3.1 On the gravitational energy-momentum and angular momentum
density: The difficulties

3.1.1 The root of the difficulties: Gravitational energy in Newton’s theory

3.1.2 The root of the difficulties: Gravitational energy-momentum in Einstein’s theory

3.1.3 Pseudotensors

3.1.4 Strategies to avoid pseudotensors I: Background metrics/connections

3.1.5 Strategies to avoid pseudotensors II: The tetrad formalism

3.1.6 Strategies to avoid pseudotensors III: Higher derivative currents

3.2 On the global energy-momentum and angular momentum of gravitating systems: The successes

3.2.1 Spatial infinity: Energy-momentum

3.2.2 Spatial infinity: Angular momentum

3.2.3 Null infinity: Energy-momentum

3.2.4 Null infinity: Angular momentum

3.3 The necessity of quasi-locality for observables in general relativity

3.3.1 Nonlocality of the gravitational energy-momentum and angular momentum

3.3.2 Domains for quasi-local quantities

3.3.3 Strategies to construct quasi-local quantities

3.1.1 The root of the difficulties: Gravitational energy in Newton’s theory

3.1.2 The root of the difficulties: Gravitational energy-momentum in Einstein’s theory

3.1.3 Pseudotensors

3.1.4 Strategies to avoid pseudotensors I: Background metrics/connections

3.1.5 Strategies to avoid pseudotensors II: The tetrad formalism

3.1.6 Strategies to avoid pseudotensors III: Higher derivative currents

3.2 On the global energy-momentum and angular momentum of gravitating systems: The successes

3.2.1 Spatial infinity: Energy-momentum

3.2.2 Spatial infinity: Angular momentum

3.2.3 Null infinity: Energy-momentum

3.2.4 Null infinity: Angular momentum

3.3 The necessity of quasi-locality for observables in general relativity

3.3.1 Nonlocality of the gravitational energy-momentum and angular momentum

3.3.2 Domains for quasi-local quantities

3.3.3 Strategies to construct quasi-local quantities

Living Rev. Relativity 12, (2009), 4
http://www.livingreviews.org/lrr-2009-4 |
This work is licensed under a Creative Commons License. E-mail us: |