References

1 Abrahams, A.M., and Evans, C.R., “Gauge-invariant treatment of gravitational radiation near the source: Analysis and numerical simulations”, Phys. Rev. D, 42, 2585–2594, (1990). [External LinkDOI], [External LinkADS].
2 Abrahams, A.M., and Price, R.H., “Applying black hole perturbation theory to numerically generated spacetimes”, Phys. Rev. D, 53, 1963–1971, (1996). [External LinkDOI], [External LinkADS].
3 Abrahams, A.M., Rezzolla, L., Rupright, M.E., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Cook, G.B., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Huq, M.F., Kidder, L.E., Klasky, S.A., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Saied, F., Saylor, P.E., Scheel, M.A., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (The Binary Black Hole Grand Challenge Alliance), “Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching”, Phys. Rev. Lett., 80, 1812–1815, (1998). [External LinkDOI], [External LinkADS].
4 Abrahams, A.M., Shapiro, S.L., and Teukolsky, S.A., “Calculation of gravitational waveforms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes”, Phys. Rev. D, 51, 4295–4301, (1995). [External LinkDOI], [External LinkADS].
5 Alcubierre, M., Allen, G., Bona, C., Fiske, D., Goodale, T., Guzmán, F.S., Hawke, I., Hawley, S.H., Husa, S., Koppitz, M., Lechner, C., Pollney, D., Rideout, D., Salgado, M., Schnetter, E., Seidel, E., Shinkai, H.-a., Shoemaker, D., Szilágyi, B., Takahashi, R., and Winicour, J., “Towards standard testbeds for numerical relativity”, Class. Quantum Grav., 21, 589–613, (2004). [External LinkDOI], [External LinkADS].
6 Anderson, J.L., “Gravitational radiation damping in systems with compact components”, Phys. Rev. D, 36, 2301–2313, (1987). [External LinkDOI], [External LinkADS].
7 Anderson, J.L., and Hobill, D.W., “Matched analytic-numerical solutions of wave equations”, in J.M., Centrella., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the Workshop held at Drexel University, October 7 – 11, 1985, pp. 389–410, (Cambridge University Press, Cambridge, New York, 1986). [External LinkADS].
8 Anderson, J.L., and Hobill, D.W., “Mixed analytic-numerical solutions for a simple radiating system”, Gen. Relativ. Gravit., 19, 563–580, (1987). [External LinkDOI], [External LinkADS].
9 Anderson, J.L., and Hobill, D.W., “A study of nonlinear radiation damping by matching analytic and numerical solutions”, J. Comput. Phys., 75, 283–299, (1988). [External LinkDOI], [External LinkADS].
10 Anderson, J.L., Kates, R.E., Kegeles, L.S., and Madonna, R.G., “Divergent integrals of post-Newtonian gravity: Nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching”, Phys. Rev. D, 25, 2038–2048, (1982). [External LinkDOI], [External LinkADS].
11 Anninos, P., Daues, G., Massó, J., Seidel, E., and Suen, W.-M., “Horizon boundary conditions for black hole spacetimes”, Phys. Rev. D, 51, 5562–5578, (1995). [External LinkDOI], [External LinkADS].
12 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, 1962). [External LinkDOI], [External LinkADS].
13 Babiuc, M., Szilágyi, B., Hawke, I., and Zlochower, Y., “Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22, 5089–5107, (2005). [External LinkDOI], [External LinkADS].
14 Babiuc, M.C., Bishop, N.T., Szilágyi, B., and Winicour, J., “Strategies for the characteristic extraction of gravitational waveforms”, arXiv e-print, (2008). [External LinkarXiv:0808.0861].
15 Babiuc, M.C., Husa, S., Alic, D., Hinder, I., Lechner, C., Schnetter, E., Szilágyi, B., Zlochower, Y., Dorband, N., Pollney, D., and Winicour, J., “Implementation of standard testbeds for numerical relativity”, Class. Quantum Grav., 25, 125012, 1–38, (2008). [External LinkDOI], [External LinkADS].
16 Babiuc, M.C., Kreiss, H.-O., and Winicour, J., “Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, 1–13, (2007). [External LinkDOI], [External LinkADS].
17 Baker, J., Campanelli, M., Lousto, C.O., and Takahashi, R., “Modeling gravitational radiation from coalescing binary black holes”, Phys. Rev. D, 65, 124012, 23, (2002). [External LinkDOI], [External LinkADS].
18 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J., “Binary black hole merger dynamics and waveforms”, Phys. Rev. D, 73, 104002, 1–11, (2006). [External LinkDOI], [External LinkADS].
19 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102, (2006). [External LinkDOI], [External LinkADS].
20 Barreto, W., and Da Silva, A., “Gravitational collapse of a charged and radiating fluid ball in the diffusion limit”, Gen. Relativ. Gravit., 28, 735–747, (1996). [External LinkDOI], [External LinkADS].
21 Barreto, W., and Da Silva, A., “Self-similar and charged spheres in the diffusion approximation”, Class. Quantum Grav., 16, 1783–1792, (1999). [External LinkDOI], [External LinkADS].
22 Barreto, W., Da Silva, A., Gómez, R., Lehner, L., Rosales, L., and Winicour, J., “Three-dimensional Einstein–Klein–Gordon system in characteristic numerical relativity”, Phys. Rev. D, 71, 064028, 1–12, (2005). [External LinkDOI], [External LinkADS].
23 Barreto, W., Gómez, R., Lehner, L., and Winicour, J., “Gravitational instability of a kink”, Phys. Rev. D, 54, 3834–3839, (1996). [External LinkDOI], [External LinkADS].
24 Barreto, W., Peralta, C., and Rosales, L., “Equation of state and transport processes in self-similar spheres”, Phys. Rev. D, 59, 024008, 1–4, (1998). [External LinkADS].
25 Bartnik, R., “Einstein equations in the null quasispherical gauge”, Class. Quantum Grav., 14, 2185–2194, (1997). [External LinkDOI], [External LinkADS].
26 Bartnik, R., “Shear-free null quasi-spherical space-times”, J. Math. Phys., 38, 5774–5791, (1997). [External LinkDOI], [External LinkADS].
27 Bartnik, R., “Interaction of gravitational waves with a black hole”, in De Wit, D., Bracken, A.J., Gould, M.D., and Pearce, P.A., eds., XIIth International Congress of Mathematical Physics (ICMP 1997), Proceedings of the Congress held at the University of Queensland, Brisbane, Australia, July 1997, p. 3, (International Press, Somerville, 1999).
28 Bartnik, R., “Assessing accuracy in a numerical Einstein solver”, in Weinstein, G., and Weikard, R., eds., Differential Equations and Mathematical Physics, Proceedings of an international conference held at the University of Alabama in Birmingham, March 16 – 20, 1999, AMS/IP Studies in Advanced Mathematics, vol. 16, p. 11, (American Mathematical Society; International Press, Providence, 2000).
29 Bartnik, R., and Norton, A.H., “Numerical solution of the Einstein equations”, in Noye, B.J., Teubner, M.D., and Gill, A.W., eds., Computational Techniques and Applications: CTAC97, p. 91, (World Scientific, Singapore, 1998).
30 Bartnik, R., and Norton, A.H., “Numerical Methods for the Einstein Equations in Null Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [External LinkDOI].
31 Bartnik, R., and Norton, A.H., “Numerical Experiments at Null Infinity”, in Friedrich, H., and Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, vol. 604, pp. 313–326, (Springer, Berlin; New York, 2002). [External LinkADS].
32 Baumgarte, T.W., and Shapiro, S.L., “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, 1–7, (1998). [External LinkDOI], [External LinkADS].
33 Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing Supernova Collapse to Neutron Stars and Black Holes”, Astrophys. J., 443, 717–734, (1995). [External LinkDOI], [External LinkADS].
34 Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing the Delayed Collapse of Hot Neutron Stars to Black Holes”, Astrophys. J., 458, 680–691, (1996). [External LinkDOI], [External LinkADS].
35 Bayliss, A., and Turkel, E., “Radiation boundary conditions for wavelike equations”, Commun. Pure Appl. Math., 33, 707–725, (1980). [External LinkDOI], [External LinkADS].
36 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (cited on 20 July 2005):
http://www.livingreviews.org/lrr-2002-1.
37 Bičák, J., Reilly, P., and Winicour, J., “Boost-rotation symmetric gravitational null cone data”, Gen. Relativ. Gravit., 20, 171–181, (1988). [External LinkDOI], [External LinkADS].
38 Bishop, N.T., “Some aspects of the characteristic initial value problem in numerical relativity”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, pp. 20–33, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
39 Bishop, N.T., “Numerical relativity: combining the Cauchy and characteristic initial value problems”, Class. Quantum Grav., 10, 333–341, (1993). [External LinkDOI], [External LinkADS].
40 Bishop, N.T., “Linearized solutions of the Einstein equations within a Bondi–Sachs framework, and implications for boundary conditions in numerical simulations”, Class. Quantum Grav., 22, 2393–2406, (2005). [External LinkDOI], [External LinkADS].
41 Bishop, N.T., and Deshingkar, S.S., “New approach to calculating the news”, Phys. Rev. D, 68, 024031, 1–6, (2003). [External LinkDOI], [External LinkADS].
42 Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P., and Winicour, J., “Cauchy-Characteristic Matching: A New Approach to Radiation Boundary Conditions”, Phys. Rev. Lett., 76, 4303–4306, (1996). [External LinkDOI], [External LinkADS].
43 Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P., and Winicour, J., “Cauchy-Characteristic Evolution and Waveforms”, J. Comput. Phys., 136, 140–167, (1997). [External LinkDOI], [External LinkADS]. Erratum J. Comput. Phys., 148, 299–301, (1997), DOI:10.1006/jcph.1998.6139.
44 Bishop, N.T., Gómez, R., Husa, S., Lehner, L., and Winicour, J., “Numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole”, Phys. Rev. D, 68, 084015, 1–12, (2003). [External LinkDOI], [External LinkADS].
45 Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B., and Winicour, J., “Cauchy-characteristic matching”, in Bhawal, B., and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [External LinkADS].
46 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., and Winicour, J., “High-powered gravitational news”, Phys. Rev. D, 56, 6298–6309, (1997). [External LinkDOI], [External LinkADS].
47 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., and Winicour, J., “The incorporation of matter into characteristic numerical relativity”, Phys. Rev. D, 60, 024005, 1–11, (1999). [External LinkDOI], [External LinkADS].
48 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., and Winicour, J., “Characteristic initial data for a star orbiting a black hole”, Phys. Rev. D, 72, 024002, 1–16, (2005). [External LinkDOI], [External LinkADS].
49 Bishop, N.T., Gómez, R., Lehner, L., and Winicour, J., “Cauchy-characteristic extraction in numerical relativity”, Phys. Rev. D, 54, 6153–6165, (1996). [External LinkDOI], [External LinkADS].
50 Bishop, N.T., and Venter, L.R., “Kerr metric in Bondi–Sachs form”, Phys. Rev. D, 73, 084023, 1–6, (2006). [External LinkDOI], [External LinkADS].
51 Bizoń, P., “Equivariant Self-Similar Wave Maps from Minkowski Spacetime into 3-Sphere”, Commun. Math. Phys., 215, 45–56, (2000). [External LinkDOI], [External LinkADS].
52 Blaschak, J.G., and Kriegsmann, G.A., “A comparative study of absorbing boundary conditions”, J. Comput. Phys., 77, 109–139, (1988). [External LinkDOI], [External LinkADS].
53 Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535–535, (1960). [External LinkDOI], [External LinkADS].
54 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). [External LinkDOI], [External LinkADS].
55 Brady, P.R., Chambers, C.M., and Gonçalves, S.M.C.V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [External LinkDOI], [External LinkADS].
56 Brady, P.R., Chambers, C.M., Krivan, W., and Laguna, P., “Telling tails in the presence of a cosmological constant”, Phys. Rev. D, 55, 7538–7545, (1997). [External LinkDOI], [External LinkADS].
57 Brady, P.R., and Smith, J.D., “Black Hole Singularities: A Numerical Approach”, Phys. Rev. Lett., 75, 1256–1259, (1995). [External LinkDOI], [External LinkADS].
58 Browning, G.L., Hack, J.J., and Swarztrauber, P.N., “A Comparison of Three Numerical Methods for Solving Differential Equations on the Sphere”, Mon. Weather Rev., 117, 1058–1075, (1989). [External LinkDOI], [External LinkADS].
59 Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). [External LinkDOI], [External LinkADS].
60 Burko, L.M., “Structure of the Black Hole’s Cauchy-Horizon Singularity”, Phys. Rev. Lett., 79, 4958–4961, (1997). [External LinkDOI], [External LinkADS].
61 Burko, L.M., and Ori, A., “Late-time evolution of nonlinear gravitational collapse”, Phys. Rev. D, 56, 7820–7832, (1997). [External LinkDOI], [External LinkADS].
62 Butler, D.S., “The Numerical Solution of Hyperbolic Systems of Partial Differential Equations in Three Independent Variables”, Proc. R. Soc. London, Ser. A, 255, 232–252, (1960). [External LinkDOI], [External LinkADS].
63 Calabrese, G., Lehner, L., and Tiglio, M., “Constraint-preserving boundary conditions in numerical relativity”, Phys. Rev. D, 65, 104031, 1–13, (2002). [External LinkDOI], [External LinkADS].
64 Calabrese, G., Pullin, J., Reula, O., Sarbach, O., and Tiglio, M., “Well Posed Constraint-Preserving Boundary Conditions for the Linearized Einstein Equations”, Commun. Math. Phys., 240, 377–395, (2003). [External LinkDOI], [External LinkADS].
65 Campanelli, M., Gómez, R., Husa, S., Winicour, J., and Zlochower, Y., “Close limit from a null point of view: The advanced solution”, Phys. Rev. D, 63, 124013, 1–15, (2001). [External LinkDOI], [External LinkADS].
66 Campanelli, M., Lousto, C.O., Marronetti, P., and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101, (2006). [External LinkDOI], [External LinkADS].
67 Choptuik, M.W., “ ‘Critical’ behavior in massless scalar field collapse”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, p. 202, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
68 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [External LinkDOI], [External LinkADS].
69 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [External LinkDOI], [External LinkADS].
70 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [External LinkDOI].
71 Christodoulou, D., “Bounded Variation Solutions of the Spherically Symmetric Einstein-Scalar Field Equations”, Commun. Pure Appl. Math., 46, 1131–1220, (1993). [External LinkDOI].
72 Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994).
73 Christodoulou, D., “The Instability of Naked Singularities in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 149, 183–217, (1999).
74 Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class. Quantum Grav., 16, A23–A35, (1999). [External LinkDOI], [External LinkADS].
75 Christodoulou, D., and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, (Princeton University Press, Princeton, 1993).
76 Clarke, C.J.S., and d’Inverno, R.A., “Combining Cauchy and characteristic numerical evolutions in curved coordinates”, Class. Quantum Grav., 11, 1463–1448, (1994). [External LinkDOI], [External LinkADS].
77 Clarke, C.J.S., d’Inverno, R.A., and Vickers, J.A., “Combining Cauchy and characteristic codes. I. The vacuum cylindrically symmetric problem”, Phys. Rev. D, 52, 6863–6867, (1995). [External LinkDOI], [External LinkADS].
78 Cook, G.B., Huq, M.F., Klasky, S.A., Scheel, M.A., Abrahams, A.M., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Kidder, L.E., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Rezzolla, L., Rupright, M.E., Saied, F., Saylor, P.E., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Suen, W-M., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (Binary Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision”, Phys. Rev. Lett., 80, 2512–2516, (1998). [External LinkDOI], [External LinkADS].
79 Corkill, R.W., and Stewart, J.M., “Numerical Relativity. II. Numerical Methods for the Characteristic Initial Value Problem and the Evolution of the Vacuum Field Equations for Space- Times with Two Killing Vectors”, Proc. R. Soc. London, Ser. A, 386, 373–391, (1983). [External LinkDOI], [External LinkADS].
80 de Moerloose, J., and de Zutter, D., “Surface integral representation radiation boundary condition for the FDTD method”, IEEE Trans. Ant. Prop., 41, 890–896, (1993). [External LinkDOI], [External LinkADS].
81 de Oliveira, H.P., and Rodrigues, E.L., “A Galerkin approach for the Bondi problem”, arXiv e-print, (2008). [External LinkarXiv:0809.2837].
82 Derry, L., Isaacson, R.A., and Winicour, J., “Shear-Free Gravitational Radiation”, Phys. Rev., 185, 1647–1655, (1969). [External LinkDOI], [External LinkADS].
83 d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, (Cambridge University Press, Cambridge; New York, 1992).
84 d’Inverno, R.A., Dubal, M.R., and Sarkies, E.A., “Cauchy-characteristic matching for a family of cylindrical solutions possessing both gravitational degrees of freedom”, Class. Quantum Grav., 17, 3157–3170, (2000). [External LinkDOI], [External LinkADS].
85 d’Inverno, R.A., and Vickers, J.A., “Combining Cauchy and characteristic codes. III. The interface problem in axial symmetry”, Phys. Rev. D, 54, 4919–4928, (1996). [External LinkDOI], [External LinkADS].
86 d’Inverno, R.A., and Vickers, J.A., “Combining Cauchy and characteristic codes. IV. The characteristic field equations in axial symmetry”, Phys. Rev. D, 56, 772–784, (1997). [External LinkDOI], [External LinkADS].
87 Dubal, M.R., d’Inverno, R.A., and Clarke, C.J.S., “Combining Cauchy and characteristic codes. II. The interface problem for vacuum cylindrical symmetry”, Phys. Rev. D, 52, 6868–6881, (1995). [External LinkDOI], [External LinkADS].
88 Duff, G.F.D., “Mixed problems for linear systems of first order equations”, Can. J. Math., 10, 127–160, (1958).
89 Engquist, B., and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Math. Comput., 31(139), 629–651, (1977). [External LinkADS].
90 Fletcher, S.J., and Lun, A.W.C., “The Kerr spacetime in generalized Bondi–Sachs coordinates”, Class. Quantum Grav., 20, 4153–4167, (2003). [External LinkDOI], [External LinkADS].
91 Font, J.A., “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (cited on 03 October 2008):
http://www.livingreviews.org/lrr-2008-7.
92 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL (cited on 20 October 2005):
http://www.livingreviews.org/lrr-2004-1.
93 Friedman, J.L., Schleich, K., and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489, (1993). [External LinkDOI], [External LinkADS].
94 Friedrich, H., “The Asymptotic Characteristic Initial Value Problem for Einstein’s Vacuum Field Equations as an Initial Value Problem for a First-Order Quasilinear Symmetric Hyperbolic System”, Proc. R. Soc. London, Ser. A, 378, 401–421, (1981). [External LinkDOI], [External LinkADS].
95 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). [External LinkADS].
96 Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”, Commun. Math. Phys., 91, 445–472, (1983). [External LinkDOI], [External LinkADS].
97 Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451–1469, (1996). [External LinkDOI], [External LinkADS].
98 Friedrich, H., and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field Equation”, Commun. Math. Phys., 201, 619–655, (1999). [External LinkDOI], [External LinkADS].
99 Friedrich, H., and Stewart, J.M., “Characteristic Initial Data and Wavefront Singularities in General Relativity”, Proc. R. Soc. London, Ser. A, 385, 345–371, (1983). [External LinkDOI], [External LinkADS].
100 Frittelli, S., and Gómez, R., “Einstein boundary conditions for the 3+1 Einstein equations”, Phys. Rev. D, 68, 044014, 1–6, (2003). [External LinkDOI], [External LinkADS].
101 Frittelli, S., and Gómez, R., “Initial-boundary-value problem of the self-gravitating scalar field in the Bondi–Sachs gauge”, Phys. Rev. D, 75, 044021, 1–15, (2007). [External LinkDOI], [External LinkADS].
102 Frittelli, S., and Lehner, L., “Existence and uniqueness of solutions to characteristic evolution in Bondi–Sachs coordinates in general relativity”, Phys. Rev. D, 59, 084012, 1–9, (1999). [External LinkDOI], [External LinkADS].
103 Gallo, E., Lehner, L., and Moreschi, O.M., “Estimating total momentum at finite distances”, Phys. Rev. D, 78, 084027, 1–11, (2008). [External LinkDOI], [External LinkADS].
104 Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). [External LinkDOI], [External LinkADS].
105 Garfinkle, D., Cutler, C., and Duncan, G.C., “Choptuik scaling in six dimensions”, Phys. Rev. D, 60, 104007, 1–5, (1999). [External LinkDOI], [External LinkADS].
106 Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918–924, (1971). [External LinkDOI].
107 Givoli, D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94, 1–29, (1991). [External LinkDOI], [External LinkADS].
108 Gnedin, M.L., and Gnedin, N.Y., “Destruction of the Cauchy horizon in the Reissner–Nordström black hole”, Class. Quantum Grav., 10, 1083–1102, (1993). [External LinkDOI], [External LinkADS].
109 Goldwirth, D.S., and Piran, T., “Gravitational collapse of massless scalar field and cosmic censorship”, Phys. Rev. D, 36, 3575–3581, (1987). [External LinkDOI], [External LinkADS].
110 Gómez, R., “Gravitational waveforms with controlled accuracy”, Phys. Rev. D, 64, 024007, 1–8, (2001). [External LinkDOI], [External LinkADS].
111 Gómez, R., Barreto, W., and Frittelli, S., “Framework for large-scale relativistic simulations in the characteristic approach”, Phys. Rev. D, 76, 124029, 1–22, (2007). [External LinkDOI], [External LinkADS].
112 Gómez, R., and Frittelli, S., “First-order quasilinear canonical representation of the characteristic formulation of the Einstein equations”, Phys. Rev. D, 68, 084013, 1–6, (2003). [External LinkDOI], [External LinkADS].
113 Gómez, R., Husa, S., Lehner, L., and Winicour, J., “Gravitational waves from a fissioning white hole”, Phys. Rev. D, 66, 064019, 1–8, (2002). [External LinkDOI], [External LinkADS].
114 Gómez, R., Husa, S., and Winicour, J., “Complete null data for a black hole collision”, Phys. Rev. D, 64, 024010, 1–20, (2001). [External LinkDOI], [External LinkADS].
115 Gómez, R., Laguna, P., Papadopoulos, P., and Winicour, J., “Cauchy-characteristic evolution of Einstein–Klein–Gordon systems”, Phys. Rev. D, 54, 4719–4727, (1996). [External LinkDOI], [External LinkADS].
116 Gómez, R., Lehner, L., Marsa, R.L., and Winicour, J., “Moving black holes in 3D”, Phys. Rev. D, 57, 4778–4788, (1998). [External LinkDOI], [External LinkADS].
117 Gómez, R., Lehner, L., Marsa, R.L., Winicour, J., Abrahams, A.M., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Cook, G.B., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Haupt, T., Huq, M.F., Kidder, L.E., Klasky, S.A., Laguna, P., Landry, W., Lenaghan, J., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Rezzolla, L., Rupright, M.E., Saied, F., Saylor, P.E., Scheel, M.A., Seidel, E., Shapiro, S.L., Shoemaker, D., Smarr, L.L., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., and York Jr, J.W. (The Binary Black Hole Grand Challenge Alliance), “Stable characteristic evolution of generic three-dimensional single-black-hole spacetimes”, Phys. Rev. Lett., 80, 3915–3918, (1998). [External LinkDOI], [External LinkADS].
118 Gómez, R., Lehner, L., Papadopoulos, P., and Winicour, J., “The eth formalism in numerical relativity”, Class. Quantum Grav., 14, 977–990, (1997). [External LinkDOI], [External LinkADS].
119 Gómez, R., Marsa, R.L., and Winicour, J., “Black hole excision with matching”, Phys. Rev. D, 56, 6310–6319, (1997). [External LinkDOI], [External LinkADS].
120 Gómez, R., Papadopoulos, P., and Winicour, J., “Null cone evolution of axisymmetric vacuum space-times”, J. Math. Phys., 35, 4184–4204, (1994). [External LinkDOI], [External LinkADS].
121 Gómez, R., Reilly, P., Winicour, J., and Isaacson, R.A., “Post-Newtonian behavior of the Bondi mass”, Phys. Rev. D, 47, 3292–3302, (1993). [External LinkDOI], [External LinkADS].
122 Gómez, R., and Winicour, J., “Asymptotics of gravitational collapse of scalar waves”, J. Math. Phys., 33, 1445–1457, (1992). [External LinkDOI], [External LinkADS].
123 Gómez, R., and Winicour, J., “Gravitational wave forms at finite distances and at null infinity”, Phys. Rev. D, 45, 2776–2782, (1992). [External LinkDOI], [External LinkADS].
124 Gómez, R., Winicour, J., and Isaacson, R.A., “Evolution of scalar fields from characteristic data”, J. Comput. Phys., 98, 11–25, (1992). [External LinkDOI], [External LinkADS].
125 Gómez, R., Winicour, J., and Schmidt, B.G., “Newman–Penrose constants and the tails of self-gravitating waves”, Phys. Rev. D, 49, 2828–2836, (1994). [External LinkDOI], [External LinkADS].
126 Grote, M.J., and Keller, J.B., “Nonreflecting Boundary Conditions for Maxwell’s Equations”, J. Comput. Phys., 139, 327–342, (1998). [External LinkDOI].
127 Gundlach, C., and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 10, lrr-2007-5, (1999). URL (cited on 03 October 2008):
http://www.livingreviews.org/lrr-2007-5.
128 Gundlach, C., and Martín-García, J.M., “Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations”, Phys. Rev. D, 70, 044032, 1–16, (2004). [External LinkDOI], [External LinkADS].
129 Gundlach, C., Price, R.H., and Pullin, J., “Late-time behavior of stellar collapse and explosions. I. Linearized perturbations”, Phys. Rev. D, 49, 883–889, (1994). [External LinkDOI], [External LinkADS].
130 Gundlach, C., Price, R.H., and Pullin, J., “Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution”, Phys. Rev. D, 49, 890–899, (1994). [External LinkDOI], [External LinkADS].
131 Gustafsson, B., and Kreiss, H.-O., “Boundary conditions for time dependent problems with an artificial boundary”, J. Comput. Phys., 30, 331–351, (1979). [External LinkDOI], [External LinkADS].
132 Gustafsson, B., Kreiss, H.-O., and Oliger, J., Time Dependent Problems and Difference Methods, (Wiley, New York, 1995).
133 Hagstrom, T., and Hariharan, S.I., “Accurate Boundary Conditions for Exterior Problems in Gas Dynamics”, Math. Comput., 51, 581–597, (1988). [External LinkADS].
134 Hamadé, R.S., Horne, J.H., and Stewart, J.M., “Continuous self-similarity and S-duality”, Class. Quantum Grav., 13, 2241–2253, (1996). [External LinkDOI], [External LinkADS].
135 Hamadé, R.S., and Stewart, J.M., “The spherically symmetric collapse of a massless scalar field”, Class. Quantum Grav., 13, 497–512, (1996). [External LinkDOI], [External LinkADS].
136 Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790, (1993). [External LinkDOI], [External LinkADS].
137 Hedstrom, G.W., “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30, 222–237, (1979). [External LinkDOI], [External LinkADS].
138 Higdon, R.L., “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation”, Math. Comput., 47, 437–459, (1986).
139 Hod, S., “High-order contamination in the tail gravitational collapse”, Phys. Rev. D, 60, 104053, 1–4, (1999). [External LinkDOI], [External LinkADS].
140 Hod, S., “Wave tails in non-trivial backgrounds”, Class. Quantum Grav., 18, 1311–1318, (2001). [External LinkDOI], [External LinkADS].
141 Hod, S., “Wave tails in time-dependent backgrounds”, Phys. Rev. D, 66, 024001, 1–4, (2002). [External LinkDOI], [External LinkADS].
142 Hod, S., and Piran, T., “Critical behavior and universality in gravitational collapse of a charged scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [External LinkDOI], [External LinkADS].
143 Hod, S., and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I”, Phys. Rev. D, 58, 024017, 1–6, (1998). [External LinkDOI], [External LinkADS].
144 Hod, S., and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. II”, Phys. Rev. D, 58, 024018, 1–6, (1998). [External LinkDOI], [External LinkADS].
145 Hod, S., and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. III. Nonlinear analysis”, Phys. Rev. D, 58, 024019, 1–6, (1998). [External LinkDOI], [External LinkADS].
146 Hod, S., and Piran, T., “Late-time tails in gravitational collapse of a self-interacting (massive) scalar-field and decay of a self-interacting scalar hair”, Phys. Rev. D, 58, 044018, 1–6, (1998). [External LinkDOI], [External LinkADS].
147 Hod, S., and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). [External LinkDOI], [External LinkADS].
148 Husa, S., “Numerical relativity with the conformal field equations”, in Fernádez-Jambrina, L., and González-Romero, L.M., eds., Current Trends in Relativistic Astrophysics: Theoretical, Numerical, Observational, Proceedings of the 24th Spanish Relativity Meeting on Relativistic Astrophysics, Madrid, 2001, Lecture Notes in Physics, vol. 617, pp. 159–192, (Springer, Berlin; New York, 2003). [External LinkADS].
149 Husa, S., Lechner, C., Pürrer, M., Thornburg, J., and Aichelburg, P.C., “Type II critical collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, 1–11, (2000). [External LinkDOI], [External LinkADS].
150 Husa, S., and Winicour, J., “Asymmetric merger of black holes”, Phys. Rev. D, 60, 084019, 1–13, (1999). [External LinkDOI], [External LinkADS].
151 Husa, S., Zlochower, Y., Gómez, R., and Winicour, J., “Retarded radiation from colliding black holes in the close limit”, Phys. Rev. D, 65, 084034, 1–14, (2002). [External LinkDOI], [External LinkADS].
152 Ipser, J.R., and Horwitz, G., “The Problem of Maximizing Functionals in Newtonian Stellar Dynamics, and its Relation to Thermodynamic and Dynamical Stability”, Astrophys. J., 232(3), 863–873, (1979). [External LinkDOI], [External LinkADS].
153 Isaacson, R.A., Welling, J.S., and Winicour, J., “Null cone computation of gravitational radiation”, J. Math. Phys., 24, 1824–1834, (1983). [External LinkDOI], [External LinkADS].
154 Israeli, M., and Orszag, S.A., “Approximation of radiation boundary conditions”, J. Comput. Phys., 41, 115–135, (1981). [External LinkDOI], [External LinkADS].
155 Jiang, H., and Wong, Y.S., “Absorbing boundary conditions for second-order hyperbolic equations”, J. Comput. Phys., 88, 205–231, (1990). [External LinkDOI], [External LinkADS].
156 Kates, R.E., and Kegeles, L.S., “Nonanalytic terms in the slow-motion expansion of a radiating scalar field on a Schwarzschild background”, Phys. Rev. D, 25, 2030–2037, (1982). [External LinkDOI], [External LinkADS].
157 Khan, K.A., and Penrose, R., “Scattering of Two Impulsive Gravitational Plane Waves”, Nature, 229, 185–186, (1971). [External LinkDOI], [External LinkADS].
158 Kreiss, H.-O., and Oliger, J., Methods for the approximate solution of time dependent problems, GARP Publications Series, 10, (World Meteorological Organization (WMO), International Council of Scientific Unions (ICSU), Geneva, 1973). Global Atmospheric Research Programme.
159 Kreiss, H.-O., and Ortiz, O.E., “Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations”, in Frauendiener, J., and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, vol. 604, pp. 359–370, (Springer, Berlin; New York, 2002). [External LinkDOI], [External LinkADS].
160 Kreiss, H.-O., Reula, O., Sarbach, O., and Winicour, J., “Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav., 24, 5973–5984, (2007). [External LinkDOI], [External LinkADS].
161 Kreiss, H.-O., Reula, O., Sarbach, O., and Winicour, J., “Boundary conditions for coupled quasilinear wave equations with application to isolated systems”, arXiv e-print, (2008). [External LinkarXiv:0807.3207].
162 Kreiss, H.-O., and Winicour, J., “Problems which are well posed in a generalized sense with applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [External LinkDOI], [External LinkADS].
163 Lehner, L., “A Dissipative Algorithm for Wave-like Equations in the Characteristic Formulation”, J. Comput. Phys., 149, 59–74, (1999). [External LinkDOI], [External LinkADS].
164 Lehner, L., “Matching characteristic codes: exploiting two directions”, Int. J. Mod. Phys. D, 9(4), 459–473, (2000). [External LinkDOI], [External LinkADS].
165 Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B., and Winicour, J., “Exact solutions for the intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005, 1–10, (1999). [External LinkDOI], [External LinkADS].
166 Lehner, L., Gómez, R., Husa, S., Szilágyi, B., Bishop, N.T., and Winicour, J., “Bagels Form When Black Holes Collide”, institutional homepage, Pittsburgh Supercomputing Center. URL (cited on 30 July 2005):
External Linkhttp://www.psc.edu/research/graphics/gallery/winicour.html.
167 Lehner, L., and Moreschi, O.M., “Dealing with delicate issues in waveform calculations”, Phys. Rev. D, 76, 124040, 1–12, (2007). [External LinkDOI], [External LinkADS].
168 Lindman, E.L., “ ‘Free-space’ boundary conditions for the time dependent wave equation”, J. Comput. Phys., 18, 66–78, (1975). [External LinkDOI], [External LinkADS].
169 Linke, F., Font, J.A., Janka, H.-T., Müller, E., and Papadopoulos, P., “Spherical collapse of supermassive stars: Neutrino emission and gamma-ray bursts”, Astron. Astrophys., 376, 568–579, (2001). [External LinkDOI], [External LinkADS].
170 Lousto, C.O., and Price, R.H., “Understanding initial data for black hole collisions”, Phys. Rev. D, 56, 6439–6457, (1997). [External LinkDOI], [External LinkADS].
171 Marsa, R.L., and Choptuik, M.W., “Black-hole-scalar-field interactions in spherical symmetry”, Phys. Rev. D, 54, 4929–4943, (1996). [External LinkDOI], [External LinkADS].
172 Matzner, R.A., Seidel, E., Shapiro, S.L., Smarr, L.L., Suen, W.-M., Teukolsky, S.A., and Winicour, J., “Geometry of a Black Hole Collision”, Science, 270, 941–947, (1995). [External LinkDOI], [External LinkADS].
173 May, M.M., and White, R.H., “Hydrodynamic Calculations of General-Relativistic Collapse”, Phys. Rev., 141, 1232–1241, (1966). [External LinkDOI], [External LinkADS].
174 Miller, J.C., and Motta, S., “Computations of spherical gravitational collapse using null slicing”, Class. Quantum Grav., 6, 185–193, (1989). [External LinkDOI], [External LinkADS].
175 Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I The exterior problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [External LinkDOI], [External LinkADS].
176 Müller Zum Hagen, H., and Seifert, H.-J., “On characteristic initial-value and mixed problems”, Gen. Relativ. Gravit., 8(4), 259–301, (1977). [External LinkDOI], [External LinkADS].
177 Nagar, A., and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetime”, Class. Quantum Grav., 22, R167–R192, (2005). [External LinkDOI], [External LinkADS]. Corrigendum Class. Quantum Grav., 23, 4297, (2006), DOI:10.1088/0264-9381/23/12/C01.
178 Nayfeh, A., Perturbation Methods, (Wiley, New York, 1973).
179 Newman, E.T., and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [External LinkDOI], [External LinkADS]. Errata: J. Math. Phys., 4, 998, (1963), DOI:10.1063/1.1704025.
180 Newman, E.T., and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys., 7, 863, (1966). [External LinkDOI], [External LinkADS].
181 Newman, E.T., and Penrose, R., “New Conservation Laws for Zero Rest-Mass Fields in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 305, 175–204, (1968). [External LinkDOI], [External LinkADS].
182 Oren, Y., and Piran, T., “Collapse of charged scalar fields”, Phys. Rev. D, 68, 044013, 1–12, (2003). [External LinkDOI], [External LinkADS].
183 Papadopoulos, P., “Nonlinear harmonic generation in finite amplitude black hole oscillations”, Phys. Rev. D, 65, 084016, 1–11, (2002). [External LinkDOI], [External LinkADS].
184 Papadopoulos, P., and Font, J.A., “Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes”, Phys. Rev. D, 61, 024015, 1–15, (2000). [External LinkDOI], [External LinkADS].
185 Papadopoulos, P., and Font, J.A., “Imprints of accretion on gravitational waves from black holes”, Phys. Rev. D, 63, 044016, 1–5, (2001). [External LinkDOI], [External LinkADS].
186 Papadopoulos, P.O., Algorithms for the gravitational characteristic initial value problem, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 1994). [External LinkADS].
187 Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68, (1963). [External LinkDOI], [External LinkADS].
188 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [External LinkADS].
189 Phillips, N.A., “A map projection system suitable for large-scale numerical weather prediction”, in Syono, S., ed., 75th Anniversary Volume, J. Meteorol. Soc. Japan, pp. 262–267, (Meteorological Society of Japan, Tokyo, 1957).
190 Piran, T., “Numerical Codes for Cylindrical General Relativistic Systems”, J. Comput. Phys., 35, 254–283, (1980). [External LinkDOI], [External LinkADS].
191 Piran, T., Safier, P.N., and Katz, J., “Cylindrical gravitational waves with two degrees of freedom: An exact solution”, Phys. Rev. D, 34(2), 331–332, (1986). [External LinkDOI], [External LinkADS].
192 Piran, T., Safier, P.N., and Stark, R.F., “General numerical solution of cylindrical gravitational waves”, Phys. Rev. D, 32, 3101–3107, (1985). [External LinkDOI], [External LinkADS].
193 Poisson, E., and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796–1809, (1990). [External LinkDOI], [External LinkADS].
194 Pollney, D., Algebraic and numerical techniques in general relativity, Ph.D. Thesis, (University of Southampton, Southampton, 2000).
195 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External LinkADS].
196 Pretorius, F., and Israel, W., “Quasi-spherical light cones of the Kerr geometry”, Class. Quantum Grav., 15, 2289–2301, (1998). [External LinkDOI], [External LinkADS].
197 Pretorius, F., and Lehner, L., “Adaptive mesh refinement for characteristic codes”, J. Comput. Phys., 198, 10–34, (2004). [External LinkDOI], [External LinkADS].
198 Price, R.H., “Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations”, Phys. Rev. D, 5, 2419–2438, (1972). [External LinkDOI], [External LinkADS].
199 Price, R.H., and Pullin, J., “Colliding black holes: The close limit”, Phys. Rev. Lett., 72, 3297–3300, (1994). [External LinkDOI], [External LinkADS].
200 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI], [External LinkADS].
201 Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J., and Szilágyi, B., “Characteristic evolutions in numerical relativity using six angular patches”, Class. Quantum Grav., 24, S237–S339, (2007). [External LinkDOI], [External LinkADS].
202 Renaut, R.A., “Absorbing boundary conditions, difference operators, and stability”, J. Comput. Phys., 102, 236–251, (1992). [External LinkDOI], [External LinkADS].
203 Rendall, A.D., “Local and Global Existence Theorems for the Einstein Equations”, Living Rev. Relativity, 8, lrr-2005-6, (2000). URL (cited on 03 October 2008):
http://www.livingreviews.org/lrr-2005-6.
204 Rezzolla, L., Abrahams, A.M., Matzner, R.A., Rupright, M.E., and Shapiro, S.L., “Cauchy-perturbative matching and outer boundary conditions: Computational studies”, Phys. Rev. D, 59, 064001, 1–17, (1999). [External LinkDOI], [External LinkADS].
205 Rinne, O., Lindblom, L., and Scheel, M.A., “Testing outer boundary treatments for the Einstein equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [External LinkDOI], [External LinkADS].
206 Ronchi, C., Iacono, R., and Paolucci, P.S., “The ‘Cubed Sphere’: A New Method for the Solution of Partial Differential Equations in Spherical Geometry”, J. Comput. Phys., 124, 93–114, (1996). [External LinkDOI].
207 Ruiz, M., Rinne, O., and Sarbach, O., “Outer boundary conditions for Einstein’s field equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [External LinkDOI], [External LinkADS].
208 Rupright, M.E., Abrahams, A.M., and Rezzolla, L., “Cauchy-perturbative matching and outer boundary conditions: Methods and tests”, Phys. Rev. D, 58, 044005, 1–9, (1998). [External LinkDOI], [External LinkADS].
209 Ryaben’kii, V., and Tsynkov, S.V., “An application of the difference potentials method to solving external problems in CFD”, in Hafez, M., and Oshima, K., eds., Computational Fluid Dynamics Review 1998, vol. 2, (World Scientific, Singapore; River Edge, 1998).
210 Sachs, R.K., “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851–2864, (1962). [External LinkDOI], [External LinkADS].
211 Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [External LinkDOI], [External LinkADS].
212 Sachs, R.K., “On the Characteristic Initial Value Problem in Gravitational Theory”, J. Math. Phys., 3, 908–914, (1962). [External LinkDOI], [External LinkADS].
213 Sarbach, O., “Absorbing boundary conditions for Einstein’s field equations”, J. Phys.: Conf. Ser., 91, 012005, (2007). [External LinkDOI], [External LinkADS].
214 Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory. I. Horizon boundary conditions for dynamical spacetimes”, Phys. Rev. D, 51(8), 4208–4235, (1995). [External LinkDOI], [External LinkADS].
215 Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory. II. Comparison with general relativity”, Phys. Rev. D, 51, 4236–4249, (1995). [External LinkDOI], [External LinkADS].
216 Seidel, E., and Suen, W.-M., “Dynamical evolution of boson stars: Perturbing the ground state”, Phys. Rev. D, 42, 384–403, (1990). [External LinkDOI], [External LinkADS].
217 Shapiro, S.L., Teukolsky, S.A., and Winicour, J., “Toroidal Black Holes and Topological Censorship”, Phys. Rev. D, 52, 6982–6987, (1995). [External LinkDOI], [External LinkADS].
218 Shibata, M., and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [External LinkDOI], [External LinkADS].
219 Siebel, F., Simulation of axisymmetric flows in the characteristic formulation of general relativity, Ph.D. Thesis, (Technische Universität München, München, 2002). Related online version (cited on 14 April 2009):
External Linkhttp://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2002/siebel.html.
220 Siebel, F., Font, J.A., Müller, E., and Papadopoulos, P., “Simulating the dynamics of relativistic stars via a light-cone approach”, Phys. Rev. D, 65, 064038, 1–15, (2002). [External LinkDOI], [External LinkADS].
221 Siebel, F., Font, J.A., Müller, E., and Papadopoulos, P., “Axisymmetric core collapse simulations using characteristic numerical relativity”, Phys. Rev. D, 67, 124018, 1–16, (2003). [External LinkDOI], [External LinkADS].
222 Siebel, F., Font, J.A., and Papadopoulos, P., “Scalar field induced oscillations of relativistic stars and gravitational collapse”, Phys. Rev. D, 65, 024021, 1–10, (2001). [External LinkDOI], [External LinkADS].
223 Sjödin, K.R.P., Sperhake, U., and Vickers, J.A., “Dynamic cosmic strings. I”, Phys. Rev. D, 63, 024011, 1–14, (2001). [External LinkDOI], [External LinkADS].
224 Sod, G.A., Numerical Methods in Fluid Dynamics: Initial and Initial Boundary-Value Problems, (Cambridge University Press, Cambridge; New York, 1985).
225 Sorkin, E., and Piran, T., “Effects of pair creation on charged gravitational collapse”, Phys. Rev. D, 63, 084006, 1–12, (2001). [External LinkDOI], [External LinkADS].
226 Sorkin, R.D., “A Criterion for the Onset of Instability at a Turning Point”, Astrophys. J., 249, 254–257, (1981). [External LinkDOI], [External LinkADS].
227 Sperhake, U., Sjödin, K.R.P., and Vickers, J.A., “Dynamic cosmic strings. II. Numerical evolution of excited strings”, Phys. Rev. D, 63, 024012, 1–15, (2001). [External LinkDOI], [External LinkADS].
228 Stark, R.F., and Piran, T., “A general relativistic code for rotating axisymmetric configurations and gravitational radiation: Numerical methods and tests”, Comput. Phys. Rep., 5, 221–264, (1987). [External LinkDOI].
229 Stewart, J.M., “Numerical relativity”, in Bonnor, W.B., Islam, J.N., and MacCallum, M.A.H., eds., Classical General Relativity, Proceedings of the Conference on Classical (Non-Quantum) General Relativity, City University, London, 21 – 22 December 1983, pp. 231–262, (Cambridge University Press, Cambridge; New York, 1984). [External LinkADS].
230 Stewart, J.M., “The characteristic initial value problem in general relativity”, in Winkler, K.-H.A., and Norman, M.L., eds., Astrophysical Radiation Hydrodynamics, Proceedings of the NATO Advanced Research Workshop on Astrophysical Radiation Hydrodynamics, Garching, Germany, August 2 – 13, 1982, NATO ASI Series. Series C, vol. 188, p. 531, (Reidel, Dordrecht; Boston, 1986). [External LinkADS].
231 Stewart, J.M., “Numerical Relativity III. The Bondi Mass Revisited”, Proc. R. Soc. London, Ser. A, 424, 211–222, (1989). [External LinkDOI], [External LinkADS].
232 Stewart, J.M., “The Cauchy problem and the initial boundary value problem in numerical relativity”, Class. Quantum Grav., 15, 2865–2889, (1998). [External LinkDOI], [External LinkADS].
233 Stewart, J.M., and Friedrich, H., “Numerical Relativity. I. The Characteristic Initial Value Problem”, Proc. R. Soc. London, Ser. A, 384, 427–454, (1982). [External LinkDOI], [External LinkADS].
234 Szilágyi, B., Cauchy-characteristic matching in general relativity, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 2000). [External LinkADS].
235 Szilágyi, B., Gómez, R., Bishop, N.T., and Winicour, J., “Cauchy boundaries in linearized gravitational theory”, Phys. Rev. D, 62, 104006, 1–10, (2000). [External LinkDOI], [External LinkADS].
236 Szilágyi, B., and Winicour, J., “Well-posed initial-boundary evolution in general relativity”, Phys. Rev. D, 68, 041501, 1–5, (2003). [External LinkDOI], [External LinkADS].
237 Tamburino, L.A., and Winicour, J., “Gravitational Fields in Finite and Conformal Bondi Frames”, Phys. Rev., 150, 1039–1053, (1966). [External LinkDOI], [External LinkADS].
238 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI], [External LinkADS].
239 Teukolsky, S.A., “Linearized quadrupole waves in general relativity and the motion of test particles”, Phys. Rev. D, 26, 745–750, (1982). [External LinkDOI], [External LinkADS].
240 Thompson, K.W., “Time dependent boundary conditions for hyperbolic systems”, J. Comput. Phys., 68, 1–24, (1987). [External LinkDOI], [External LinkADS].
241 Thornburg, J., “Black-hole excision with multiple grid patches”, Class. Quantum Grav., 21, 3665–3691, (2004). [External LinkDOI], [External LinkADS].
242 Thornburg, J., “A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity”, Class. Quantum Grav., 21, 743–766, (2004). [External LinkDOI], [External LinkADS].
243 Ting, L., and Miksis, M.J., “Exact boundary conditions for scattering problems”, J. Acoust. Soc. Am., 80, 1825–1827, (1986). [External LinkDOI], [External LinkADS].
244 Trefethen, L.N., and Halpern, L., “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions”, Math. Comput., 47, 421–435, (1986).
245 Tsynkov, S.V., Artificial Boundary Conditions Based on the Difference Potentials Method, NASA Technical Memorandum, 110265, (NASA Langley Research Center, Hampton, 1996). Related online version (cited on 04 February 2009):
External Linkhttp://hdl.handle.net/2060/19960045440.
246 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
247 Weber, J., and Wheeler, J.A., “Reality of the Cylindrical Gravitational Waves of Einstein and Rosen”, Rev. Mod. Phys., 29, 509–515, (1957). [External LinkDOI].
248 Winicour, J., “Newtonian gravity on the null cone”, J. Math. Phys., 24, 1193–1198, (1983). [External LinkDOI], [External LinkADS].
249 Winicour, J., “Null infinity from a quasi-Newtonian view”, J. Math. Phys., 25, 2506–2514, (1984). [External LinkDOI], [External LinkADS].
250 Winicour, J., “The quadrupole radiation formula”, Gen. Relativ. Gravit., 19, 281–287, (1987). [External LinkDOI], [External LinkADS].
251 Winicour, J., “The Characteristic Treatment of Black Holes”, Prog. Theor. Phys. Suppl., 136, 57–71, (1999). [External LinkADS].
252 Xanthopoulos, B.C., “Cylindrical waves and cosmic strings of Petrov type D”, Phys. Rev. D, 34(12), 3608–3616, (1986). [External LinkDOI], [External LinkADS].
253 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [External LinkADS].
254 Zerilli, F.J., “Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics”, Phys. Rev. D, 2, 2141– 2160, (1970). [External LinkDOI], [External LinkADS].
255 Zlochower, Y., Waveforms from colliding black holes, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 2002). [External LinkADS].
256 Zlochower, Y., Gómez, R., Husa, S., Lehner, L., and Winicour, J., “Mode coupling in the nonlinear response of black holes”, Phys. Rev. D, 68, 084014, 1–16, (2003). [External LinkDOI], [External LinkADS].