlin; New York, 2007). [External LinkGoogle Books].
59 Caudill, M., Cook, G.B., Grigsby, J.D. and Pfeiffer, H.P., “Circular orbits and spin in black-hole initial data”, Phys. Rev. D, 74, 064011, (2006). [External LinkDOI], [External LinkADS].
60 Cook, G.B., “Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes”, Phys. Rev. D, 50, 5025–5032, (1994). [External LinkDOI], [External LinkADS].
61 Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5, (2000). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2000-5.
62 Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev. D, 65, 084003, (2002). [External LinkDOI], [External LinkADS].
63 Cook, G.B. and Pfeiffer, H.P., “Excision boundary conditions for black hole initial data”, Phys. Rev. D, 70, 104016, (2004). [External LinkDOI], [External LinkADS].
64 Cordero-Carrión, I., Ibáñez, J.M., Gourgoulhon, E., Jaramillo, J.L. and Novak, J., “Mathematical issues in a fully constrained formulation of Einstein equations”, Phys. Rev. D, 77, 084007, 1–13, (2008). [External LinkDOI], [External LinkADS].
65 Courant, R. and Hilbert, D., Methods of Mathematical Physics, (Interscience Publishers, New York, 1953).
66 Dahlquist, G.G., “A special stability problem for linear multistep methods”, BIT, 3(1), 27–43, (1963). [External LinkDOI].
67 Damour, T., Gourgoulhon, E. and Grandclément, P., “Circular orbits of corotating binary black holes: Comparison between analytical and numerical results”, Phys. Rev. D, 66, 024007, 1–15, (2002). [External LinkDOI], [External LinkADS].
68 Dimmelmeier, H., Font, J.A. and Müller, E., “Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0204288].
69 Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M. and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Phys. Rev. D, 71, 064023, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0407174].
70 Dimmelmeier, H., Ott, C.D., Janka, H.-T., Marek, A. and Müller, E., “Generic gravitational-wave signals from the collapse of rotating stellar cores”, Phys. Rev. Lett., 98, 251101, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0702305].
71 Dimmelmeier, H., Stergioulas, N. and Font, J.A., “Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation”, Mon. Not. R. Astron. Soc., 368, 1609–1630, (2006). [External LinkDOI], [External LinkADS].
72 Erdös, P., “Problems and Results on the Theory of Interpolation. II”, Acta Math. Acad. Sci. Hung., 12, 235–244, (1961). [External LinkDOI].
73 Faber, G., “Über die interpolarische Darstellung stetiger Funktionen”, Jahresber. Deutsch. Math.-Verein., 23, 192–210, (1914). Online version (accessed 13 November 2008):
External Linkhttp://www.digizeitschriften.de/home/services/pdfterms/?ID=514871.
74 Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K. and Rasio, F., “Dynamical evolution of black hole-neutron star binaries in general relativity: Simulations of tidal disruption”, Phys. Rev. D, 73, 024012, (2006). [External LinkDOI], [External LinkADS].
75 Faber, J.A., Grandclément, P. and Rasio, F.A., “Mergers of irrotational neutron star binaries in conformally flat gravity”, Phys. Rev. D, 69, 124036, 1–26, (2004). [External LinkDOI], [External LinkADS].
76 Faber, J.A., Grandclément, P., Rasio, F.A. and Taniguchi, K., “Measuring Neutron-Star Radii with Gravitational-Wave Detectors”, Phys. Rev. Lett., 89, 231102, 1–4, (2002). [External LinkDOI], [External LinkADS].
77 Font, J.A., “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 6, lrr-2003-4, (2003). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2003-4.
78 Font, J.A. et al., “Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars”, Phys. Rev. D, 65, 084024, 1–18, (2002). [External LinkDOI], [External LinkADS].
79 Fornberg, B., Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, (Cambridge University Press, Cambridge; New York, 1995). [External LinkGoogle Books].
80 Foucart, F., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., “Initial value problem for black hole-neutron star binaries: a flexible, high-accuracy spectral method”, Phys. Rev. D, 77, 124051, 1–20, (2008). [External LinkDOI], [External LinkADS].
81 Frauendiener, J., “Calculating initial data for the conformal Einstein equations by pseudo-spectral methods”, J. Comput. Appl. Math., 109, 475–491, (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9806103].
82 Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100, 525–543, (1985). [External LinkDOI].
83 Friedrich, H. and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field Equation”, Commun. Math. Phys., 201, 619–655, (1999). [External LinkDOI], [External LinkADS].
84 Fryer, C.L. and New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, lrr-2003-2, (2003). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2003-2.
85 Funaro, D. and Gottlieb, D., “A New Method of Imposing Boundary Conditions in Pseudospectral Approximations of Hyperbolic Equations”, Math. Comput., 51, 599–613, (1988). [External LinkDOI].
86 Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev. D, 65, 044029, (2002). [External LinkDOI], [External LinkADS].
87 Gondek-Rosińska, D., Bejger, M., Bulik, T., Gourgoulhon, E., Haensel, P., Limousin, F., Taniguchi, K. and Zdunik, J.L., “The final phase of inspiral of neutron stars: Realistic equations of state”, Adv. Space Res., 39, 271–274, (2007). [External LinkDOI], [External LinkADS].
88 Gondek-Rosińska, D., Bulik, T., Zdunik, J.L., Gourgoulhon, E., Ray, S., Dey, J. and Dey, M., “Rapidly rotating compact strange stars”, Astron. Astrophys., 363, 1005–1012, (2000). [External LinkADS].
89 Gondek-Rosińska, D. and Gourgoulhon, E., “Jacobi-like bar mode instability of relativistic rotating bodies”, Phys. Rev. D, 66, 044021, 1–11, (2002). [External LinkDOI], [External LinkADS].
90 Gondek-Rosińska, D., Gourgoulhon, E. and Haensel, P., “Are rotating strange quark stars good sources of gravitational waves?”, Astron. Astrophys., 412, 777–790, (2003). [External LinkDOI], [External LinkADS].
91 Gondek-Rosińska, D. and Limousin, F., “The final phase of inspiral of strange quark star binaries”, arXiv, e-print, (2008). [External LinkarXiv:0801.4829].
92 Gondek-Rosińska, D., Stergioulas, N., Bulik, T., Kluźniak, W. and Gourgoulhon, E., “Lower limits on the maximum orbital frequency around rotating strange stars”, Astron. Astrophys., 380, 190–197, (2001). [External LinkDOI], [External LinkADS].
93 González, J.A., Hannam, M., Sperhake, U., Brügmann, B. and Husa, S., “Supermassive Recoil Velocities for Binary Black-Hole Mergers with Antialigned Spins”, Phys. Rev. Lett., 98, 231101, (2007). [External LinkDOI], [External LinkADS].
94 Gottlieb, D. and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applications, Regional Conference Series in Applied Mathematics,  26, (SIAM, Philadelphia, 1977). [External LinkGoogle Books].
95 Gourgoulhon, E., “Simple equations for general relativistic hydrodynamics in spherical symmetry applied to neutron star collapse”, Astron. Astrophys., 252, 651–663, (1991). [External LinkADS].
96 Gourgoulhon, E., “1D numerical relativity applied to neutron star collapse”, Class. Quantum Grav., 9, S117–S125, (1992). [External LinkDOI], [External LinkADS].
97 Gourgoulhon, E., “3+1 formalism and Bases of Numerical Relativity”, arXiv, e-print, (2007). [External LinkarXiv:gr-qc/0703035].
98 Gourgoulhon, E., Grandclément, P. and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020, (2002). [External LinkDOI], [External LinkADS].
99 Gourgoulhon, E., Grandclément, P., Marck, J.-A. and Novak, J., “LORENE: Langage Objet pour la RElativité NumériquE”, project homepage, L’Observatoire de Paris. URL (accessed 9 March 2007):
External Linkhttp://www.lorene.obspm.fr.
100 Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A. and Bonazzola, S., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. Methods and tests”, Phys. Rev. D, 63, 064029, (2001). [External LinkDOI], [External LinkADS].
101 Gourgoulhon, E. and Haensel, P., “Upper bounds on the neutrino burst from collapse of a neutron star into a black hole”, Astron. Astrophys., 271, 187–208, (1993). [External LinkADS].
102 Gourgoulhon, E., Haensel, P. and Gondek, D., “Maximum mass instability of neutron stars and weak interaction processes in dense matter”, Astron. Astrophys., 294, 747–756, (1995). [External LinkADS].
103 Gourgoulhon, E., Haensel, P., Livine, R., Paluch, E., Bonazzola, S. and Marck, J.-A., “Fast rotation of strange stars”, Astron. Astrophys., 349, 851–862, (1999). [External LinkADS].
104 Gourgoulhon, E. and Jaramillo, J.L., “A 3+1 perspective on null hypersurfaces and isolated horizons”, Phys. Rep., 423, 159–294, (2006). [External LinkDOI], [External LinkADS].
105 Gourgoulhon, E. and Jaramillo, J.L., “Area evolution, bulk viscosity, and entropy principles for dynamical horizons”, Phys. Rev. D, 74, 087502, 1–4, (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0607050v2].
106 Goussard, J.O., Haensel, P. and Zdunik, J.L., “Rapid uniform rotation of protoneutron stars”, Astron. Astrophys., 321, 822–834, (1997). [External LinkADS].
107 Goussard, J.O., Haensel, P. and Zdunik, J.L., “Rapid differential rotation of protoneutron stars and constraints on radio pulsars periods”, Astron. Astrophys., 330, 1005–1016, (1998). [External LinkADS].
108 Grandclément, P., “Accurate and realistic initial data for black hole-neutron star binaries”, Phys. Rev. D, 74, 124002, (2006). [External LinkDOI], [External LinkADS].
109 Grandclément, P., Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “A multidomain spectral method for scalar and vectorial poisson equations with noncompact sources”, J. Comput. Phys., 170, 231–260, (2001). [External LinkDOI], [External LinkADS].
110 Grandclément, P., Gourgoulhon, E. and Bonazzola, S., “Binary black holes in circular orbits. II. Numerical methods and first results”, Phys. Rev. D, 65, 044021, 1–18, (2002). [External LinkDOI], [External LinkADS].
111 Gundlach, C., Calabrese, G., Hinder, I. and Martín-García, J.M., “Constraint damping in the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3773, (2005). [External LinkDOI], [External LinkADS].
112 Guo, B.-Y., Ma, H.-P. and Tadmor, E., “Spectral Vanishing Viscosity Method For Nonlinear Conservation Laws”, SIAM J. Numer. Anal., 39, 1254–1268, (2001). [External LinkDOI].
113 Hennig, J. and Ansorg, M., “A Fully Pseudospectral Scheme for Solving Singular Hyperbolic Equations on Conformally Compactified Space-Times”, arXiv, e-print, (2008). [External LinkarXiv:0801.1455].
114 Herrmann, F., Hinder, I., Shoemaker, D.M., Laguna, P. and Matzner, R.A., “Binary black holes: Spin dynamics and gravitational recoil”, Phys. Rev. D, 76, 084032, 1–11, (2007). [External LinkDOI], [External LinkADS].
115 Hesthaven, J.S., “Spectral penalty methods”, Appl. Numer. Math., 33, 23–41, (2000). [External LinkDOI].
116 Hesthaven, J.S. and Gottlieb, D., “A Stable Penalty Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions”, SIAM J. Sci. Comput., 17, 579–612, (1996). [External LinkDOI].
117 Hesthaven, J.S., Gottlieb, S. and Gottlieb, D., Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics,  21, (Cambridge University Press, Cambridge; New York, 2007). [External LinkGoogle Books].
118 Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, (McGraw-Hill, New York, 1981). [External LinkGoogle Books].
119 Hollerbach, R., “A spectral solution of the magneto-convection equations in spherical geometry”, Int. J. Numer. Meth. Fluids, 32, 773–797, (2000). [External LinkDOI], [External LinkADS].
120 Holst, M., Lindblom, L., Owen, R., Pfeiffer, H.P., Scheel, M.A. and Kidder, L.E., “Optimal constraint projection for hyperbolic evolution systems”, Phys. Rev. D, 70, 084017, 1–17, (2004). [External LinkDOI], [External LinkADS].
121 Ierley, G., Spencer, B. and Worthing, R., “Spectral Methods in Time for a Class of Parabolic Partial Differential Equations”, J. Comput. Phys., 102, 88–97, (1992). [External LinkDOI], [External LinkADS].
122 Isaacson, E. and Keller, H.B., Analysis of Numerical Methods, (John Wiley and Sons, New York, 1966). [External LinkGoogle Books].
123 Jaramillo, J.L., Ansorg, M. and Limousin, F., “Numerical implementation of isolated horizon boundary conditions”, Phys. Rev. D, 75, 024019, 1–11, (2007). [External LinkDOI], [External LinkADS].
124 Kassam, A.-K. and Trefethen, L.N., “Fourth-Order Time-Stepping for Stiff PDEs”, SIAM J. Sci. Comput., 26, 1214–1233, (2005). [External LinkDOI].
125 Kidder, L.E. and Finn, L.S., “Spectral methods for numerical relativity: The initial data problem”, Phys. Rev. D, 62, 084026, 1–13, (2000). [External LinkDOI], [External LinkADS].
126 Kidder, L.E., Lindblom, L., Scheel, M.A., Buchman, L.T. and Pfeiffer, H.P., “Boundary conditions for the Einstein evolution system”, Phys. Rev. D, 71, 064020, 1–22, (2005). [External LinkDOI], [External LinkADS].
127 Kidder, L.E., Scheel, M.A. and Teukolsky, S.A., “Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations”, Phys. Rev. D, 64, 064017, 1–13, (2001). [External LinkDOI], [External LinkADS].
128 Kidder, L.E., Scheel, M.A., Teukolsky, S.A., Carlson, E.D. and Cook, G.B., “Black hole evolution by spectral methods”, Phys. Rev. D, 62, 084032, 1–20, (2000). [External LinkDOI], [External LinkADS].
129 Klein, C., “Fourth-Order Time-Stepping for Low Dispersion Korteweg-de Vries and Nonlinear Schrödinger Equation”, Electron. Trans. Numer. Anal., 29, 116–135, (2008). URL (accessed 10 June 2008):
External Linkhttp://etna.mcs.kent.edu/vol.29.2007-2008/pp116-135.dir/pp116-135.html.
130 Kokkotas, K.D. and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-1999-2.
131 Korn, G.A. and Korn, T.M., in Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review,  6, pp. 179–186, (McGraw-Hill, New York, 1961). [External LinkGoogle Books].
132 Kudoh, H. and Wiseman, T., “Connecting Black Holes and Black Strings”, Phys. Rev. Lett., 94, 161102, (2005). [External LinkDOI], [External LinkADS].
133 Limousin, F., Gondek-Rosińska, D. and Gourgoulhon, E., “Last orbits of binary strange quark stars”, Phys. Rev. D, 71, 064012, 1–11, (2005). [External LinkDOI], [External LinkADS].
134 Lin, L.-M. and Novak, J., “Rotating star initial data for a constrained scheme in numerical relativity”, Class. Quantum Grav., 23, 4545–4561, (2006). [External LinkDOI], [External LinkADS].
135 Lin, L.-M. and Novak, J., “A new spectral apparent horizon finder for 3D numerical relativity”, Class. Quantum Grav., 24, 2665–2676, (2007). [External LinkDOI], [External LinkADS].
136 Lindblom, L., Matthews, K.D., Rinne, O. and Scheel, M.A., “Gauge Drivers for the Generalized Harmonic Einstein Equations”, Phys. Rev. D, 77, 084001, 1–17, (2008). [External LinkDOI], [External LinkADS].
137 Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A new generalized harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [External LinkDOI], [External LinkADS].
138 Lindblom, L., Scheel, M.A., Kidder, L.E., Pfeiffer, H.P., Shoemaker, D. and Teukolsky, S.A., “Controlling the growth of constraints in hyperbolic evolution systems”, Phys. Rev. D, 69, 124025, 1–14, (2004). [External LinkDOI], [External LinkADS].
139 Lindblom, L., Tohline, J.E. and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in neutron stars”, Phys. Rev. D, 65, 084039, 1–15, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0109352].
140 Lindquist, R.W., “Initial-Value Problem on Einstein-Rosen Manifolds”, J. Math. Phys., 4, 938–950, (1963). [External LinkDOI], [External LinkADS].
141 Liu, Y.T., Shapiro, S.L., Etienne, Z.B. and Taniguchi, K., “General relativistic simulations of magnetized binary neutron star mergers”, Phys. Rev. D, 78, 024012, 1–20, (2008). [External LinkDOI], [External LinkADS].
142 Lockitch, K.H., Friedman, J.L. and Andersson, N., “Rotational modes of relativistic stars: Numerical results”, Phys. Rev. D, 68, 124010, 1–23, (2003). [External LinkDOI], [External LinkADS].
143 Lovelace, G., Owen, R., Pfeiffer, H.P. and Chu, T., “Binary-black-hole initial data with nearly extremal spins”, Phys. Rev. D, 78, 084017, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.4192].
144 Løvgren, A.E., Maday, Y. and Rønquist, E.M., “The Reduced Basis Element Method for Fluid Flows”, in Calgaro, C., Coulombel, J.-F. and Goudon, T., eds., Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics, pp. 129–154, (Birkhäuser, Basel; Boston, 2007).
145 Martí, J.M. and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity, 6, lrr-2003-7, (2003). URL (accessed 20 February 2007):
http://www.livingreviews.org/lrr-2003-7.
146 Mathews, J., “Gravitational multipole radiation”, J. Soc. Ind. Appl. Math., 10, 768–780, (1962). [External LinkDOI].
147 Matzner, R.A., Huq, M.F. and Shoemaker, D.M., “Initial value problem and coordinates for multiple black hole systems.”, Phys. Rev. D, 59, 024015, 1–6, (1998). [External LinkDOI], [External LinkADS].
148 May, M.M. and White, R.H., “Hydrodynamic Calculations of General-Relativistic Collapse”, Phys. Rev., 141, 1232–1241, (1966). [External LinkDOI], [External LinkADS].
149 Meinardus, G., Approximation of Functions: Theory and Numerical Methods, Springer Tracts in Natural Philosophy,  13, (Springer, Berlin; New York, 1967).
150 Misner, C.W., “The Method of Images in Geometrostatics”, Ann. Phys. (N.Y.), 24, 102–117, (1963). [External LinkDOI], [External LinkADS].
151 Moore, S., Healy, D., Rockmore, D. and Kostelec, P., “Fast Spherical Harmonic Transforms: SpharmonicKit”, project homepage, Dartmouth College. URL (accessed 19 January 2007):
External Linkhttp://www.cs.dartmouth.edu/~geelong/sphere/.
152 Nakamura, T., Kojima, Y. and Oohara, K., “A method of determining apparent horizons in three-dimensional numerical relativity”, Phys. Lett. A, 106, 235–238, (1984). [External LinkDOI], [External LinkADS].
153 Nakamura, T. and Sato, H., “General Relativistic Collapse of Rotating Supermassive Stars”, Prog. Theor. Phys., 66, 2038–2051, (1981). [External LinkDOI], [External LinkADS].
154 Nakamura, T. and Sato, H., “General Relativistic Collapse of Non-Rotating, Axisymmetric Stars”, Prog. Theor. Phys., 67, 1396–1405, (1982). [External LinkDOI], [External LinkADS].
155 Novak, J., “Neutron star transition to a strong-scalar-field state in tensor-scalar gravity”, Phys. Rev. D, 58, 064019, (1998). [External LinkDOI], [External LinkADS].
156 Novak, J., “Spherical neutron star collapse toward a black hole in a tensor-scalar theory of gravity”, Phys. Rev. D, 57, 4789–4801, (1998). [External LinkDOI], [External LinkADS].
157 Novak, J. and Bonazzola, S., “Absorbing boundary conditions for simulation of gravitational waves with spectral methods in spherical coordinates”, J. Comput. Phys., 197, 186–196, (2004). [External LinkDOI], [External LinkADS].
158 Novak, J. and Ibáñez, J.M., “Gravitational Waves from the Collapse and Bounce of a Stellar Core in Tensor-Scalar Gravity”, Astrophys. J., 533, 392–405, (2000). [External LinkDOI], [External LinkADS].
159 Novak, J. and Marcq, E., “The gyromagnetic ratio of rapidly rotating compact stars in general relativity”, Class. Quantum Grav., 20, 3051–3060, (2003). [External LinkDOI], [External LinkADS].
160 Nozawa, T., Stergioulas, N., Gourgoulhon, E. and Eriguchi, Y., “Construction of highly accurate models of rotating neutron stars - comparison of three different numerical schemes”, Astron. Astrophys. Suppl., 132, 431–454, (1998). [External LinkDOI], [External LinkADS].
161 Oechslin, R. and Janka, H.-T., “Gravitational Waves from Relativistic Neutron-Star Mergers with Microphysical Equations of State”, Phys. Rev. Lett., 99, 121102, (2007). [External LinkDOI], [External LinkADS].
162 Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459, (1939). [External LinkDOI], [External LinkADS].
163 Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Hawke, I., Zink, B. and Schnetter, E., “3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State”, Phys. Rev. Lett., 98, 261101, (2007). [External LinkDOI], [External LinkADS].
164 Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Zink, B., Hawke, I. and Schnetter, E., “Rotating collapse of stellar iron cores in general relativity”, Class. Quantum Grav., 24, S139–S154, (2007). [External LinkDOI], [External LinkADS].
165 Pan, Y. et al., “A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case”, Phys. Rev. D, 77, 024014, (2008). [External LinkDOI], [External LinkarXiv:0704.1964].
166 Patera, A.T., “A spectral element method for fluid dynamics: Laminar flow in a channel expansion”, J. Comput. Phys., 54, 468–488, (1984). [External LinkDOI], [External LinkADS].
167 Pfeiffer, H.P., Initial value problem for black hole evolution, Ph.D. Thesis, (Cornell University, Ithaca, N.Y., 2003). [External Linkgr-qc/0510016].
168 Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G. and Scheel, M.A., “Reducing orbital eccentricity in binary black hole simulations”, Class. Quantum Grav., 24, S59–S81, (2007). [External LinkDOI], [External LinkADS].
169 Pfeiffer, H.P., Cook, G.B. and Teukolsky, S.A., “Comparing initial-data sets for binary black holes”, Phys. Rev. D, 66, 024047, 1–17, (2002). [External LinkDOI], [External LinkADS].
170 Pfeiffer, H.P., Kidder, L.E., Scheel, M.A. and Shoemaker, D.M., “Initial value problem for Einstein’s equations with superposed gravitational waves”, Phys. Rev. D, 71, 024020, 1–9, (2005). [External LinkDOI], [External LinkADS].
171 Pfeiffer, H.P., Kidder, L.E., Scheel, M.A. and Teukolsky, S.A., “A multidomain spectral method for solving elliptic equations”, Comput. Phys. Commun., 152, 253–273, (2003). [External LinkDOI], [External LinkADS].
172 Pfeiffer, H.P., Teukolsky, S.A. and Cook, G.B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0006084].
173 Pollney, D. et al., “Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations”, Phys. Rev. D, 76, 124002, (2007). [External LinkDOI], [External LinkarXiv:0707.2559].
174 Postnov, K.A. and Yungelson, L.R., “The Evolution of Compact Binary Star Systems”, Living Rev. Relativity, 9, lrr-2006-6, (2006). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2006-6.
175 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External LinkADS].
176 Pretorius, F., “Numerical relativity using a generalized harmonic decomposition”, Class. Quantum Grav., 22, 425–451, (2005). [External LinkDOI], [External LinkADS].
177 Prix, R., Novak, J. and Comer, G.L., “Relativistic numerical models for stationary superfluid neutron stars”, Phys. Rev. D, 71, 043005, 1–18, (2005). [External LinkDOI], [External LinkADS].
178 Quarteroni, A., Sacco, R. and Saleri, F., Méthodes Numériques: Algorithmes, analyse et applications, (Springer Italia, Milano, 2007).
179 Rinne, O., “Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations”, Class. Quantum Grav., 23, 6275–6300, (2006). [External LinkDOI], [External LinkADS].
180 Rinne, O., Lindblom, L. and Scheel, M.A., “Testing outer boundary treatments for the Einstein equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [External LinkDOI], [External LinkADS].
181 Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [External LinkDOI], [External LinkADS].
182 Saijo, M. and Gourgoulhon, E., “Viscosity driven instability in rotating relativistic stars”, Phys. Rev. D, 74, 084006, 1–13, (2006). [External LinkDOI], [External LinkADS].
183 Salgado, M., Bonazzola, S., Gourgoulhon, E. and Haensel, P., “High precision rotating neutron star models I. Analysis of neutron star properties”, Astron. Astrophys., 291, 155–170, (1994). [External LinkADS].
184 Salgado, M., Bonazzola, S., Gourgoulhon, E. and Haensel, P., “High precision rotating neutron star models. II. Large sample of neutron star properties”, Astron. Astrophys. Suppl., 108, 455–459, (1994). [External LinkADS].
185 Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P., “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev. D, 79, 024003, (2009). [External LinkDOI], [External LinkarXiv:0810.1767].
186 Scheel, M.A., Erickcek, A.L., Burko, L.M., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., “3D simulations of linearized scalar fields in Kerr spacetime”, Phys. Rev. D, 69, 104006, 1–11, (2004). [External LinkDOI], [External LinkADS].
187 Scheel, M.A., Kidder, L.E., Lindblom, L., Pfeiffer, H.P. and Teukolsky, S.A., “Toward stable 3D numerical evolutions of black-hole spacetimes”, Phys. Rev. D, 66, 124005, 1–4, (2002). [External LinkDOI], [External LinkADS].
188 Scheel, M.A., Pfeiffer, H.P., Lindblom, L., Kidder, L.E., Rinne, O. and Teukolsky, S.A., “Solving Einstein’s equations with dual coordinate frames”, Phys. Rev. D, 74, 104006, 1–13, (2006). [External LinkDOI], [External LinkADS].
189 Shen, J., Tachim Medjo, T. and Wang, S., “On a Wind-Driven, Double-Gyre, Quasi-Geostrophic Ocean Model: Numerical Simulations and Structural Analysis”, J. Comput. Phys., 155, 387–409, (1999). [External LinkDOI], [External LinkADS].
190 Shibata, M., “Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity – Criteria for Prompt Collapse to Black Holes –”, Prog. Theor. Phys., 104, 325–358, (2000). [External LinkDOI], [External LinkADS].
191 Shibata, M., “Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes”, Phys. Rev. D, 67, 024033, 1–24, (2003). [External LinkDOI], [External LinkADS].
192 Shibata, M., “Constraining Nuclear Equations of State Using Gravitational Waves from Hypermassive Neutron Stars”, Phys. Rev. Lett., 94, 201101, (2005). [External LinkDOI], [External LinkADS].
193 Shibata, M., Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity”, Phys. Rev. D, 74, 104026, 1–28, (2006). [External LinkDOI], [External LinkADS].
194 Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [External LinkDOI], [External LinkADS].
195 Shibata, M. and Sekiguchi, Y., “Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024, 1–16, (2004). [External LinkDOI], [External LinkADS].
196 Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars of unequal mass in full general relativity”, Phys. Rev. D, 68, 084020, (2003). [External LinkDOI], [External LinkADS].
197 Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries: nonspinning black hole case”, Phys. Rev. D, 74, 121503(R), (2006). [External LinkDOI], [External LinkADS].
198 Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries in full general relativity”, Class. Quantum Grav., 24, S125–S137, (2007). [External LinkDOI].
199 Shiromizu, T. and Shibata, M., “Black holes in the brane world: Time symmetric initial data”, Phys. Rev. D, 62, 127502, 1–4, (2000). [External LinkDOI], [External LinkADS], [External Linkhep-th/0007203].
200 Shu, C.W., “A survey of strong stability preserving high order time discretizations”, in Estep, D. and Tavener, S., eds., Collected Lectures on the Preservation of Stability under Discretization, pp. 51–65, (SIAM, Philadelphia, 2002). [External LinkGoogle Books].
201 Sommerfeld, A., Partial Differential Equations in Physics, (Academic Press, New York, 1949). [External LinkGoogle Books].
202 Sorkin, E., Kol, B. and Piran, T., “Caged black holes: Black holes in compactified spacetimes. II. 5D numerical implementation”, Phys. Rev. D, 69, 064032, 1–23, (2004). [External LinkDOI], [External LinkADS].
203 Stark, R.F. and Piran, T., “Gravitational-Wave Emission from Rotating Gravitational Collapse”, Phys. Rev. Lett., 55, 891–894, (1985). [External LinkDOI], [External LinkADS].
204 Stephens, B.C., Duez, M.D., Liu, Y.T., Shapiro, S.L. and Shibata, M., “Collapse and black hole formation in magnetized, differentially rotating neutron stars”, Class. Quantum Grav., 24, S207–S219, (2007). [External LinkDOI], [External LinkADS].
205 Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 6, lrr-2003-3, (2003). URL (accessed 10 June 2008):
http://www.livingreviews.org/lrr-2003-3.
206 Stergioulas, N. and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys. Rev. Lett., 86, 1148–1151, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007086].
207 Stewart, J.M., “The Cauchy problem and the initial boundary value problem in numerical relativity”, Class. Quantum Grav., 15, 2865–2889, (1998). [External LinkDOI], [External LinkADS].
208 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Black hole-neutron star binaries in general relativity: Effects of neutron star spin”, Phys. Rev. D, 72, 044008, (2005). [External LinkDOI], [External LinkADS].
209 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium sequences of black-hole–neutron-star binaries in general relativity”, Phys. Rev. D, 74, 041502(R), (2006). [External LinkDOI], [External LinkADS].
210 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium black hole-neutron star binaries in general relativity”, Phys. Rev. D, 75, 084005, (2007). [External LinkDOI], [External LinkADS].
211 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Relativistic black hole-neutron star binaries in quasiequilibrium: effects of the black hole excision boundary condition”, Phys. Rev. D, 77, 044003, (2008). [External LinkDOI], [External LinkADS].
212 Taniguchi, K. and Gourgoulhon, E., “Equilibrium sequences of synchronized and irrotational binary systems composed of different mass stars in Newtonian gravity”, Phys. Rev. D, 65, 044027, 1–16, (2002). [External LinkDOI], [External LinkADS].
213 Taniguchi, K. and Gourgoulhon, E., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. III. Identical and different mass stars with γ = 2”, Phys. Rev. D, 66, 104019, (2002). [External LinkDOI], [External LinkADS].
214 Taniguchi, K. and Gourgoulhon, E., “Various features of quasiequilibrium sequences of binary neutron stars in general relativity”, Phys. Rev. D, 68, 124025, (2003). [External LinkDOI], [External LinkADS].
215 Taniguchi, K., Gourgoulhon, E. and Bonazzola, S., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. II. Newtonian limits”, Phys. Rev. D, 64, 064012, 1–19, (2001). [External LinkDOI], [External LinkADS].
216 Temperton, C., “On scalar and vector transform methods for global spectral models”, Mon. Weather Rev., 119, 1303–1307, (1991).
217 “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL (accessed 15 April 2008):
External Linkhttp://www.cactuscode.org/.
218 Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980). [External LinkDOI], [External LinkADS].
219 Tichy, W., “Black hole evolution with the BSSN system by pseudospectral methods”, Phys. Rev. D, 74, 084005, 1–10, (2006). [External LinkDOI], [External LinkADS].
220 Tichy, W. and Marronetti, P., “Binary black hole mergers: Large kicks for generic spin orientations”, Phys. Rev. D, 76, 061502, 1–5, (2007). [External LinkDOI], [External LinkADS].
221 Tiglio, M., Lehner, L. and Neilsen, D., “3D simulations of Einstein’s equations: Symmetric hyperbolicity, live gauges, and dynamic control of the constraints”, Phys. Rev. D, 70, 104018, 1–22, (2004). [External LinkDOI], [External LinkADS].
222 Uryū, K. and Eriguchi, Y., “New numerical method for constructing quasiequilibrium sequences of irrotational binary neutron stars in general relativity.”, Phys. Rev. D, 61, 124023, 1–19, (2000). [External LinkDOI], [External LinkADS].
223 Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Binary Neutron Stars: Equilibrium Models beyond Spatial Conformal Flatness”, Phys. Rev. Lett., 97, 171101, (2006). [External LinkDOI], [External LinkADS].
224 Villain, L. and Bonazzola, S., “Inertial modes in slowly rotating stars: An evolutionary description”, Phys. Rev. D, 66, 123001, 1–25, (2002). [External LinkDOI], [External LinkADS].
225 Villain, L., Bonazzola, S. and Haensel, P., “Inertial modes in stratified rotating neutron stars: An evolutionary description”, Phys. Rev. D, 71, 083001, 1–26, (2005). [External LinkDOI], [External LinkADS].
226 Villain, L., Pons, J.A., Cerdá-Durán, P. and Gourgoulhon, E., “Evolutionary sequences of rotating protoneutron stars”, Astron. Astrophys., 418, 283–294, (2004). [External LinkDOI], [External LinkADS].
227 Wilson, J.R., Mathews, G.J. and Marronetti, P., “Relativistic numerical model for close neutron-star binaries”, Phys. Rev. D, 54, 1317–1331, (1996). [External LinkDOI], [External LinkADS].
228 Winicour, J., “Characteristic Evolution and Matching”, Living Rev. Relativity, 8, lrr-2005-10, (2005). URL (accessed 19 January 2007):
http://www.livingreviews.org/lrr-2005-10.
229 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [External LinkADS], [External LinkGoogle Books].
230 Yoshino, H., Shiromizu, T. and Shibata, M., “Close-slow analysis for head-on collision of two black holes in higher dimensions: Bowen-York initial data”, Phys. Rev. D, 74, 124022, 1–15, (2006). [External LinkDOI], [External LinkADS].
231 Zdunik, J.L., Bejger, M., Haensel, P. and Gourgoulhon, E., “Phase transitions in rotating neutron stars cores: back bending, stability, corequakes, and pulsar timing”, Astron. Astrophys., 450, 747–758, (2006). [External LinkDOI], [External LinkADS].
232 Zdunik, J.L., Bejger, M., Haensel, P. and Gourgoulhon, E., “Energy release associated with a first-order phase transition in a rotating neutron star core”, Astron. Astrophys., 465, 533–539, (2007). [External LinkDOI], [External LinkADS].
233 Zdunik, J.L., Bejger, M., Haensel, P. and Gourgoulhon, E., “Strong first-order phase transition in a rotation neutron star core and the associated energy release”, Astron. Astrophys., 479, 515–522, (2008). [External LinkDOI], [External LinkADS].
234 Zdunik, J.L. and Gourgoulhon, E., “Small strange stars and marginally stable orbit in Newtonian theory”, Phys. Rev. D, 63, 087501, 1–4, (2001). [External LinkDOI], [External LinkADS].
235 Zdunik, J.L., Haensel, P., Gondek-Rosińska, D. and Gourgoulhon, E., “Innermost stable circular orbits around strange stars and kHz QPOs in low-mass X-ray binaries”, Astron. Astrophys., 356, 612–618, (2000). [External LinkADS].
236 Zdunik, J.L., Haensel, P. and Gourgoulhon, E., “The crust of rotating strange quark stars”, Astron. Astrophys., 372, 535–543, (2001). [External LinkDOI], [External LinkADS].
237 Zdunik, J.L., Haensel, P. and Gourgoulhon, E., “Recycling strange stars to millisecond periods”, Astron. Astrophys., 381, 933–940, (2002). [External LinkDOI], [External LinkADS].
238 Zdunik, J.L., Haensel, P., Gourgoulhon, E. and Bejger, M., “Hyperon softening of the EOS of dense matter and the spin evolution of isolated neutron stars”, Astron. Astrophys., 416, 1013–1022, (2004). [External LinkDOI], [External LinkADS].
239 Zerilli, F.J., “Tensor Harmonics in Canonical Form for Gravitational Radiation and Other Applications”, J. Math. Phys., 11, 2203–2208, (1970). [External LinkDOI], [External LinkADS].