References

1 Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of First LIGO Science Data for Stochastic Gravitational Waves”, Phys. Rev. D, 69, 122004, (2004). [External Linkgr-qc/0312088].
2 Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of LIGO data for gravitational waves from binary neutron stars”, Phys. Rev. D, 69, 122001, (2004). [External Linkgr-qc/0308069].
3 Abbott, B. et al. (LIGO Scientific Collaboration), “Detector description and performance for the first coincidence observations between LIGO and GEO”, Nucl. Instrum. Methods A, 517, 154–179, (2004). [External Linkgr-qc/0308043].
4 Abbott, B. et al. (LIGO Scientific Collaboration), “First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform”, Phys. Rev. D, 72, 102004, (2005). [External LinkDOI], [External Linkgr-qc/0508065].
5 Abbott, B. et al. (LIGO Scientific Collaboration), “Limits on gravitational wave emission from selected pulsars using LIGO data”, Phys. Rev. Lett., 94, 181103, (2005). [External LinkDOI], [External Linkgr-qc/0410007].
6 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from galactic and extra- galactic binary neutron stars”, Phys. Rev. D, 72, 082001, (2005). [External Linkgr-qc/0505041].
7 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from primordial black hole binary coalescences in the galactic halo”, Phys. Rev. D, 72, 082002, (2005). [External Linkgr-qc/0505042].
8 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from binary black hole inspirals in LIGO data”, Phys. Rev. D, 73, 062001, (2006). [External Linkgr-qc/0509129].
9 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in LIGO data from the fourth science run”, Class. Quantum Grav., 24, 5343–5370, (2007). [External LinkDOI], [External LinkarXiv:0704.0943].
10 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave emission from 78 radio pulsars”, Phys. Rev. D, 76, 042001, (2007). [External LinkDOI], [External Linkgr-qc/0702039].
11 Abbott, B. et al. (LIGO Scientific Collaboration), “All-sky search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 77, 022001, (2008). [External LinkDOI], [External LinkarXiv:0708.3818].
12 Abbott, B. et al. (LIGO Scientific Collaboration), “Beating the spin-down limit on gravitational wave emission from the Crab pulsar”, Astrophys. J. Lett., 683, L45–L49, (2008). [External LinkarXiv:0805.4758].
13 Abbott, B. et al. (LIGO Scientific Collaboration), “The Einstein(AT)Home search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 79, 022001, (2008). [External LinkarXiv:0804.1747].
14 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs”, Phys. Rev. D, 77, 062004, (2008). [External LinkarXiv:0709.0766].
15 Abbott, B. et al. (LIGO Scientific Collaboration), “Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals”, Phys. Rev. D, 78, 042002, (2008). [External LinkDOI], [External LinkarXiv:0712.2050].
16 Abbott, B. et al. (LIGO Scientific Collaboration), and Hurley, K., “Implications for the Origin of GRB 070201 from LIGO Observations”, Astrophys. J., 681, 1419–1430, (2008). [External LinkarXiv:0711.1163].
17 Abbott, B. et al. (LIGO Scientific Collaboration & ALLEGRO Collaboration), “First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds”, Phys. Rev. D, 76, 022001, 1–17, (2007). [External Linkgr-qc/0703068].
18 Abramovici, A., Althouse, W.E., Drever, R.W.P., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D.H., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E., “LIGO: The Laser Interferometer-Gravitational Wave Observatory”, Science, 256, 325–333, (1992). [External LinkDOI].
19 Acernese, F. et al. (Virgo Collaboration), “The Virgo status”, Class. Quantum Grav., 23, S635–S642, (2006). [External LinkDOI].
20 Acernese, F. et al. (Virgo Collaboration), “Status of Virgo detector”, Class. Quantum Grav., 24, S381–S388, (2007). [External LinkDOI].
21 “ACIGA: Australian Consortium for Interferometric Gravitational Astronomy”, project homepage, Australian National University. URL (cited on 08 November 2007):
External Linkhttp://www.anu.edu.au/Physics/ACIGA/.
22 “Advanced LIGO”, project homepage, LIGO Laboratory. URL (cited on 08 November 2007):
External Linkhttp://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml.
23 Aguiar, O.D., Andrade, L.A., Barroso, J.J., Bortoli, F., Carneiro, L.A., Castro, P.J., Costa, C.A., Costa, K.M.F., de Araujo, J.C.N., de Lucena, A.U., de Paula, W., de Rey Neto, E.C., de Souza, S.T., Fauth, A.C., Frajuca, C., Frossati, G., Furtado, S.R., Magalháes, N.S., Marinho Jr, R.M., Matos, E.S., Melo, J.L., Miranda, O.D., Oliveira Jr, N.F., Paleo, B.W., Remy, M., Ribeiro, K.L., Stellati, C., Velloso Jr, W.F., and Weber, J., “The Brazilian gravitational wave detector Mario Schenberg: progress and plans”, Class. Quantum Grav., 22, S209–S214, (2005). [External LinkDOI].
24 “AIGRC”, project homepage, University of Western Australia. URL (cited on 08 November 2007):
External Linkhttp://www.gravity.uwa.edu.au/.
25 Ajith, P. et al., “Phenomenological template family for black-hole coalescence waveforms”, Class. Quantum Grav., 24, S689–S700, (2007). [External LinkDOI], [External LinkarXiv:0704.3764].
26 Akutsu, T., Kawamura, S., Nishizawa, A., Arai, K., Yamamoto, K., Tatsumi, D., Nagano, S., Nishida, E., Chiba, T., Takahashi, R., Sugiyama, N., Fukushima, M., Yamazaki, T., and Fujimoto, M., “Search for a stochastic background of 100-MHz gravitational waves with laser interferometers”, Phys. Rev. Lett., 101, 101101, (2008). [External LinkarXiv:0803.4094].
27 Alcock, C., Allsman, R.A., Alves, D., Axelrod, T.S., Becker, A.C., Bennett, D.P., Cook, K.H., Freeman, K.C., Griest, K., Guern, J., Lehner, M.J., Marshall, S.L., Peterson, B.A., Pratt, M.R., Quinn, P.J., Rodgers, A.W., Stubbs, C.W., Sutherland, W., and Welch, D.L. (The MACHO Collaboration), “The MACHO Project: LMC Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo”, Astrophys. J., 486, 697–726, (1997). [External Linkastro-ph/9606165].
28 “ALLEGRO Bar Detector”, project homepage, Louisiana State University. URL (cited on 08 November 2007):
External Linkhttp://gravity.phys.lsu.edu/.
29 Allen, B., “Stochastic gravity-wave background in inflationary-universe models”, Phys. Rev. D, 37, 2078–2085, (1988). [External LinkDOI].
30 Allen, B., “The Stochastic Gravity-Wave Background: Sources and Detection”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 373–418, (Cambridge University Press, Cambridge, 1997).
31 Allen, B., “χ2 time-frequency discriminator for gravitational wave detection”, Phys. Rev. D, 71, 062001, (2005). [External LinkDOI], [External Linkgr-qc/0405045].
32 Allen, Z.A. et al. (International Gravitational Event Collaboration), “First Search for Gravitational Wave Bursts with a Network of Detectors”, Phys. Rev. Lett., 85, 5046–5050, (2000). [External Linkastro-ph/0007308].
33 Amaro-Seoane, P., “Gravitational waves from coalescing massive black holes in young dense clusters”, in Merkowitz, S.M., and Livas, J.C., eds., Laser Interferometer Space Antenna: Sixth International LISA Symposium, Greenbelt, Maryland, U.S.A., 19 – 23 June 2006, AIP Conference Proceedings, vol. 873, pp. 250–256, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External Linkastro-ph/0610479].
34 Amaro-Seoane, P., and Freitag, M., “Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy”, Astrophys. J., 653, L53–L56, (2006). [External Linkastro-ph/0610478].
35 Amaro-Seoane, P., Gair, J.R., Freitag, M., Coleman, M.M., Mandel, I., Cutler, C.J., and Babak, S., “Intermediate and Extreme Mass-Ratio Inspirals – Astrophysics, Science Applications and Detection using LISA”, Class. Quantum Grav., 24, R113–R170, (2007). [External Linkastro-ph/0703495].
36 Anderson, W.G., Brady, P.R., Creighton, J.D.E., and Flanagan, É.É., “A power filter for the detection of burst sources of gravitational radiation in interferometric detectors”, Int. J. Mod. Phys. D, 9, 303–307, (2000). [External Linkgr-qc/0001044].
37 Andersson, N., “A new class of unstable modes of rotating relativistic stars”, Astrophys. J., 502, 708–713, (1998). [External Linkgr-qc/9706075].
38 Andersson, N., and Comer, G.L., “Relativistic Fluid Dynamics: Physics for Many Different Scales”, Living Rev. Relativity, 10, lrr-2007-1, (2007). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2007-1.
39 Andersson, N., and Kokkotas, K.D., “Towards gravitational wave asteroseismology”, Mon. Not. R. Astron. Soc., 299, 1059–1068, (1998). [External Linkgr-qc/9711088].
40 Andersson, N., Kokkotas, K.D., and Schutz, B.F., “Gravitational radiation limit on the spin of young neutron stars”, Astrophys. J., 510, 846–853, (1999). [External Linkastro-ph/9805225].
41 Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling binaries”, Phys. Rev. D, 52, 605–620, (1995). [External LinkDOI].
42 Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2006-1.
43 Arnaud, N., Barsuglia, M., Bizouard, M.-A., Brisson, V., Cavalier, F., Davier, M., Hello, P., Kreckelbergh, S., and Porter, E.K., “Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors”, Phys. Rev. D, 68, 102001, (2003). [External Linkgr-qc/0307100].
44 Arnaud, N., Barsuglia, M., Bizouard, M.-A., Canitrot, P., Cavalier, F., Davier, M., Hello, P., and Pradier, T., “Detection in coincidence of gravitational wave bursts with a network of interferometric detectors. I: Geometric acceptance and timing”, Phys. Rev. D, 65, 042004, (2002). [External LinkDOI], [External Linkgr-qc/0107081].
45 Arons, J., “Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe”, Astrophys. J., 589, 871–892, (2003). [External Linkastro-ph/0208444].
46 Arun, K.G., “Parameter estimation of coalescing supermassive black hole binaries with LISA”, Phys. Rev. D, 74, 024025, (2006). [External Linkgr-qc/0605021].
47 Arun, K.G., Iyer, B.R., Qusailah, M.S.S., and Sathyaprakash, B.S., “Probing the non-linear structure of general relativity with black hole mergers”, Phys. Rev. D, 74, 024006, (2006). [External LinkDOI], [External Linkgr-qc/0604067].
48 Arun, K.G., Iyer, B.R., Qusailah, M.S.S., and Sathyaprakash, B.S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43, (2006). [External Linkgr-qc/0604018].
49 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sinha, S., “Higher harmonics increase LISA’s mass reach for supermassive black holes”, Phys. Rev. D, 75, 124002, (2007). [External LinkDOI], [External LinkarXiv:0704.1086].
50 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., Sinha, S., and Van Den Broeck, C., “Higher signal harmonics, LISA’s angular resolution and dark energy”, Phys. Rev. D, 76, 104016, (2007). [External LinkDOI], [External LinkarXiv:0707.3920].
51 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008, 1–16, (2005). [External LinkDOI], [External Linkgr-qc/0411146].
52 Astone, P., Babusci, D., Baggio, L., Bassan, M., Blair, D.G., Bonaldi, M., Bonifazi, P., Busby, D., Carelli, P., Cerdonio, M., Coccia, E., Conti, L., Cosmelli, C., D’Antonio, S., Fafone, V., Falferi, P., Fortini, P., Frasca, S., Giordano, G., Hamilton, W.O., Heng, I.S., Ivanov, E.N., Johnson, W.W., Marini, A., Mauceli, E., McHugh, M.P., Mezzena, R., Minenkov, Y., Modena, I., Modestino, G., Moleti, A., Ortolan, A., Pallottino, G.V., Pizzella, G., Prodi, G.A., Quintieri, L., Rocchi, A., Rocco, E., Ronga, F., Salemi, F., Santostasi, G., Taffarello, L., Terenzi, R., Tobar, M.E., Torrioli, G., Vedovato, G., Vinante, A., Visco, M., Vitale, S., and Zendri, J.P. (International Gravitational Event Collaboration), “Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000”, Phys. Rev. D, 68, 022001, 1–33, (2003). [External Linkastro-ph/0302482].
53 Astone, P., Babusci, D., Bassan, M., Bonifazi, P., Coccia, E., D’Antonio, S., Fafone, V., Giordano, G., Marini, A., Minenkov, Y., Modena, I., Modestino, G., Moleti, A., Pallottino, G.V., Pizzella, G., Quintieri, L., Rocchi, A., Ronga, F., Terenzi, R., and Visco, M., “The next science run of the gravitational wave detector NAUTILUS”, Class. Quantum Grav., 19, 1911–1917, (2002). [External LinkDOI].
54 Astone, P., Bassan, M., Bonifazi, P., Carelli, P., Coccia, E., Fafone, V., Frasca, S., Minenkov, Y., Modena, I., Modestino, P., Moleti, A., Pallottino, G.V., Pizzella, G., Terenzi, R., and Visco, M., “Upper limit at 1.8 kHz for a gravitational-wave stochastic background with the ALTAIR resonant-mass detector”, Astron. Astrophys., 343, 19, (1999). [External LinkADS].
55 Astone, P., Lobo, A., and Schutz, B.F., “Coincidence experiments between interferometric and resonant bar detectors of gravitational waves”, Class. Quantum Grav., 11, 2093–2112, (1994). [External LinkDOI].
56 Astone, P. et al. (IGEC-2 Collaboration), “Results of the IGEC-2 search for gravitational wave bursts during 2005”, Phys. Rev. D, 76, 102001, (2007). [External LinkarXiv:0705.0688].
57 “ATNF Pulsar Catalogue”, web interface to database, Australia Telescope National Facility. URL (cited on 19 May 2008):
External Linkhttp://www.atnf.csiro.au/research/pulsar/psrcat/.
58 “AURIGA Bar Detector”, project homepage, Laboratori Nationali Legnaro. URL (cited on 08 November 2007):
External Linkhttp://www.auriga.lnl.infn.it/.
59 Babak, S., Fang, H., Gair, J.R., Glampedakis, K., and Hughes, S.A., “ ‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole”, Phys. Rev. D, 75, 024005, (2007). [External Linkgr-qc/0607007].
60 Babak, S., Hannam, M., Husa, S., and Schutz, B.F., “Resolving Super Massive Black Holes with LISA”, arXiv e-print, (2008). [External LinkarXiv:0806.1591].
61 Baggio, L., Bignotto, M., Bonaldi, M., Cerdonio, M., Conti, L., Falferi, P., Liguori, N., Marin, A., Mezzena, R., Ortolan, A., Poggi, A., Prodi, G.A., Salemi, F., Soranzo, G., Taffarello, L., Vedovato, G., Vinante, A., Vitale, S., and Zendri, J.P., “3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors”, Phys. Rev. Lett., 94, 241101, (2005). [External Linkgr-qc/0502101].
62 Baiotti, L., Giacomazzo, B., and Rezzolla, L., “Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole”, Phys. Rev. D, 78, 084033, (2008). [External LinkDOI], [External LinkarXiv:0804.0594].
63 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J., “Gravitational-wave extraction from an inspiraling configuration of merging black holes”, Phys. Rev. Lett., 96, 111102, (2006). [External LinkDOI], [External Linkgr-qc/0511103].
64 Baker, J.G., Centrella, J.M., Choi, D.-I., Koppitz, M., van Meter, J.R., and Miller, M.C., “Getting a kick out of numerical relativity”, Astrophys. J. Lett., 653, L93–L96, (2006). [External LinkDOI], [External Linkastro-ph/0603204].
65 Balasubramanian, R., and Dhurandhar, S.V., “Estimation of parameters of gravitational wave signals from coalescing binaries”, Phys. Rev. D, 57, 3408–3422, (1998). [External LinkDOI], [External Linkgr-qc/9708003].
66 Balasubramanian, R., Sathyaprakash, B.S., and Dhurandhar, S.V., “Estimation of parameters of gravitational waves from coalescing binaries”, Pramana, 45, L463–L470, (1995). [External Linkgr-qc/9508025].
67 Balasubramanian, R., Sathyaprakash, B.S., and Dhurandhar, S.V., “Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters”, Phys. Rev. D, 53, 3033–3055, (1996). [External Linkgr-qc/9508011].
68 Barack, L., and Cutler, C., “Confusion Noise from LISA Capture Sources”, Phys. Rev. D, 70, 122002, (2004). [External Linkgr-qc/0409010].
69 Barack, L., and Cutler, C., “LISA Capture Sources: Approximate Waveforms, Signal-to-Noise Ratios, and Parameter Estimation Accuracy”, Phys. Rev. D, 69, 082005, (2004). [External Linkgr-qc/0310125].
70 Barack, L., and Cutler, C., “Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003, (2007). [External Linkgr-qc/0612029].
71 Baskaran, D., and Grishchuk, L.P., “Components of the gravitational force in the field of a gravitational wave”, Class. Quantum Grav., 21, 4041–4061, (2004). [External LinkDOI], [External Linkgr-qc/0309058].
72 Bender, P.L., Brillet, A., Ciufolini, I., Cruise, A.M., Cutler, C., Danzmann, K., Fidecaro, F., Folkner, W.M., Hough, J., McNamara, P.W., Peterseim, M., Robertson, D., Rodrigues, M., Rüdiger, A., Sandford, M., Schäfer, G., Schilling, R., Schutz, B.F., Speake, C.C., Stebbins, R.T., Sumner, T.J., Touboul, P., Vinet, J.-Y., Vitale, S., Ward, H., and Winkler, W. (LISA Study Team), LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space. Pre-Phase A report. Second Edition, MPQ Reports, MPQ-233, (Max-Planck-Institut für Quantenoptik, Garching, 1998). Related online version (cited on 27 February 2009):
External Linkftp://ftp.ipp-garching.mpg.de/pub/grav/lisa/pdd.
73 Bender, P.L., Ciufolini, I., Danzmann, K., Folkner, W.M., Hough, J., Robertson, D., Rüdiger, A., Sandford, M., Schilling, R., Schutz, B.F., Stebbins, R., Sumner, T., Touboul, P., Vitale, S., Ward, H., Winkler, W., Cornelisse, J., Hechler, F., Jafry, Y., and Reinhard, R., LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. A Cornerstone Project in ESA’s long term space science programme “Horizon 2000 Plus”. Pre-Phase A Report, December 1995, MPQ Reports, MPQ-208, (Max-Planck-Institut für Quantenoptik, Garching, 1996). Related online version (cited on 26 February 2009):
External Linkftp://ftp.ipp-garching.mpg.de/pub/grav/lisa/ppa.ps.gz. Also see the Second Edition, MPQ-233.
74 Bennett, C., Hill, R.S., Hinshaw, G., Nolta, M.R., Odegard, N., Page, L., Spergel, D.N., Weiland, J.L., Wright, E.L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., and Wollack, E., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission”, Astrophys. J. Suppl. Ser., 148, 97, (2003). [External Linkastro-ph/0302208].
75 Berti, E., Buonanno, A., and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025, (2005). [External LinkDOI], [External Linkgr-qc/0411129].
76 Berti, E., Buonanno, A., and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954, (2005). [External Linkgr-qc/0504017].
77 Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S., and Brügmann, B., “Inspiral, merger and ringdown of unequal mass black hole binaries: A multipolar analysis”, Phys. Rev. D, 76, 064034, (2007). [External LinkDOI], [External Linkgr-qc/0703053].
78 Berti, E., Cardoso, V., and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030, (2006). [External Linkgr-qc/0512160].
79 Bildsten, L., “Gravitational radiation and rotation of accreting neutron stars”, Astrophys. J. Lett., 501, L89–L93, (1998). [External Linkastro-ph/9804325].
80 Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.-A., and Lasota, J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, pp. 33–66, (Cambridge University Press, Cambridge, 1997). [External Linkgr-qc/9607025].
81 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2006-4.
82 Blanchet, L., Damour, T., Esposito-Farese, G., and Iyer, B.R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101, (2004). [External LinkDOI], [External Linkgr-qc/0406012].
83 Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses”, Phys. Rev. D, 71, 124004, (2005). [External LinkDOI], [External Linkgr-qc/0503044].
84 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518, (1995). [External Linkgr-qc/9501027].
85 Blanchet, L., and Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807–2831, (1994). [External LinkDOI].
86 Blanchet, L., and Sathyaprakash, B.S., “Detecting the tail effect in gravitational wave experiments”, Phys. Rev. Lett., 74, 1067–1070, (1995). [External LinkDOI].
87 Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699–2721, (1993). [External LinkDOI].
88 Bonaldi, M., Cerdonio, M., Conti, L., Falferi, P., Leaci, P., Odorizzi, S., Prodi, G.A., Saraceni, M., Serra, E., and Zendri, J.P., “Principles of wide bandwidth acoustic detectors and the single-mass dual detector”, Phys. Rev. D, 74, 022003, (2006). [External Linkgr-qc/0605004].
89 Bose, S., Dhurandhar, S.V., and Pai, A., “Detection of gravitational waves using a network of detectors”, Pramana, 53, 1125–1136, (1999). [External Linkgr-qc/9906064].
90 Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook, G.B., and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [External LinkDOI], [External LinkarXiv:0710.0158].
91 Boyle, M., Lindblom, L., Pfeiffer, H., Scheel, M., and Kidder, L.E., “Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity”, Phys. Rev. D, 75, 024006, (2007). [External LinkDOI], [External Linkgr-qc/0609047].
92 Brady, P.R., Creighton, T., Cutler, C., and Schutz, B.F., “Searching for periodic sources with LIGO”, Phys. Rev. D, 57, 2101–2116, (1998). [External Linkgr-qc/9702050].
93 Bruce, A., and Romano, J.D., “Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities”, Phys. Rev. D, 59, 102001, (1999). [External LinkDOI], [External Linkgr-qc/9710117].
94 Brügmann, B., Gonzalez, J.A., Hannam, M., Husa, S., and Sperhake, U., “Exploring black hole superkicks”, Phys. Rev. D, 77, 124047, (2008). [External LinkDOI], [External LinkarXiv:0707.0135].
95 Brustein, R., Gasperini, M., Giovannini, M., and Veneziano, G., “Gravitational Radiation from String Cosmology”, in Lemonne, J., Van der Velde, C., and Verbeure, F., eds., International Europhysics Conference on High Energy Physics (HEP95), Brussels, Belgium, July 27 – August 2, 1995, pp. 408–409, (World Scientific, Singapore; River Edge, NJ, 1996). [External Linkhep-th/9510081].
96 Buonanno, A., “Gravitational waves”, in Bernardeau, F., Grojean, C., and Dalibard, J., eds., Particle Physics and Cosmology: The Fabric of Spacetime, Proceedings of the Les Houches Summer School, Session LXXXVI, 31 July – 25 August 2006, pp. 3–52, (Elsevier, Amsterdam; Oxford, 2007). [External LinkarXiv:0709.4682].
97 Buonanno, A., Chen, Y., and Vallisneri, M., “Detection template families for precessing binaries of spinning compact binaries: Adiabatic limit”, Phys. Rev. D, 67, 104025, (2003). [External Linkgr-qc/0211087]. Erratum-ibid. D74, 029904(E) (2006).
98 Buonanno, A., and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006, (1999). [External Linkgr-qc/9811091].
99 Buonanno, A., and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015, (2000). [External Linkgr-qc/0001013].
100 Buonanno, A., Kidder, L.E., and Lehner, L., “Estimating the final spin of a binary black hole coalescence”, Phys. Rev. D, 77, 026004, (2008). [External LinkDOI], [External LinkarXiv:0709.3839].
101 Buonanno, A., Maggiore, M., and Ungarelli, C., “Spectrum of relic gravitational waves in string cosmology”, Phys. Rev. D, 55, 3330–3336, (1997). [External Linkgr-qc/9605072].
102 Buonanno, A. et al., “Toward faithful templates for non-spinning binary black holes using the effective-one-body approach”, Phys. Rev. D, 76, 104049, (2007). [External LinkDOI], [External LinkarXiv:0706.3732].
103 Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D.R., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533, (2003). [External Linkastro-ph/0312071].
104 Caldwell, R.R., Battye, R.A., and Shellard, E.P.S., “Relic Gravitational Waves from Cosmic Strings: Updated Constraints and Opportunities for Detection”, Phys. Rev. D, 54, 7146–7152, (1996). [External Linkastro-ph/9607130].
105 Campanelli, M., Lousto, C.O., Marronetti, P., and Zlochower, Y., “Accurate evolutions of orbiting black-hole binaries without excision”, Phys. Rev. Lett., 96, 111101, (2006). [External LinkDOI], [External Linkgr-qc/0511048].
106 Campanelli, M., Lousto, C.O., Zlochower, Y., and Merritt, D., “Large Merger Recoils and Spin Flips From Generic Black-Hole Binaries”, Astrophys. J., 659, L5–L8, (2007). [External Linkgr-qc/0701164].
107 Capon, R.A., Radiation Reaction Near Black Holes, Ph.D. Thesis, (University of Wales, Cardiff, 1998). Related online version (cited on 26 February 2009):
External Linkhttp://www.aei.mpg.de/pdf/doctoral/RCapon_98.pdf.
108 Carilli, C., and Rawlings, S., eds., Science with the Square Kilometre Array, New Astron. Rev., vol. 48, (Elsevier, Amsterdam, 2004). Related online version (cited on 17 December 2008):
External Linkhttp://www.skads-eu.org/p/SKA_SciBook.php.
109 Caroll, S.M., “The Cosmological Constant”, Living Rev. Relativity, 4, lrr-2001-1, (2001). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2001-1.
110 Caron, B. et al. (The VIRGO Collaboration), “The Virgo interferometer”, Class. Quantum Grav., 14, 1461–1469, (1997).
111 Caves, C.M., Thorne, K.S., Drever, R.W.P., Sandberg, V.D., and Zimmerman, M., “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle”, Rev. Mod. Phys., 52, 341–392, (1980). [External LinkDOI].
112 Chandrasekhar, S., “Solutions of Two Problems in the Theory of Gravitational Radiation”, Phys. Rev. Lett., 24, 611–615, (1970). [External LinkDOI].
113 Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, vol. 69, (Oxford University Press, Oxford; New York, 1992).
114 Chatterji, S., Lazzarini, A., Stein, L., Sutton, P.J., Searle, A., and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005, (2006). [External LinkDOI], [External Linkgr-qc/0605002].
115 Chernoff, D.F., and Finn, L.S., “Gravitational radiation, inspiraling binaries, and cosmology”, Astrophys. J. Lett., 411, L5–L8, (1993). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9304020].
116 Christensen, N., Dupuis, R.J., Woan, G., and Meyer, R., “A Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data”, Phys. Rev. D, 70, 022001, (2004). [External LinkDOI], [External Linkgr-qc/0402038].
117 Christensen, N., and Meyer, R., “Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis”, Phys. Rev. D, 58, 082001, (1998). [External LinkDOI].
118 Coccia, E., Fafone, V., and Frossati, G., “On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp. 463–478, (World Scientific, Singapore; River Edge, NJ, 1995).
119 Cokelaer, T., “Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals”, Phys. Rev. D, 76, 102004, (2007). [External LinkDOI], [External LinkarXiv:0706.4437].
120 Compton, K.A., and Schutz, B.F., “Bar-Interferometer Observing”, in Ciufolini, I., and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina, Italy, 19 – 23 March, 1996, Edoardo Amaldi Foundation, vol. 2, pp. 173–185, (World Scientific, Singapore; River Edge, NJ, 1997).
121 Cornish, N.J., and Littenberg, T.B., “Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy”, Phys. Rev. D, 76, 083006, (2007). [External LinkDOI], [External LinkarXiv:0704.1808].
122 Cornish, N.J., and Porter, E.K., “MCMC Exploration of Supermassive Black Hole Binary Inspirals”, Class. Quantum Grav., 23, S761–S768, (2006). [External Linkgr-qc/0605085].
123 Cornish, N.J., and Porter, E.K., “Catching supermassive black hole binaries without a net”, Phys. Rev. D, 75, 021301, (2007). [External LinkDOI], [External Linkgr-qc/0605135].
124 Cornish, N.J., and Porter, E.K., “Searching for massive black hole binaries in the first Mock LISA Data Challenge”, Class. Quantum Grav., 24, S501–S512, (2007). [External LinkDOI], [External Linkgr-qc/0701167].
125 Creighton, J.D.E., “Data analysis strategies for the detection of gravitational waves in non-Gaussian noise”, Phys. Rev. D, 60, 021101, (1999). [External Linkgr-qc/9901075].
126 Crowder, J., and Cornish, N.J., “Extracting galactic binary signals from the first round of Mock LISA Data Challenges”, Class. Quantum Grav., 24, S575–S586, (2007). [External LinkDOI], [External LinkarXiv:0704.2917].
127 Cruise, A.M., and Ingley, R.M.J., “A prototype gravitational wave detector for 100 MHz”, Class. Quantum Grav., 23, 6185–6193, (2006). [External LinkDOI].
128 Cutler, C., “Gravitational waves from neutron stars with large toroidal B fields”, Phys. Rev. D, 66, 084025, (2002). [External Linkgr-qc/0206051].
129 Cutler, C., and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697, (1994). [External LinkDOI], [External Linkgr-qc/9402014].
130 Cutler, C., and Vallisneri, M., “LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms”, Phys. Rev. D, 76, 104018, (2007). [External LinkDOI], [External LinkarXiv:0707.2982].
131 Daisuke, T., Ryutaro, T., Koji, A., Noriyasu, N., Kazuhiro, A., Toshitaka, Y., Mitsuhiro, F., Masa-Katsu, F., Akiteru, T., Alessandro, B., Virginio, S., Riccardo, D., Szabolcs, M., Masaki, A., Kimio, T., Tomomi, A., Kazuhiro, Y., Hideki, I., Takashi, U., Shinji, M., Masatake, O., Kazuaki, K., Norichika, A., Nobuyuki, K., Akito, A., Souichi, T., Takayuki, T., Tomiyoshi, H., Akira, Y., Nobuaki, S., Toshitaka, S., and Takakazu, S., “Current status of Japanese detectors”, Class. Quantum Grav., 24, S399–S403, (2007). [External LinkarXiv:0704.2881].
132 Dalal, N., Holz, D.E., Hughes, S.A., and Jain, B., “Short GRB and binary black hole standard sirens as a probe of dark energy”, Phys. Rev. D, 74, 063006, (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0601275].
133 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge; New York, 1987).
134 Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Improved filters for gravitational waves from inspiraling compact binaries”, Phys. Rev. D, 57, 885–907, (1998). [External Linkgr-qc/9708034].
135 Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “A comparison of search templates for gravitational waves from binary inspiral”, Phys. Rev. D, 63, 044023, (2001). [External Linkgr-qc/0010009]. Erratum-ibid. D72 029902 (2005).
136 Damour, T., and Nagar, A., “Faithful Effective-One-Body waveforms of small-mass-ratio coalescing black-hole binaries”, Phys. Rev. D, 76, 064028, (2007). [External LinkDOI], [External LinkarXiv:0705.2519].
137 Damour, T., and Nagar, A., “Final spin of a coalescing black-hole binary: An effective-one-body approach”, Phys. Rev. D, 76, 044003, (2007). [External LinkDOI], [External LinkarXiv:0704.3550].
138 Damour, T., and Nagar, A., “Comparing Effective-One-Body gravitational waveforms to accurate numerical data”, Phys. Rev. D, 77, 024043, (2008). [External LinkDOI], [External LinkarXiv:0711.2628].
139 Damour, T., Nagar, A., Dorband, E. N., Pollney, D., and Rezzolla, L., “Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries”, Phys. Rev. D, 77, 084017, (2008). [External LinkDOI], [External LinkarXiv:0712.3003].
140 Damour, T., Nagar, A., Hannam, M., Husa, S., and Brügmann, B., “Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries”, Phys. Rev. D, 78, 044039, (2008). [External LinkDOI], [External LinkarXiv:0803.3162].
141 Damour, T., and Vilenkin, A., “Gravitational wave bursts from cosmic strings”, Phys. Rev. Lett., 85, 3761–3764, (2000). [External LinkDOI], [External Linkgr-qc/0004075].
142 Damour, T., and Vilenkin, A., “Gravitational wave bursts from cusps and kinks on cosmic strings”, Phys. Rev. D, 64, 064008, (2001). [External LinkDOI], [External Linkgr-qc/0104026].
143 Damour, T., and Vilenkin, A., “Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows”, Phys. Rev. D, 71, 063510, (2005). [External LinkDOI], [External LinkarXiv:hep-th/0410222].
144 Danzmann, K., Lück, H., Rüdiger, A., Schilling, R., Schrempel, M., Winkler, W., Hough, J., Newton, G.P., Robertson, N.A., Ward, H., Campbell, A.M., Logan, J.E., Robertson, D.I., Strain, K.A., Bennett, J.R.J., Kose, V., Kühne, M., Schutz, B.F., Nicholson, D., Shuttleworth, J., Welling, H., Aufmuth, P., Rinkleff, R., Tünnermann, A., and Willke, B., “GEO 600 - A 600-m Laser Interferometric Gravitational Wave Antenna”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp. 100–111, (World Scientific, Singapore; River Edge, NJ, 1995).
145 Danzmann, K., and Rüdiger, A., “LISA technology – concept, status, prospects”, Class. Quantum Grav., 20, S1–S9, (2003). [External LinkDOI].
146 Dhurandhar, S.V., and Sathyaprakash, B.S., “Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise”, Phys. Rev. D, 49, 1707–1722, (1994). [External LinkDOI].
147 Dhurandhar, S.V., and Tinto, M., “Astronomical observations with a network of detectors of gravitational waves – I. Mathematical framework and solution of the five detector problem”, Mon. Not. R. Astron. Soc., 234, 663, (1988). [External LinkADS].
148 Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542, (2002). [External Linkastro-ph/0204289v1].
149 Dimmelmeier, H., Ott, C.D., Janka, H.-T., Marek, A., and Müller, E., “Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores”, Phys. Rev. Lett., 98, 251101, (2007). [External LinkDOI], [External Linkastro-ph/0702305v2].
150 Drever, R.W.P., “Interferometric detectors for gravitational radiation”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation (Rayonnenment Gravitationnel), NATO Advanced Study Institute, Centre de physique des Houches, 2 – 21 June 1982, pp. 321–338, (North-Holland; Elsevier, Amsterdam; New York, 1983).
151 Dupuis, R.J., and Woan, G., “Bayesian estimation of pulsar parameters from gravitational wave data”, Phys. Rev. D, 72, 102002, (2005). [External LinkDOI], [External Linkgr-qc/0508096].
152 Eckart, A., and Genzel, R., “Observations of stellar proper motions near the Galactic Centre”, Nature, 383, 415–417, (1996). [External LinkDOI].
153 “EinsteinATHome Project Home Page”, project homepage, University of Wisconsin at Milwaukee. URL (cited on 08 November 2007):
External Linkhttp://einstein.phys.uwm.edu/.
154 “European Gravitational Observatory Home Page”, project homepage, EGO. URL (cited on 08 November 2007):
External Linkhttp://www.ego-gw.it/.
155 Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K., and Rasio, F.A., “Black Hole-Neutron Star Binary Merger Calculations: GRB Progenitors and the Stability of Mass Transfer”, in Alimi, J.-M., and Füzfa, A., eds., Albert Einstein Century International Conference, Proceedings of the Albert Einstein Century International Conference, 18 – 22 July 2005, Paris, France, AIP Conference Proceedings, vol. 861, pp. 622–629, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External Linkastro-ph/0605512].
156 Falcke, H.D., van Haarlem, M.P., de Bruyn, A.G., Braun, R., Röttgering, H.J.A., Stappers, B.W., Boland, W.H.W.M., Butcher, H.R., de Geus, E.J., Koopmans, L.V., Fender, R.P., Kuijpers, H.J.M.E., Miley, G.K., Schilizzi, R.T., Vogt, C., Wijers, R.A.M.J., Wise, M.W., Brouw, W.N., Hamaker, J.P., Noordam, J.E., Oosterloo, T., Bähren, L., Brentjens, M.A., Wijnholds, S.J., Bregman, J.D., van Cappellen, W.A., Gunst, A.W., Kant, G.W., Reitsma, J., van der Schaaf, K., and de Vos, C.M., “A very brief description of LOFAR – the Low Frequency Array”, in van der Hucht, K.A., ed., Highlights of Astronomy 14, Proceedings of the IAU XXVI General Assembly, 2006, Proceedings of the IAU, vol. 2, pp. 386–387, (Cambridge University Press, Cambridge, 2008). [External LinkDOI], [External Linkastro-ph/0610652].
157 Faulkner, J., “Ultrashort-Period Binaries, Gravitational Radiation, and Mass Transfer. I. The Standard Model, with Applications to WZ Sagittae and Z Camelopardalis”, Astrophys. J., 170, L99–L104, (1971). [External LinkDOI], [External LinkADS].
158 Ferrari, V., Matarrese, S., and Schneider, R., “Gravitational Wave Background from a Cosmological Population of Core-Collapse Supernovae”, Mon. Not. R. Astron. Soc., 303, 247–257, (1999). [External Linkastro-ph/9804259].
159 Finn, L.S., “Detection, measurement and gravitational radiation”, Phys. Rev. D, 46, 5236–5249, (1992). [External Linkgr-qc/9209010].
160 Finn, L.S., “Aperture synthesis for gravitational-wave data analysis: Deterministic sources”, Phys. Rev. D, 63, 102001, (2001). [External Linkgr-qc/0010033].
161 Finn, L.S., and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219, (1993). [External Linkgr-qc/9301003].
162 Finn, L.S., and Thorne, K.S., “Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA”, Phys. Rev. D, 62, 124021, (2000). [External Linkgr-qc/0007074].
163 Flanagan, É.É., “Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations”, Phys. Rev. D, 48, 2389–2407, (1993). [External Linkastro-ph/9305029].
164 Flanagan, É.É., and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger and ringdown”, Phys. Rev. D, 57, 4535–4565, (1998). [External Linkgr-qc/9701039].
165 Flanagan, É.É., and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates”, Phys. Rev. D, 57, 4566–4587, (1998). [External Linkgr-qc/9710129].
166 Friedman, J.L., and Schutz, B.F., “Secular instability of rotating newtonian stars”, Astrophys. J., 222, 281–296, (1978). [External LinkADS].
167 Fryer, C.L., and New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, lrr-2003-2, (2003). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2003-2.
168 Futamase, T., “Point-particle limit and the far-zone quadrupole formula in general relativity”, Phys. Rev. D, 32, 2566–2574, (1985). [External LinkDOI].
169 Futamase, T., and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2007-2.
170 Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S., and Vallisneri, M., “Event rate estimates for LISA extreme mass ratio capture sources”, Class. Quantum Grav., 21, S1595–S1606, (2004). [External Linkgr-qc/0405137].
171 Gair, J.R., and Glampedakis, K., “Improved approximate inspirals of test-bodies into Kerr black holes”, Phys. Rev. D, 73, 064037, (2006). [External Linkgr-qc/0510129].
172 Gair, J.R, and Jones, G., “Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR)”, Class. Quantum Grav., 27, 1145–1168, (2007). [External LinkDOI], [External Linkgr-qc/0610046].
173 Gavriil, F.P., Gonzalez, M.E., Gotthelf, E.V., Kaspi, V.M., Livingstone, M.A., and Woods, P.M., “Magnetar-Like Emission from the Young Pulsar in Kes 75”, Science, 319, 1802–1805, (2008). [External LinkDOI], [External LinkarXiv:0802.1704].
174 Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., Richstone, D., and Tremaine, S., “A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion”, Astrophys. J. Lett., 539, L13–L16, (2000). [External Linkastro-ph/0006289].
175 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (cited on 08 November 2007):
External Linkhttp://geo600.aei.mpg.de.
176 Giazotto, A. et al., “The VIRGO Experiment: Status of the Art”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp. 86–99, (World Scientific, Singapore; River Edge, NJ, 1995).
177 Glampedakis, K., “Extreme Mass Ratio Inspirals: LISA’s unique probe of black hole gravity”, Class. Quantum Grav., 22, S605–S659, (2005). [External Linkgr-qc/0509024].
178 Glampedakis, K., and Babak, S., “Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188, (2006). [External Linkgr-qc/0510057].
179 Glampedakis, K., Hughes, S.A., and Kennefick, D., “Approximating the inspiral of test bodies into Kerr black holes”, Phys. Rev. D, 66, 064005, (2002). [External Linkgr-qc/0205033].
180 Glampedakis, K., and Kennefick, D., “Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction”, Phys. Rev. D, 66, 044002, (2002). [External Linkgr-qc/0203086].
181 Gonzalez, J.A., Sperhake, U., Brügmann, B., Hannam, M., and Husa, S., “Total recoil: the maximum kick from nonspinning black-hole binary inspiral”, Phys. Rev. Lett., 98, 091101, (2007). [External LinkDOI], [External Linkgr-qc/0610154].
182 Gottardi, L., de Waard, A., Usenko, A., Frossati, G., Podt, M., Flokstra, J., Bassan, M., Fafone, V., Minenkov, Y., and Rocchi, A., “Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K”, Phys. Rev. D, 76, 102005, (2007). [External LinkarXiv:0705.0122].
183 “Gravitational Waves - INPE”, project homepage, INPE, Brasil. URL (cited on 08 November 2007):
External Linkhttp://www.das.inpe.br/graviton/english.html.
184 Grishchuk, L.P., “Amplification of gravitational waves in an istropic universe”, Sov. Phys. JETP, 40, 409–415, (1975).
185 Grishchuk, L.P., “The implications of the microwave background anisotropies for laser-interferometer-tested gravitational waves”, Class. Quantum Grav., 14, 1445–1454, (1997). [External LinkDOI], [External Linkgr-qc/9609062].
186 Gürsel, Y., and Tinto, M., “Near optimal solution to the inverse problem for gravitational-wave bursts”, Phys. Rev. D, 40, 3884–3938, (1989).
187 Haehnelt, M.G., “Supermassive black holes as sources for LISA”, in Folkner, W.M., ed., Laser Interferometer Space Antenna (LISA), The Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena, California, July 1998, AIP Conference Proceedings, vol. 456, pp. 45–49, (American Institute of Physics, Woodbury, NY, 1998). [External LinkDOI].
188 Helstrom, C.W., Statistical Theory of Signal Detection, International Series of Monographs in Electronics and Instrumentation, vol. 9, (Pergamon Press, Oxford; New York, 1968), 2nd edition.
189 Heng, I.S., Balasubramanian, R., Sathyaprakash, B.S., and Schutz, B.F., “First steps towards characterizing the hierarchical algorithm for curves and ridges pipeline”, Class. Quantum Grav., 21, S821–S826, (2004). [External LinkDOI].
190 Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., and Matzner, R.A., “Gravitational recoil from spinning binary black hole mergers”, Astrophys. J., 661, 430–436, (2007). [External LinkDOI], [External Linkgr-qc/0701143].
191 Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., and Collins, R.A., “Observation of a Rapidly Pulsating Radio Source”, Nature, 217, 709–713, (1968). [External LinkDOI].
192 Hils, D., Bender, P.L., and Webbink, R.F., “Gravitational radiation from the Galaxy”, Astrophys. J., 360, 75–94, (1990). [External LinkDOI].
193 Hjorth, J., Sollerman, J., Moller, P., Fynbo, J.P.U., Woosley, S.E., Kouveliotou, C., Tanvir, N.R., Greiner, J., Andersen, M.I., Castro-Tirado, A.J., Castro Cerón, J.M., Fruchter, A.S., Gorosabel, J., Jakobsson, P., Kaper, L., Klose, S., Masetti, N., Pedersen, H., Pedersen, K., Pian, E., Palazzi, E., Rhoads, J.E., Rol, E., van den Heuvel, E.P.J., Vreeswijk, P.M., Watson, D., and Wijers, R.A.M.J., “A very energetic supernova associated with the γ-ray burst of 29 March 2003”, Nature, 423, 847–850, (2003). [External LinkDOI], [External Linkastro-ph/0306347].
194 Hogan, C.J., “Cosmological Gravitational Wave Backgrounds”, in Folkner, W.M., ed., Laser Interferometer Space Antenna (LISA), The Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena, California, July 1998, AIP Conference Proceedings, vol. 456, pp. 79–86, (American Institute of Physics, Woodbury, NY, 1998). [External LinkDOI], [External Linkastro-ph/9809364].
195 Hogan, C.J., “Measurement of quantum fluctuations in geometry”, Phys. Rev. D, 77, 104031, (2008). [External LinkDOI], [External LinkarXiv:0712.3419].
196 Hogan, C.J., and Bender, P.L., “Estimating stochastic gravitational wave backgrounds with the Sagnac calibration”, Phys. Rev. D, 64, 062002, (2001). [External Linkastro-ph/0104266].
197 Holz, D.E., and Hughes, S.A., “Using gravitational-wave standard sirens”, Astrophys. J., 629, 15–22, (2005). [External Linkastro-ph/0504616].
198 Hough, J., “LISA - Laser Interferometer Space Antenna for Gravitational Wave Measurements”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp. 50–63, (World Scientific, Singapore; River Edge, NJ, 1995).
199 Hough, J., and Rowan, S., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2000-3.
200 Hughes, S.A., “Gravitational waves from extreme mass ratio inspirals: Challenges in mapping the spacetime of massive, compact objects”, Class. Quantum Grav., 18, 4067–4074, (2001). [External Linkgr-qc/0008058].
201 Hughes, S.A., and Blandford, R.D., “Black hole mass and spin coevolution by mergers”, Astrophys. J. Lett., 585, L101–L104, (2003). [External Linkastro-ph/0208484].
202 Hulse, R.A., “Nobel Lecture: The discovery of the binary pulsar”, Rev. Mod. Phys., 66, 699–710, (1994). [External LinkDOI]. Related online version (cited on 26 February 2009):
External Linkhttp://nobelprize.org/nobel_prizes/physics/laureates/1993/hulse-lecture.html.
203 Hulse, R.A., and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J., 195, L51–L53, (1975). [External LinkADS].
204 “IGEC: International Gravitational Event Collaboration”, project homepage, INFN. URL (cited on 08 November 2007):
External Linkhttp://igec.lnl.infn.it/.
205 Jackson, N., “The Hubble Constant”, Living Rev. Relativity, 10, lrr-2007-4, (2007). URL (cited on 01 September 2008):
http://www.livingreviews.org/lrr-2007-4.
206 Jaranowski, P., and Królak, A., “Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary”, Phys. Rev. D, 49, 1723–1739, (1994). [External LinkDOI].
207 Jaranowski, P., and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 8, lrr-2005-3, (2005). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2005-3.
208 Jaranowski, P., Królak, A., Kokkotas, K. D., and Tsegas, G., “On the estimation of parameters of the gravitational-wave signal from a coalescing binary by a network of detectors”, Class. Quantum Grav., 13, 1279–1307, (1996). [External LinkDOI].
209 Jenet, F.A., Hobbs, G.B., van Straten, W., Manchester, R.N., Bailes, M., Verbiest, J.P.W., Edwards, R.T., Hotan, A.W., Sarkissian, J.M., and Ord, S.M., “Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects”, Astrophys. J., 653, 1571–1576, (2006). [External LinkDOI], [External Linkastro-ph/0609013].
210 Jenet, F.A., Lommen, A., Larson, S.L., and Wen, L., “Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B”, Astrophys. J., 606, 799–803, (2004). [External Linkastro-ph/0310276].
211 Kalogera, V., Kim, C., and Lorimer, D.R., “The Strongly Relativistic Double Pulsar and LISA (Galactic Double Neutron Stars for LISA)”, Invited talk at the 5th International LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12 – 15 July 2004, conference paper, (2004). Related online version (cited on 17 December 2008):
External Linkhttp://www.astro.northwestern.edu/Vicky/TALKS/LISA_0737.ppt.
212 Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004). [External LinkDOI], [External Linkastro-ph/0312101].
213 Kaspi, V.M., Taylor, J.H., and Ryba, M.F., “High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713–728, (1994). [External LinkADS].
214 Kawamura, S., Nakamura, T., Ando, M., Seto, N., and Tsubono, K. et al., “The Japanese space gravitational wave antenna–DECIGO”, Class. Quantum Grav., 23, S125–S131, (2006). [External LinkDOI].
215 Keating, B.G., “An ‘Ultrasonic Image’ of the Embryonic Universe: CMB Polarization Tests of the Inflationary Paradigm”, arXiv e-print, (2008). [External LinkarXiv:0806.1781].
216 Keating, B.G., Polnarev, A.G., Miller, N.J., and Baskaran, D., “The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves”, Int. J. Mod. Phys. A, 21, 2459–2479, (2006). [External Linkastro-ph/0607208].
217 Klebesadel, R.W., Strong, I.B., and Olson, R.A., “Observations of Gamma-Ray Bursts of Cosmic Origin”, Astrophys. J., 182, L85–L88, (1973).
218 Klimenko, S., and Mitselmakher, G., “A wavelet method for detection of gravitational wave bursts”, Class. Quantum Grav., 21, S1819–S1830, (2004). [External LinkDOI].
219 Klimenko, S., Yakushin, I., Mercer, A., and Mitselmakher, G., “Coherent method for detection of gravitational wave bursts”, Class. Quantum Grav., 25, 114029, (2008). [External LinkDOI], [External LinkarXiv:0802.3232].
220 Knispel, B., and Allen, B., “Blandford’s Argument: The Strongest Continuous Gravitational Wave Signal”, Phys. Rev. D, 78, 044031, (2008). [External LinkarXiv:0804.3075].
221 Kokkotas, K.D., and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-1999-2.
222 Komossa, S., Burwitz, V., Hasinger, G., Predehl, P., Kaastra, J.S., and Ikebe, Y., “Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra”, Astrophys. J. Lett., 582, L15–L19, (2003). [External Linkastro-ph/0212099].
223 Komossa, S., Zhou, H., and Lu, H., “A recoiling supermassive black hole in the quasar SDSSJ092712.65+294344.0?”, Astrophys. J. Lett., 678, L81–L84, (2008). [External LinkDOI], [External LinkarXiv:0804.4585].
224 Kramer, M., “Pulsars with the SKA”, in Kramer, M., and Rawlings, S., eds., The Scientific Promise of the SKA, Proceedings of a workshop held at Oxford, 7 November 2002, pp. 85–92, (2003). [External Linkastro-ph/0306456].
225 Kramer, M., “Fundamental Physics with the SKA: Strong-Field Tests of Gravity Using Pulsars and Black Holes”, in Lobanov, A.P., Zensus, J.A., Cesarsyk, C., and Diamond, P., eds., Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, Proceedings of the conference held in Berlin, Germany, 18 – 21 May 2004, ESO Astrophysics Symposia, pp. 87–90, (Springer, Berlin; New York, 2006). [External LinkDOI], [External Linkastro-ph/0409020].
226 Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S., and Palomba, C., “The Hough transform search for continuous gravitational waves”, Phys. Rev. D, 70, 082001, (2004). [External LinkDOI], [External Linkgr-qc/0407001].
227 Królak, A., and Schutz, B.F., “Coalescing binaries – Probe of the universe”, Gen. Relativ. Gravit., 19, 1163–1171, (1987). [External LinkDOI].
228 Lackey, B.D., Nayyar, M., and Owen, B.J., “Observational constraints on hyperons in neutron stars”, Phys. Rev. D, 73, 024021, (2006). [External Linkastro-ph/0507312].
229 Lahav, O., and Suto, Y., “Measuring our Universe from Galaxy Redshift Surveys”, Living Rev. Relativity, 7, lrr-2004-8, (2004). URL (cited on 07 December 2004):
http://www.livingreviews.org/lrr-2004-8.
230 Landgraf, M., Hechler, M., and Kemble, S., “Mission design for LISA Pathfinder”, Class. Quantum Grav., 22, S487–S492, (2005). [External Linkgr-qc/0411071].
231 Lang, R.N., and Hughes, S.A., “Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession”, Phys. Rev. D, 74, 122001, (2006). [External LinkDOI], [External Linkgr-qc/0608062].
232 Lang, R.N., and Hughes, S.A., “Localizing coalescing massive black hole binaries with gravitational waves”, Astrophys. J., 677, 1184–1200, (2008). [External LinkarXiv:0710.3795].
233 “Large-Scale Cryogenic Gravitational-Wave Telescope Project”, project homepage, National Astronomical Observatory, Japan. URL (cited on 28 August 2008):
External Linkhttp://www.icrr.u-tokyo.ac.jp/gr/LCGT.html.
234 “Laser Interferometer Space Antenna”, project homepage, Albert Einstein Institute. URL (cited on 08 November 2007):
External Linkhttp://www.lisa.aei-hannover.de/.
235 “Laser Interferometer Space Antenna”, project homepage, European Space Agency. URL (cited on 08 November 2007):
External Linkhttp://www.esa.int/esaSC/120376_index_0_m.html.
236 “Laser Interferometer Space Antenna”, project homepage, NASA. URL (cited on 08 November 2007):
External Linkhttp://lisa.nasa.gov/.
237 Lattimer, J.M., and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl. Phys. A, 535, 331–376, (1991). [External LinkDOI].
238 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (cited on 08 November 2007):
External Linkhttp://www.ligo.caltech.edu.
239 “LIGO Scientific Collaboration”, project homepage, LIGO Laboratory. URL (cited on 08 November 2007):
External Linkhttp://ligo.org/.
240 Lindblom, L., and Detweiler, S.L., “On the secular instabilities of the Maclaurin spheroids”, Astrophys. J., 211, 565–567, (1977). [External LinkADS].
241 Lindblom, L., and Mendell, G., “Does gravitational radiation limit the angular velocities of superfluid neutron stars?”, Astrophys. J., 444, 804–809, (1995). [External LinkDOI], [External LinkADS].
242 Lindblom, L., and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”, Phys. Rev. D, 65, 063006, (2002). [External Linkastro-ph/0110558].
243 Lindblom, L., Owen, B.J., and Morsink, S.M., “Gravitational radiation instability in hot young neutron stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). [External LinkDOI], [External Linkgr-qc/9803053].
244 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 8, lrr-2005-7, (2005). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2005-7.
245 “LSC Publications”, online resource, LIGO Scientific Collaboration. URL (cited on 08 November 2007):
External Linkhttp://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html.
246 Lück, H., “The GEO600 project”, Class. Quantum Grav., 14, 1471–1476, (1997). [External LinkDOI].
247 Lück, H. et al., “Status of the GEO600 detector”, Class. Quantum Grav., 23, S71–S78, (2006). [External LinkDOI].
248 Lyne, A.G., Burgay, M., Kramer, M., Possenti, A., Manchester, R.N., Camilo, F., McLaughlin, M.A., Lorimer, D.R., D’Amico, N., Joshi, B.C., Reynolds, J., and Freire, P.C.C., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”, Science, 303, 1153–1157, (2004). [External LinkDOI], [External Linkastro-ph/0401086].
249 Lyne, A.G., Burgay, M., Kramer, M., Possenti, A., Manchester, R.N., Camilo, F., McLaughlin, M.A., Lorimer, D.R., D’Amico, N., Joshi, B.C., Reynolds, J., and Freire, P.C.C., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”, Science, 303, 1153–1157, (2004). [External Linkastro-ph/0401086].
250 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 07 December 2004):
http://www.livingreviews.org/lrr-2004-7.
251 MacFadyen, A.I., and Woosley, S.E., “Collapsars: Gamma-ray bursts and explosions in ‘failed supernovae”’, Astrophys. J., 524, 262–289, (1999). [External LinkDOI], [External Linkastro-ph/9810274].
252 MacLeod, C.L., and Hogan, C.J., “Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information”, Phys. Rev. D, 77, 043512, (2008). [External LinkDOI], [External LinkarXiv:0712.0618].
253 Marronetti, P., Tichy, W., Brügmann, B., Gonzalez, J., and Sperhake, U., “High-spin binary black hole mergers”, Phys. Rev. D, 77, 064010, (2008). [External LinkDOI], [External LinkarXiv:0709.2160].
254 McClelland, D.E., and Bachor, H.-A., eds., Gravitational Astronomy: Instrument Design and Astrophysical Prospects, Proceedings of the Elizabeth and Frederick White Research Conference, Canberra, Australia, September 24 – 26, 1990, (World Scientific, Singapore; River Edge, NJ, 1991).
255 Megevand, A., and Astorga, F., “Generation of baryon inhomogeneities in the electroweak phase transition”, Phys. Rev. D, 71, 023502, (2005). [External Linkhep-ph/0409321].
256 Merritt, D., and Ekers, R.D., “Tracing black hole mergers through radio lobe morphology”, Science, 297, 1310–1313, (2002). [External LinkDOI], [External Linkastro-ph/0208001].
257 Merritt, D., and Milosavljević, M., “Massive Black Hole Binary Evolution”, Living Rev. Relativity, 8, lrr-2005-8, (2005). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2005-8.
258 Mészáros, P., and Rees, M.J., “Relativistic fireballs and their impact on external matter - Models for cosmological gamma-ray bursts”, Astrophys. J., 405, 278–284, (1993). [External LinkDOI], [External LinkADS].
259 Milosavljević, M., and Phinney, E.S., “The Afterglow of Massive Black Hole Coalescence”, Astrophys. J. Lett., 622, L93–L96, (2005). [External Linkastro-ph/0410343].
260 “MiniGRAIL”, project homepage, Leiden University. URL (cited on 08 November 2007):
External Linkhttp://www.minigrail.nl/.
261 Mino, Y., Shibata, M., and Tanaka, T., “Gravitational waves induced by a spinning particle falling into a rotating black hole”, Phys. Rev. D, 53, 622–634, (1996). [External LinkDOI].
262 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
263 Mohanty, S.D., “A robust test for detecting non-stationarity in data from gravitational wave detectors”, Phys. Rev. D, 61, 122002, (2000). [External Linkgr-qc/9910027].
264 Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of cosmological perturbations”, Phys. Rep., 215, 203–333, (1992). [External LinkDOI].
265 Mukhopadhyay, H., Sago, N., Tagoshi, H., Dhurandhar, S., Takahashi, H., and Kanda, N., “Detecting gravitational waves from inspiraling binaries with a network of detectors: coherent versus coincident strategies”, Phys. Rev. D, 74, 083005, (2006). [External Linkgr-qc/0608103].
266 Müller, E., “Gravitational Waves from Core Collapse Supernovae”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 273–308, (Cambridge University Press, Cambridge, 1997).
267 Nakamura, T., Sasaki, M., Tanaka, T., and Thorne, K.S., “Gravitational waves from coalescing black hole MACHO binaries”, Astrophys. J. Lett., 487, L139–L142, (1997). [External Linkastro-ph/9708060].
268 “NanoGrav”, project homepage, Aricebo Observatory. URL (cited on 19 May 2008):
External Linkhttp://arecibo.cac.cornell.edu/arecibo-staging/nanograv/.
269 “NASA Vision Missions”, project homepage, NASA. URL (cited on 08 November 2007):
External Linkhttp://universe.nasa.gov/program/vision.html.
270 Nayyar, M., and Owen, B.J., “R-modes of accreting hyperon stars as persistent sources of gravitational waves”, Phys. Rev. D, 73, 084001, (2006). [External LinkDOI], [External Linkastro-ph/0512041].
271 Nelemans, G., “AM CVn stars”, in Hameury, J.-M., and Lasota, J.-P., eds., The Astrophysics of Cataclysmic Variables and Related Objects, Proceedings of a meeting held in Strasbourg, France, 11 – 16 July 2004, ASP Conference Series, vol. 330, pp. 27–40, (Astronomical Society of the Pacific, San Francisco, 2005). [External LinkADS], [External Linkastro-ph/0409676].
272 Nelemans, G., Yungelson, L.R., and Portegies Zwart, S.F., “The gravitational wave signal from the Galactic disk population of binaries containing two compact objects”, Astron. Astrophys., 375, 890–898, (2001). [External LinkDOI], [External Linkastro-ph/0105221].
273 Nicholson, D., Dickson, C.A., Watkins, W.J., Schutz, B.F., Shuttleworth, J., Jones, G.S., Robertson, D.I., MacKenzie, N.L., Strain, K.A., Meers, B.J., Newton, G.P., Ward, H., Cantley, C.A., Robertson, N.A., Hough, J., Danzmann, K., Niebauer, T.M., Ruediger, A., Schilling, R., Schnupp, L., and Winkler, W., “Results of the first coincident observations by two laser-interferometric gravitational wave detectors”, Phys. Lett. A, 218, 175–180, (1996). [External Linkgr-qc/9605048].
274 Nicholson, D., and Vecchio, A., “Bayesian bounds on parameter estimation accuracy for compact coalescing binary gravitational wave signals”, Phys. Rev. D, 57, 4588–4599, (1998). [External LinkDOI], [External Linkgr-qc/9705064].
275 Noyola, E., Gebhardt, K., and Bergmann, M., “Gemini and Hubble Space Telescope Evidence for an Intermediate Mass Black Hole in ω Centauri”, Astrophys. J., 676, 1008–1015, (2008). [External LinkDOI], [External LinkarXiv:0801.2782].
276 “Numerical Injection Analysis Project Home Page”, project homepage, Syracuse University Gravitational Wave Group. URL (cited on 28 August 2008):
External Linkhttps://www.gravity.phy.syr.edu/dokuwiki/doku.php?id=ninja:home.
277 Ott, C.D., Burrows, A., Dessart, L., and Livne, E., “A New Mechanism for Gravitational Wave Emission in Core-Collapse Supernovae”, Phys. Rev. Lett., 96, 201102, (2006). [External Linkastro-ph/0605493v1].
278 Owen, B.J., “Search templates for gravitational waves from inspiralling binaries: Choise of template spacing”, Phys. Rev. D, 53, 6749–6761, (1996). [External Linkgr-qc/9511032].
279 Owen, B.J., Lindblom, L., Cutler, C., Schutz, B.F., Vecchio, A., and Andersson, N., “Gravitational waves from hot young rapidly rotating neutron stars”, Phys. Rev. D, 58, 084020, (1998). [External Linkgr-qc/9804044].
280 Owen, B.J., and Sathyaprakash, B.S., “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement”, Phys. Rev. D, 60, 022002, (1999). [External LinkDOI], [External Linkgr-qc/9808076].
281 Page, L., Hinshaw, G., Komatsu, E., Nolta, M.R., Spergel, D.N., Bennett, C.L., Barnes, C., Bean, R., Dore, O., Dunkley, J., Halpern, M., Hill, R. S., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Peiris, H.V., Tucker, G.S., Verde, L., Weiland, J.L., Wollack, E., and Wright, E.L., “Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis”, Astrophys. J. Suppl. Ser., 170, 335–376, (2007). [External LinkDOI], [External Linkastro-ph/0603450].
282 Pagel, B.E.J., “Helium and Big Bang nucleosynthesis”, Phys. Rep., 333, 433–447, (2000). [External LinkDOI].
283 Pai, A., Dhurandhar, S., and Bose, S., “A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors”, Phys. Rev. D, 64, 042004, (2001). [External Linkgr-qc/0009078].
284 Pan, Y., Buonanno, A., Chen, Y., and Vallisneri, M., “Physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries”, Phys. Rev. D, 69, 104017, (2004). [External Linkgr-qc/0310034]. Erratum-ibid. D74, 029905(E) (2006).
285 Pan, Y. et al., “A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case”, Phys. Rev. D, 77, 024014, (2008). [External LinkDOI], [External LinkarXiv:0704.1964].
286 Payne, D.J.B., Melatos, A., and Phinney, E.S., “Gravitational waves from an accreting neutron star with a magnetic mountain”, in Centrella, J.M., ed., Astrophysics of Gravitational Wave Sources, College Park, Maryland, April 24 – 26, 2003, AIP Conference Proceedings, vol. 686, pp. 92–95, (American Institute of Physics, Melville, NY, 2003). [External LinkDOI].
287 Pearce, F.R., Jenkins, A., Frenk, C.S., White, S.D.M., Thomas, P.A., Couchman, H.M.P., Peacock, J.A., and Efstathiou, G., “Simulations of galaxy formation in a cosmological volume”, Mon. Not. R. Astron. Soc., 326, 649, (2001). [External Linkastro-ph/0010587].
288 Penzias, A.A., and Wilson, R.W., “A Measurement of Excess Antenna Temperature at 4080 Mc/s”, Astrophys. J., 142, 419–421, (1965). [External LinkADS].
289 Perlmutter, S. et al. (The Supernova Cosmology Project), “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J., 517, 565–586, (1999). [External LinkDOI], [External Linkastro-ph/9812133].
290 Perryman, M.A.C., Turon, C., and O’Flaherty, K.S., eds., The Three-Dimensional Universe with Gaia, Proceedings of the Symposium held at the Observatoire de Paris-Meudon, 4 – 7 October 2004, ESA Conference Proceedings, vol. SP-576, (ESA Publications Division, Noordwijk, 2005). Related online version (cited on 05 September 2008):
External Linkhttp://www.rssd.esa.int/index.php?project=Gaia&page=Gaia_2004_Proceedings.
291 Peters, P.C., and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev., 131, 435–440, (1963). [External LinkDOI].
292 “Planck Home Page”, project homepage, European Space Agency. URL (cited on 28 August 2008):
External Linkhttp://www.rssd.esa.int/index.php?project=PLANCK.
293 Plissi, M.V., Strain, K.A., Torrie, C.I., Robertson, N.A., Killbourn, S., Rowan, S., Twyford, S., Ward, H., Skeldon, K.D., and Hough, J., “Aspects of the suspension system for GEO600”, Rev. Sci. Instrum., 69, 3055–3061, (1998). [External LinkDOI].
294 Poisson, E., “The Motion of Point Particles in Curved Spacetime”, Living Rev. Relativity, 7, lrr-2004-6, (2004). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2004-6.
295 Poisson, E., and Will, C.M., “Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855, (1995). [External LinkDOI], [External Linkgr-qc/9502040].
296 Pollney, D., Reisswig, C., Rezzolla, L., Szilágyi, B., Ansorg, M., Deris, B., Diener, P., Dorband, E.N., Koppitz, M., Nagar, A., and Schnetter, E., “Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations”, Phys. Rev. D, 76, 124002, (2007). [External LinkDOI], [External LinkarXiv:0707.2559].
297 Portegies Zwart, S.F., and McMillan, S.L.W., “Black hole mergers in the universe”, Astrophys. J. Lett., 528, L17–L20, (2000). [External Linkgr-qc/9910061].
298 Press, W.H., “Long Wave Trains of Gravitational Waves from a Vibrating Black Hole”, Astrophys. J. Lett., 170, L105–L108, (1971). [External LinkADS].
299 Press, W.H., and Teukolsky, S.A., “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric”, Astrophys. J., 185, 649–673, (1973). [External LinkADS].
300 Pretorius, F., “Evolution of binary black-hole spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External Linkgr-qc/0507014].
301 Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella, U., and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Astrophysics and Space Science Library, vol. 359, (Springer, Berlin; New York, 2009). [External LinkarXiv:0710.1338].
302 Pryke, C., Ade, P., Bock, J., Bowden, M., Brown, M.L., Cahill, G., Castro, P.G., Church, S., Culverhouse, T., Friedman, R., Ganga, K., Gear, W.K., Gupta, S., Hinderks, J., Kovac, J., Lange, A.E., Leitch, E., Melhuish, S.J., Memari, Y., Murphy, J.A., Orlando, A., Schwarz, R., O’Sullivan, C., Piccirillo, L., Rajguru, N., Rusholme, B., Taylor, A.N., Thompson, K.L., Turner, A.H., Wu, E.Y.S., and Zemcov, M. (QUaD collboration), “Second and third season QUaD CMB temperature and polarization power spectra”, Astrophys. J., submitted, (2008). [External LinkarXiv:0805.1944].
303 Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). [External Linkgr-qc/9610053].
304 Raab, F.J., “The LIGO Project: Progress and Prospects”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, (World Scientific, Singapore; River Edge, NJ, 1995).
305 Raab, F.J. (for the LIGO Scientific Collaboration), “The status of laser interferometer gravitational-wave detectors”, J. Phys.: Conf. Ser., 39, 25–31, (2006). [External LinkDOI].
306 Randall, L., and Servant, G., “Gravitational waves from warped spacetime”, J. High Energy Phys., 2007(05), 054, (2007). [External LinkDOI], [External Linkhep-ph/0607158].
307 Rees, M.J., “Gravitational waves from galactic centres?”, Class. Quantum Grav., 14, 1411–1415, (1997). [External LinkDOI].
308 Rees, M.J., and Meszaros, P., “Unsteady outflow models for cosmological gamma-ray bursts”, Astrophys. J., 430, L93–L96, (1994). [External Linkastro-ph/9404038].
309 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI].
310 Reisenegger, A., and Bonacic, A.A., “Millisecond pulsars with r-modes as steady gravitational radiators”, Phys. Rev. Lett., 91, 201103, (2003). [External LinkDOI], [External Linkastro-ph/0303375].
311 Rezzolla, L., Barausse, E., Dorband, E.N., Pollney, D., Reisswig, C., Seiler, J., and Husa, S., “On the final spin from the coalescence of two black holes”, Phys. Rev. D, 78, 044002, (2007). [External LinkDOI], [External LinkarXiv:0712.3541].
312 Rezzolla, L., Diener, P., Dorband, E.N., Pollney, D., Reisswig, C., Schnetter, E., and Seiler, J., “The final spin from the coalescence of aligned-spin black hole binaries”, Astrophys. J. Lett., 674, L29–L32, (2008). [External LinkDOI], [External LinkarXiv:0710.3345].
313 Rezzolla, L., Dorband, E.N., Reisswig, C., Diener, P., Pollney, D., Schnetter, E., and Szilágyi, B., “Spin Diagrams for Equal-Mass Black-Hole Binaries with Aligned Spins”, Astrophys. J., 679, 1422–1426, (2007). [External LinkarXiv:0708.3999].
314 Richstone, D., “Supermassive Black Holes Then and Now”, in Folkner, W.M., ed., Laser Interferometer Space Antenna (LISA), The Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena, California, July 1998, AIP Conference Proceedings, vol. 456, (American Institute of Physics, Woodbury, NY, 1998). [External Linkastro-ph/9810379].
315 Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., and Tonry, J., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astrophys. J., 116, 1009–1038, (1998). [External LinkADS], [External Linkastro-ph/9805201].
316 Robinson, C.A.K., Sathyaprakash, B.S., and Sengupta, A.S., “A geometric algorithm for efficient coincident detection of gravitational waves”, Phys. Rev. D, 78, 062002, (2008). [External LinkarXiv:0804.4816].
317 “Rome Gravitational Wave Group”, project homepage, University of Rome ‘La Sapienza’. URL (cited on 08 November 2007):
External Linkhttp://www.roma1.infn.it/rog/.
318 Rover, C., Meyer, R., and Christensen, N., “Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data”, Class. Quantum Grav., 23, 4895–4906, (2006). [External Linkgr-qc/0602067].
319 Rover, C., Meyer, R., and Christensen, N., “Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors”, Phys. Rev. D, 75, 062004, (2007). [External LinkDOI], [External Linkgr-qc/0609131].
320 Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718, (1995). [External LinkDOI].
321 Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855, (1997). [External LinkDOI].
322 Sasaki, M., and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6, (2003). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2003-6.
323 Sathyaprakash, B.S., “Problem of searching for spinning black hole binaries”, in Dumarchez, J., and Trân Than Vân, J., eds., Gravitational Waves and Experimental Gravity, Proceedings of the XXXVIII Rencontres de Moriond, Les Arcs, France, March 22 – 29, 2003, (The Gioi Publishers, Hanoi, Vietnam, 2004). Related online version (cited on 17 December 2008):
External Linkhttp://moriond.in2p3.fr/J03/transparencies/6_friday/2_afternoon/sathyaprakash.pdf.
324 Sathyaprakash, B.S., and Dhurandhar, S.V., “Choice of filters for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 44, 3819–3834, (1991). [External LinkDOI].
325 Sathyaprakash, B.S., and Schutz, B.F., “Templates for stellar mass black holes falling into supermassive black holes”, Class. Quantum Grav., 20, S209–S218, (2003). [External LinkDOI], [External Linkgr-qc/0301049].
326 Schmidt, M., “Spectrum of a Stellar Object Identified with the Radio Source 3C 286”, Astrophys. J., 136, 684, (1962). [External LinkADS].
327 Schneider, R., Ferrari, V., and Matarrese, S., “Stochastic backgrounds of gravitational waves from cosmological populations of astrophysical sources”, Nucl. Phys. B (Proc. Suppl.), 80, C722, (2000). [External Linkastro-ph/9903470].
328 Schneider, R., Ferrari, V., Matarrese, S., and Portegies Zwart, S.F., “Gravitational waves from cosmological compact binaries”, Mon. Not. R. Astron. Soc., 324, 797, (2001). [External LinkDOI], [External Linkastro-ph/0002055].
329 Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R., “Evidence for the Binary Nature of Centaurus X-3 from UHURU X-Ray Observations”, Astrophys. J., 172, L79–L89, (1972). [External LinkDOI], [External LinkADS].
330 Schutz, B.F., “Statistical formulation of gravitational radiation reaction”, Phys. Rev. D, 22, 249–259, (1980). [External LinkDOI].
331 Schutz, B.F., “Gravitational Waves on the Back of an Envelope”, Am. J. Phys., 52, 412–419, (1984). [External LinkDOI].
332 Schutz, B.F., “Determining the Hubble Constant from Gravitational Wave Observations”, Nature, 323, 310–311, (1986). [External LinkDOI].
333 Schutz, B.F., ed., Gravitational Wave Data Analysis, Proceedings of the NATO Advanced Research Workshop held at Dyffryn House, St. Nichols, Cardiff, Wales, 6 – 9 July 1987, NATO ASI Series C, vol. 253, (Kluwer, Dordrecht; Boston, 1989).
334 Schutz, B.F., “Data Processing, Analysis and Storage for Interferometric Antennas”, in Blair, D.G., ed., The Detection of Gravitational Waves, pp. 406–452, (Cambridge University Press, Cambridge; New York, 1991).
335 Schutz, B.F., A First Course in General Relativity, (Cambridge University Press, Cambridge; New York, 2009), 2nd edition.
336 Schutz, B.F., and Ricci, F., “Gravitational Waves, Sources and Detectors”, in Ciufolini, I., Gorini, V., Moschella, U., and Frè, P., eds., Gravitational Waves, Lectures given at a school on ‘Gravitational Waves in Astrophysics, Cosmology and String Theory’, held in Como, Italy, 1999, Series in High Energy Physics, Cosmology and Gravitation, pp. 11–83, (Institute of Physics, Bristol, 2001).
337 Schutz, B.F., and Tinto, M., “Antenna patterns of interferometric detectors of gravitational waves – I. Linearly polarized waves”, Mon. Not. R. Astron. Soc., 224, 131–154, (1987). [External LinkADS].
338 Searle, A.C., Sutton, P.J., Tinto, M., and Woan, G., “Robust Bayesian detection of unmodelled bursts”, Class. Quantum Grav., 25, 114038, (2008). [External LinkDOI], [External LinkarXiv:0712.0196].
339 Shibata, M., and Uryū, K., “Merger of black hole-neutron star binaries in full general relativity”, Class. Quantum Grav., 24, S125–S137, (2007). [External LinkDOI].
340 Sigurdsson, S., “Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies”, Class. Quantum Grav., 14, 1425–1429, (1997). [External LinkDOI], [External Linkastro-ph/9701079].
341 Sigurdsson, S., and Rees, M.J., “Capture of stellar–mass compact objects by massive black holes in galactic cusps”, Mon. Not. R. Astron. Soc., 284, 318, (1996). [External Linkastro-ph/9608093].
342 Sintes, A.M., and Krishnan, B., “Improved Hough search for gravitational wave pulsars”, J. Phys.: Conf. Ser., 32, 206–211, (2006). [External Linkgr-qc/0601081].
343 Sivia, D.S., Data Analysis: A Bayesian Tutorial, (Oxford University Press, Oxford; New York, 1996).
344 Smak, J., “Light Variability of HZ 29”, Acta Astron., 17, 255–270, (1967). [External LinkADS].
345 Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., and Weiss, R., “Structure in the COBE DMR First Year Maps”, Astrophys. J. Lett., 396, L1–L5, (1992). [External LinkDOI], [External LinkADS].
346 Spergel, D.N., Bean, R., Doré, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., and Wright, E.L., “Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology”, Astrophys. J. Suppl. Ser., 170, 377–408, (2007). [External Linkastro-ph/0603449].
347 Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5, (2003). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2003-5.
348 Stappers, B.W., Kramer, M., Lyne, A.G., D’Amico, N., and Jessner, A., “The European Pulsar Timing Array”, Chin. J. Astron. Astrophys. Suppl., 6, 298–303, (2006). [External LinkADS].
349 Steigman, G., “Primordial Nucleosynthesis in the Precision Cosmology Era”, Annu. Rev. Nucl. Part. Sci., 57, 463–491, (2007). [External LinkDOI], [External LinkarXiv:0712.1100].
350 Stergioulas, N., and Friedman, J.L., “Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars”, Astrophys. J., 492, 301–322, (1998). [External LinkDOI], [External Linkgr-qc/9705056].
351 Stroeer, A., Gair, J.R., and Vecchio, A., “Automatic Bayesian inference for LISA data analysis strategies”, in Merkowitz, S.M., and Livas, J.C., eds., Laser Interferometer Space Antenna, 6th International LISA Symposium, Greenbelt, Maryland, 19 – 23 June 2006, AIP Conference Proceedings, vol. 873, pp. 444–451, (American Institute of Physics, Melville, NY, 2006). [External Linkgr-qc/0609010].
352 Stroeer, A., and Vecchio, A., “The LISA verification binaries”, Class. Quantum Grav., 23, S809–S818, (2006). [External Linkastro-ph/0605227].
353 Sumner, T.J., “Experimental Searches for Dark Matter”, Living Rev. Relativity, 5, lrr-2002-4, (2002). URL (cited on 07 December 2004):
http://www.livingreviews.org/lrr-2002-4.
354 Sutherland, W., “Gravitational Microlensing - A Report on the MACHO Project”, Rev. Mod. Phys., 71, 421–434, (1999). [External Linkastro-ph/9811185].
355 Tagoshi, H., Mukhopadhyay, H., Dhurandhar, S., Sago, N., Takahashi, H., and Kanda, N., “Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent strategies by correlated detectors”, Phys. Rev. D, 75, 087306, (2007). [External LinkDOI], [External Linkgr-qc/0702019].
356 Tagoshi, H., Shibata, M., Tanaka, T., and Sasaki, M., “Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v8) beyond the quadrupole formula”, Phys. Rev. D, 54, 1439–1459, (1996). [External Linkgr-qc/9603028].
357 “TAMA300 Project”, project homepage, National Astronomical Observatory, Japan. URL (cited on 08 November 2007):
External Linkhttp://tamago.mtk.nao.ac.jp/.
358 Taylor, J.H., and Weisberg, J.M., “Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16”, Astrophys. J., 345, 434–450, (1989). [External LinkADS].
359 Taylor Jr, J.H., “Nobel Lecture: Binary pulsars and relativistic gravity”, Rev. Mod. Phys., 66, 711–719, (1994). [External LinkDOI]. Related online version (cited on 26 February 2009):
External Linkhttp://nobelprize.org/nobel_prizes/physics/laureates/1993/taylor-lecture.html.
360 Teukolsky, S.A., “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations”, Phys. Rev. Lett., 29, 1114–1118, (1972). [External LinkDOI].
361 Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino-field perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI].
362 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987).
363 Thorne, K.S., “Gravitational waves”, in Kolb, E.W., and Peccei, R., eds., Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Proceedings of the 1994 Snowmass Summer Study, Snowmass, Colorado, June 29 – July 14, 1994, pp. 160–184, (World Scientific, Singapore; River Edge, NJ, 1995).
364 Trias, M., and Sintes, A.M., “LISA observations of supermassive black holes: parameter estimation using full post-Newtonian inspiral waveforms”, Phys. Rev. D, 77, 024030, (2008). [External LinkDOI], [External LinkarXiv:0707.4434].
365 Tsubono, K., “300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments, First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp. 112–114, (World Scientific, Singapore; River Edge, NJ, 1995).
366 Tsubono, K. et al. (The TAMA Collaboration), “TAMA Project”, in Tsubono, K., Fujimoto, M.-K., and Kuroda, K., eds., Gravitational Wave Detection, Proceedings of the TAMA International Workshop held at Saitama, Japan, November 12 – 14, 1996), Frontiers Science Series, vol. 20, pp. 183–191, (Universal Academy Press, Tokyo, 1997). [External LinkADS].
367 Umstatter, R. et al., “Bayesian modeling of source confusion in LISA data”, Phys. Rev. D, 72, 022001, (2005). [External LinkDOI], [External Linkgr-qc/0506055].
368 Ungarelli, C., and Vecchio, A., “High energy physics and the very early universe with LISA”, Phys. Rev. D, 63, 064030, 1–14, (2001). [External LinkDOI].
369 Ungarelli, C., and Vecchio, A., “Studying the anisotropy of the gravitational wave stochastic background with LISA”, Phys. Rev. D, 64, 121501, (2001). [External Linkastro-ph/0106538].
370 Ushomirsky, G., Cutler, C., and Bildsten, L., “Deformations of accreting neutron star crusts and gravitational wave emission”, Mon. Not. R. Astron. Soc., 319, 902–932, (2000). [External LinkDOI], [External Linkastro-ph/0001136].
371 Vahlbruch, H., Mehmet, M., Chelkowski, S., Hage, B., Franzen, A., Lastzka, N., Gossler, S., Danzmann, K., and Schnabel, R., “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction”, Phys. Rev. Lett., 100, 033602, (2008). [External LinkDOI], [External LinkarXiv:0706.1431].
372 Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001, (2008). [External LinkDOI], [External Linkgr-qc/0703086].
373 Valtonen, M.J., Lehto, H.J., Nilsson, K., Heidt, J., Takalo, L.O., Sillanpää, A., Villforth, C., Kidger, M., Poyner, G., Pursimo, T., Zola, S., Wu, J.-H., Zhou, X., Sadakane, K., Drozdz, M., Koziel, D., Marchev, D., Ogloza, W., Porowski, C., Siwak, M., Stachowski, G., Winiarski, M., Hentunen, V.-P., Nissinen, M., Liakos, A., and Dogru, S., “A massive binary black-hole system in OJ 287 and a test of general relativity”, Nature, 452, 851–853, (2008). [External LinkDOI].
374 Van Den Broeck, C., and Sengupta, A.S., “Binary black hole spectroscopy”, Class. Quantum Grav., 24, 1089–1114, (2007). [External LinkDOI], [External Linkgr-qc/0610126].
375 Van Den Broeck, C., and Sengupta, A.S., “Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral. I. Signal-to-noise ratios”, Class. Quantum Grav., 24, 155–176, (2007). [External Linkgr-qc/0607092].
376 van der Klis, M., “Kilohertz quasi-periodic oscillations in low-mass X-ray binaries”, in Buccheri, R., van Paradijs, J., and Alpar, M.A., eds., The Many Faces of Neutron Stars, Proceedings of the NATO Advanced Study Institute, Lipary, Italy, September 30 – October 11, 1996, NATO ASI Series, vol. 515, pp. 337–368, (Kluwer Academic Publishers, Dordrecht, 1998).
377 Veitch, J., and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection”, Class. Quantum Grav., 25, 184010, (2008). [External LinkDOI], [External LinkarXiv:0807.4483].
378 Veitch, J., and Vecchio, A., “A Bayesian approach to the follow-up of candidate gravitational wave signals”, Phys. Rev. D, 78, 022001, (2008). [External LinkDOI], [External LinkarXiv:0801.4313].
379 Vilenkin, A., and Shellard, E.P.S., Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1994).
380 “VIRGO Project Home Page”, project homepage, VIRGO Project. URL (cited on 08 November 2007):
External Linkhttp://wwwcascina.virgo.infn.it/.
381 Vishveshwara, C.V., “Scattering of gravitational radiation by a Schwarzschild black-hole”, Nature, 227, 936–938, (1970). [External LinkDOI].
382 Vishveshwara, C.V., “Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870–2879, (1970).
383 Wagoner, R.V., “Gravitational radiation from accreting neutron stars”, Astrophys. J., 278, 345–348, (1984). [External LinkDOI], [External LinkADS].
384 Watson, A.A., “Observations of ultra-high energy cosmic rays”, J. Phys.: Conf. Ser., 39, 365–371, (2006). [External Linkastro-ph/0511800].
385 Watts, A., Krishnan, B., Bildsten, L., and Schutz, B.F., “Detecting gravitational wave emission from the known accreting neutron stars”, Mon. Not. R. Astron. Soc., accepted, (2008). [External LinkarXiv:0803.4097].
386 Watts, A.L., and Strohmayer, T.E., “High frequency oscillations during magnetar flares”, Astrophys. Space Sci., 308, 625–629, (2007). [External Linkastro-ph/0608476].
387 Weber, J., “Gravitational radiation”, Phys. Rev. Lett., 18, 498–501, (1967). [External LinkDOI].
388 Weisberg, J.M., and Taylor, J.H., “The Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis”, in Rasio, F.A., and Stairs, I.H., eds., Binary Radio Pulsars, Proceedings of a meeting held at the Aspen Center for Physics, USA, 12 – 16 January 2004, ASP Conference Series, vol. 328, pp. 25–32, (Astronomical Society of the Pacific, San Francisco, 2005). [External Linkastro-ph/0407149].
389 Wen, L., and Gair, J.R, “Detecting extreme mass ratio inspirals with LISA using time-frequency methods”, Class. Quantum Grav., 22, S445–S452, (2005). [External LinkDOI], [External Linkgr-qc/0502100].
390 Wen, L., and Schutz, B.F., “Coherent network detection of gravitational waves: the redundancy veto”, Class. Quantum Grav., 22, S1321–S1336, (2005). [External Linkgr-qc/0508042].
391 Whelan, J.T., Daw, E., Heng, I.S., McHugh, M.P., and Lazzarini, A., “Phenomenological template family for black-hole coalescence waveforms”, Class. Quantum Grav., 20, S689, (2003). [External Linkgr-qc/0308045].
392 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition.
393 Will, C.M., “Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068, (1998). [External LinkDOI], [External Linkgr-qc/9709011].