1 Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, (Dover, New York, 1972).
2 Agresti, J., Researches on Non-standard Optics for Advanced Gravitational Waves Interferometers, Ph.D. Thesis, (University of Pisa, Pisa, 2007). [External LinkarXiv:0806.3065v1].
3 Bondarescu, B., and Thorne, K.S., “New family of light beams and mirror shapes for future LIGO interferometers”, Phys. Rev. D, 74, 082003, 1–6, (2006). [External LinkDOI], [External Linkgr-qc/0409083].
4 Bondarescu, M., Kogan, O., Chen, Y., Lundgreen, A., Bondarescu, R., and Tsang, D., “Beams of the Future”, Joint LSC/VIRGO Meeting, Hanover, Germany, October 22 – 26, 2007, conference paper, (2007). Related online version (cited on 22 July 2008):
External Link
5 Bondu, F., Hello, P., and Vinet, J.-Y., “Thermal noise in mirrors of interferometric gravitational wave antennas”, Phys. Lett. A, 246, 227–236, (1998). [External LinkDOI].
6 Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, Cambridge; New York, 2002), 7th exp. edition. [External LinkGoogle Books].
7 Braginsky, V.B., Gorodetsky, M.L., and Vyatchanin, S.P., “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae”, Phys. Lett. A, 264, 1–10, (1999). [External LinkDOI], [External Linkcond-mat/9912139].
8 Braginsky, V.B., and Vyatchanin, S.P., “Thermodynamical fluctuations in optical mirror coatings”, Phys. Lett. A, 312, 244–255, (2003). [External LinkDOI], [External Linkcond-mat/0302617].
9 Callen, H.B., and Welton, T.A., “Irreversibility and Generalized Noise”, Phys. Rev., 83, 34–40, (1951). [External LinkDOI].
10 Courty, J.-M., Heidmann, A., and Pinard, M., “Quantum Locking of Mirrors in Interferometers”, Phys. Rev. Lett., 90, 083601, 1–4, (2003). [External LinkDOI], [External Linkgr-qc/0212081].
11 D’Ambrosio, E., “Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers”, Phys. Rev. D, 67, 102004, 1–16, (2003). [External LinkDOI].
12 D’Ambrosio, E., O’Shaughnessy, R., Strigin, S., Thorne, K.S., and Vyatchanin, S.P., “Reducing Thermoelastic Noise in Gravitational-Wave Interferometers by Flattening the Light Beams”, arXiv e-print, (2004). [External Linkgr-qc/0409075].
13 Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors”, Appl. Phys. B, 77, 409–414, (2003). [External LinkDOI].
14 Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Thermal lensing compensation for AIGO high optical power test facility”, Class. Quantum Grav., 21, S903–S908, (2004). [External LinkDOI].
15 Di Paulo Emilio, M., personal communication.
16 Durnin, J., Miceli Jr, J.J., and Eberly, J.H., “Diffraction-Free Beams”, Phys. Rev. Lett., 58, 1499–1501, (1987). [External LinkDOI].
17 Fejer, M.M., Rowan, S., Cagnoli, G., Crooks, D.R.M., Gretarsson, A.M., Harry, G.M., Hough, J., Penn, S.D., Sneddon, P.H., and Vyatchanin, S.P., “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D, 70, 082003, (2004). [External LinkDOI], [External Linkgr-qc/0402034].
18 Harry, G.M., Gretarsson, A.M., Saulson, P.R., Kittelberger, S.E., Penn, S.D., Startin, W.J., Rowan, S., Fejer, M.M., Crooks, D.R.M., Cagnoli, G., Hough, J., and Nakagawa, N., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav., 19, 897–917, (2002). [External LinkDOI], [External Linkgr-qc/0109073].
19 Hello, P., Modele physique et simulation de l’antenne interferometrique gravitationnelle Virgo, Ph.D. Thesis, (Université Paris-Sud, Orsay, 1990).
20 Hello, P., and Vinet, J.-Y., “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams”, J. Phys. France, 51, 1267–1282, (1990). [External LinkDOI].
21 Hello, P., and Vinet, J.-Y., “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams”, J. Phys. France, 51, 2243–2261, (1990). [External LinkDOI].
22 Ju, L., Aoun, M., Barriga, P., Blair, D.G., Brooks, A., Burman, R., Burston, R., Chin, X.T., Chin, E.J., Lee, C.Y., Coward, D., Cusack, B., de Vine, G., Degallaix, J., Dumas, J.C., Garoi, F., Gras, S., Gray, M., Hosken, D.J., Howell, E., Jacob, J.S., Kelly, T.L., Lee, B., Lee, K.T., Lun., T., McClelland, D.E., Mow-Lowry, C.M., Mudge, D., Munch, J., Schediwy, S., Scott, S., Searle, A., Sheard, B., Slagmolen, B.J.J., Veitch, P.J., Winterflood, J., Woolley, A., Yan, Z., and Zhao, C., “ACIGA’s high optical power test facility”, Class. Quantum Grav., 21, S887–S893, (2004). [External LinkDOI].
23 Katz, J.I., “Temperature Dependence of the Index of Refraction of Fused Silica. Answer to Question #50”, Am. J. Phys., 65, 942–943, (1997). [External LinkDOI], [External Linkcond-mat/9712327].
24 Landau, L.D., and Lifshitz, E.M., Theory of Elasticity, Course of Theoretical Physics, vol. 7, (Pergamon Press, Oxford; New York, 1986), 3rd edition.
25 Lawrence, R., Ottaway, D., Zucker, M., and Fritschel, P., “Active correction of thermal lensing through external radiative thermal actuation”, Opt. Lett., 29, 2635–2637, (2004). [External LinkDOI].
26 Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D, 57, 659–663, (1998). [External LinkDOI], [External Linkgr-qc/9707013].
27 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (cited on 10 July 2008):
External Link
28 Liu, Y.T., and Thorne, K.S., “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses”, Phys. Rev. D, 62, 122002, 1–10, (2000). [External LinkDOI], [External Linkgr-qc/0002055].
29 Lovelace, G., “The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers”, Class. Quantum Grav., 24, 4491–4512, (2007). [External LinkDOI], [External Linkgr-qc/0610041].
30 Lück, H., Freise, A., Goßler, S., Hild, S., Kawabe, K., and Danzmann, K., “Thermal correction of the radii of curvature of mirrors for GEO 600”, Class. Quantum Grav., 21, S985–S989, (2004). [External LinkDOI].
31 Mours, B., Tournefier, E., and Vinet, J.-Y., “Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes”, Class. Quantum Grav., 23, 5777–5784, (2006). [External LinkDOI].
32 Nakagawa, N., “Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror”, Phys. Rev. D, 65, 102001, (2002). [External LinkDOI], [External Linkgr-qc/0105046].
33 O’Shaughnessy, R., Strigin, S., and Vyatchanin, S.P., “The implications of Mexican-hat mirrors: calculations of thermoelastic noise and interferometer sensitivity to perturbation for the Mexican-hat-mirror proposal for advanced LIGO”, arXiv e-print, (2004). [External Linkgr-qc/0409050].
34 Rowan, S., Cagnoli, G., Sneddon, P.H., Hough, J., Route, R., Gustafson, E.K., Fejer, M.M., and Mitrofanov, V., “Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors”, Phys. Lett. A, 265, 5–11, (2000). [External LinkDOI].
35 Savov, P., and Vyatchanin, S., “Estimate of tilt instability of mesa-beam and Gaussian-beam modes for advanced LIGO”, Phys. Rev. D, 74, 082002, 1–10, (2006). [External LinkDOI], [External Linkgr-qc/0409084].
36 Somiya, K., and Yamamoto, K., “Coating thermal noise of a finite-size cylindrical mirror”, Phys. Rev. D, 79, 102004, (2009). [External LinkDOI], [External LinkarXiv:0903.2902v1].
37 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
38 Timoshenko, S., and Goodier, J.N., Theory of Elasticity, (McGraw-Hill, New York, 1951), 2nd edition.
39 Uchiyama, T., Tatsumi, D., Tomaru, T., Tobar, M.E., Kuroda, K., Suzuki, T., Sato, N., Yamamoto, A., Haruyama, T., and Shintomi, T., “Cryogenic cooling of a sapphire mirror-suspension for interferometric gravitational wave detectors”, Phys. Lett. A, 242, 211–214, (1998). [External LinkDOI].
40 Vinet, J.-Y., “Mirror thermal noise in flat-beam cavities for advanced gravitational wave interferometers”, Class. Quantum Grav., 22, 1395–1404, (2005). [External LinkDOI].
41 “Virgo”, project homepage, INFN. URL (cited on 10 July 2008):
External Link
42 Willems, P., “Thermal Compensation in LIGO”, Joint LSC/VIRGO Meeting, Baton Rouge, LA, March 19 – 22, 2007, conference paper, (2007). Related online version (cited on 22 July 2008):
External Link
43 Zhao, C., Degallaix, J., Ju, L., Fan, Y., Blair, D.G., Slagmolen, B.J.J., Gray, M.B., Mow Lowry, C.M., McClelland, D.E., Hosken, D.J., Mudge, D., Brooks, A., Munch, J., Veitch, P.J., Barton, M.A., and Billingsley, G., “Compensation of Strong Thermal Lensing in High-Optical-Power Cavities”, Phys. Rev. Lett., 96, 231101, (2006). [External LinkDOI], [External Linkgr-qc/0602096v2].