References

1 Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, (Dover, New York, 1972).
2 Agresti, J., Researches on Non-standard Optics for Advanced Gravitational Waves Interferometers, Ph.D. Thesis, (University of Pisa, Pisa, 2007). [External LinkarXiv:0806.3065v1].
3 Bondarescu, B., and Thorne, K.S., “New family of light beams and mirror shapes for future LIGO interferometers”, Phys. Rev. D, 74, 082003, 1–6, (2006). [External LinkDOI], [External Linkgr-qc/0409083].
4 Bondarescu, M., Kogan, O., Chen, Y., Lundgreen, A., Bondarescu, R., and Tsang, D., “Beams of the Future”, Joint LSC/VIRGO Meeting, Hanover, Germany, October 22 – 26, 2007, conference paper, (2007). Related online version (cited on 22 July 2008):
External Linkhttp://www.ligo.caltech.edu/docs/G/G070767-00/.
5 Bondu, F., Hello, P., and Vinet, J.-Y., “Thermal noise in mirrors of interferometric gravitational wave antennas”, Phys. Lett. A, 246, 227–236, (1998). [External LinkDOI].
6 Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, Cambridge; New York, 2002), 7th exp. edition. [External LinkGoogle Books].
7 Braginsky, V.B., Gorodetsky, M.L., and Vyatchanin, S.P., “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae”, Phys. Lett. A, 264, 1–10, (1999). [External LinkDOI], [External Linkcond-mat/9912139].
8 Braginsky, V.B., and Vyatchanin, S.P., “Thermodynamical fluctuations in optical mirror coatings”, Phys. Lett. A, 312, 244–255, (2003). [External LinkDOI], [External Linkcond-mat/0302617].
9 Callen, H.B., and Welton, T.A., “Irreversibility and Generalized Noise”, Phys. Rev., 83, 34–40, (1951). [External LinkDOI].
10 Courty, J.-M., Heidmann, A., and Pinard, M., “Quantum Locking of Mirrors in Interferometers”, Phys. Rev. Lett., 90, 083601, 1–4, (2003). [External LinkDOI], [External Linkgr-qc/0212081].
11 D’Ambrosio, E., “Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers”, Phys. Rev. D, 67, 102004, 1–16, (2003). [External LinkDOI].
12 D’Ambrosio, E., O’Shaughnessy, R., Strigin, S., Thorne, K.S., and Vyatchanin, S.P., “Reducing Thermoelastic Noise in Gravitational-Wave Interferometers by Flattening the Light Beams”, arXiv e-print, (2004). [External Linkgr-qc/0409075].
13 Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors”, Appl. Phys. B, 77, 409–414, (2003). [External LinkDOI].
14 Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Thermal lensing compensation for AIGO high optical power test facility”, Class. Quantum Grav., 21, S903–S908, (2004). [External LinkDOI].
15 Di Paulo Emilio, M., personal communication.
16 Durnin, J., Miceli Jr, J.J., and Eberly, J.H., “Diffraction-Free Beams”, Phys. Rev. Lett., 58, 1499–1501, (1987). [External LinkDOI].
17 Fejer, M.M., Rowan, S., Cagnoli, G., Crooks, D.R.M., Gretarsson, A.M., Harry, G.M., Hough, J., Penn, S.D., Sneddon, P.H., and Vyatchanin, S.P., “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D, 70, 082003, (2004). [External LinkDOI], [External Linkgr-qc/0402034].
18 Harry, G.M., Gretarsson, A.M., Saulson, P.R., Kittelberger, S.E., Penn, S.D., Startin, W.J., Rowan, S., Fejer, M.M., Crooks, D.R.M., Cagnoli, G., Hough, J., and Nakagawa, N., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav., 19, 897–917, (2002). [External LinkDOI], [External Linkgr-qc/0109073].
19 Hello, P., Modele physique et simulation de l’antenne interferometrique gravitationnelle Virgo, Ph.D. Thesis, (Université Paris-Sud, Orsay, 1990).
20 Hello, P., and Vinet, J.-Y., “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams”, J. Phys. France, 51, 1267–1282, (1990). [External LinkDOI].
21 Hello, P., and Vinet, J.-Y., “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams”, J. Phys. France, 51, 2243–2261, (1990). [External LinkDOI].
22 Ju, L., Aoun, M., Barriga, P., Blair, D.G., Brooks, A., Burman, R., Burston, R., Chin, X.T., Chin, E.J., Lee, C.Y., Coward, D., Cusack, B., de Vine, G., Degallaix, J., Dumas, J.C., Garoi, F., Gras, S., Gray, M., Hosken, D.J., Howell, E., Jacob, J.S., Kelly, T.L., Lee, B., Lee, K.T., Lun., T., McClelland, D.E., Mow-Lowry, C.M., Mudge, D., Munch, J., Schediwy, S., Scott, S., Searle, A., Sheard, B., Slagmolen, B.J.J., Veitch, P.J., Winterflood, J., Woolley, A., Yan, Z., and Zhao, C., “ACIGA’s high optical power test facility”, Class. Quantum Grav., 21, S887–S893, (2004). [External LinkDOI].
23 Katz, J.I., “Temperature Dependence of the Index of Refraction of Fused Silica. Answer to Question #50”, Am. J. Phys., 65, 942–943, (1997). [External LinkDOI], [External Linkcond-mat/9712327].
24 Landau, L.D., and Lifshitz, E.M., Theory of Elasticity, Course of Theoretical Physics, vol. 7, (Pergamon Press, Oxford; New York, 1986), 3rd edition.
25 Lawrence, R., Ottaway, D., Zucker, M., and Fritschel, P., “Active correction of thermal lensing through external radiative thermal actuation”, Opt. Lett., 29, 2635–2637, (2004). [External LinkDOI].
26 Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D, 57, 659–663, (1998). [External LinkDOI], [External Linkgr-qc/9707013].
27 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (cited on 10 July 2008):
External Linkhttp://www.ligo.caltech.edu/.
28 Liu, Y.T., and Thorne, K.S., “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses”, Phys. Rev. D, 62, 122002, 1–10, (2000). [External LinkDOI], [External Linkgr-qc/0002055].
29 Lovelace, G., “The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers”, Class. Quantum Grav., 24, 4491–4512, (2007). [External LinkDOI], [External Linkgr-qc/0610041].
30 Lück, H., Freise, A., Goßler, S., Hild, S., Kawabe, K., and Danzmann, K., “Thermal correction of the radii of curvature of mirrors for GEO 600”, Class. Quantum Grav., 21, S985–S989, (2004). [External LinkDOI].
31 Mours, B., Tournefier, E., and Vinet, J.-Y., “Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes”, Class. Quantum Grav., 23, 5777–5784, (2006). [External LinkDOI].
32 Nakagawa, N., “Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror”, Phys. Rev. D, 65, 102001, (2002). [External LinkDOI], [External Linkgr-qc/0105046].
33 O’Shaughnessy, R., Strigin, S., and Vyatchanin, S.P., “The implications of Mexican-hat mirrors: calculations of thermoelastic noise and interferometer sensitivity to perturbation for the Mexican-hat-mirror proposal for advanced LIGO”, arXiv e-print, (2004). [External Linkgr-qc/0409050].
34 Rowan, S., Cagnoli, G., Sneddon, P.H., Hough, J., Route, R., Gustafson, E.K., Fejer, M.M., and Mitrofanov, V., “Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors”, Phys. Lett. A, 265, 5–11, (2000). [External LinkDOI].
35 Savov, P., and Vyatchanin, S., “Estimate of tilt instability of mesa-beam and Gaussian-beam modes for advanced LIGO”, Phys. Rev. D, 74, 082002, 1–10, (2006). [External LinkDOI], [External Linkgr-qc/0409084].
36 Somiya, K., and Yamamoto, K., “Coating thermal noise of a finite-size cylindrical mirror”, Phys. Rev. D, 79, 102004, (2009). [External LinkDOI], [External LinkarXiv:0903.2902v1].
37 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
38 Timoshenko, S., and Goodier, J.N., Theory of Elasticity, (McGraw-Hill, New York, 1951), 2nd edition.
39 Uchiyama, T., Tatsumi, D., Tomaru, T., Tobar, M.E., Kuroda, K., Suzuki, T., Sato, N., Yamamoto, A., Haruyama, T., and Shintomi, T., “Cryogenic cooling of a sapphire mirror-suspension for interferometric gravitational wave detectors”, Phys. Lett. A, 242, 211–214, (1998). [External LinkDOI].
40 Vinet, J.-Y., “Mirror thermal noise in flat-beam cavities for advanced gravitational wave interferometers”, Class. Quantum Grav., 22, 1395–1404, (2005). [External LinkDOI].
41 “Virgo”, project homepage, INFN. URL (cited on 10 July 2008):
External Linkhttp://www.virgo.infn.it/.
42 Willems, P., “Thermal Compensation in LIGO”, Joint LSC/VIRGO Meeting, Baton Rouge, LA, March 19 – 22, 2007, conference paper, (2007). Related online version (cited on 22 July 2008):
External Linkhttp://www.ligo.caltech.edu/docs/G/G070146-00/.
43 Zhao, C., Degallaix, J., Ju, L., Fan, Y., Blair, D.G., Slagmolen, B.J.J., Gray, M.B., Mow Lowry, C.M., McClelland, D.E., Hosken, D.J., Mudge, D., Brooks, A., Munch, J., Veitch, P.J., Barton, M.A., and Billingsley, G., “Compensation of Strong Thermal Lensing in High-Optical-Power Cavities”, Phys. Rev. Lett., 96, 231101, (2006). [External LinkDOI], [External Linkgr-qc/0602096v2].