1 Anderson, M., “On long-time evolution in general relativity and geometrization of 3-manifolds”, Commun. Math. Phys., 222, 533–567, (2001). [External LinkDOI], [External Linkgr-qc/0006042].
2 Andersson, L. and Rendall, A.D., “Quiescent cosmological singularities”, Commun. Math. Phys., 218, 479–511, (2001). [External LinkDOI], [External Linkgr-qc/0001047].
3 Andersson, L., van Elst, H. and Uggla, C., “Gowdy phenomenology in scale-invariant variables”, Class. Quantum Grav., 21, S29–S57, (2004). [External LinkDOI], [External Linkgr-qc/0310127].
4 Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun. Math. Phys., 206, 337–365, (1999). [External LinkDOI], [External Linkgr-qc/9812035].
5 Andréasson, H., Rendall, A.D. and Weaver, M., “Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237–262, (2004). [External LinkDOI], [External Linkgr-qc/0211063].
6 Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., “Oscillatory Approach to a Singular Point in the Relativistic Cosmology”, Adv. Phys., 19, 525–573, (1970). [External LinkDOI].
7 Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 31, 639–667, (1982). [External LinkDOI].
8 Berger, B.K., “Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes”, arXiv e-print, (2002). [External Linkgr-qc/0207035].
9 Berger, B.K., Chruściel, P.T., Isenberg, J. and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [External LinkDOI], [External Linkgr-qc/9702007].
10 Berger, B.K. and Garfinkle, D., “Phenomenology of the Gowdy universe on T3 ×R”, Phys. Rev. D, 57, 4767–4777, (1998). [External LinkDOI], [External Linkgr-qc/9710102].
11 Berger, B.K. and Moncrief, V., “Numerical Investigation of Cosmological Singularities”, Phys. Rev. D, 48, 4676–4687, (1993). [External LinkDOI], [External Linkgr-qc/9307032].
12 Chae, M. and Chruściel, P.T., “On the dynamics of Gowdy space times”, Commun. Pure Appl. Math., 57, 1015–1074, (2004). [External LinkDOI], [External Linkgr-qc/0305029].
13 Choquet-Bruhat, Y. and Geroch, R., “Global aspects of the Cauchy problem in General Relativity”, Commun. Math. Phys., 14, 329–335, (1969). [External LinkDOI].
14 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217, (1999). [External LinkDOI].
15 Christodoulou, D., Mathematical Problems of General Relativity I, Zurich Lectures in Advanced Mathematics, (EMS Publishing House, Zürich, 2008). [External LinkDOI].
16 Chruściel, P.T., “On Space-Times with U(1) × U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100–150, (1990). [External LinkDOI].
17 Chruściel, P.T., On Uniqueness in the Large of Solutions of Einstein’s Equations (Strong Cosmic Censorship), CMA Proceedings,  27, (Australian National University Press, Canberra, 1991).
18 Chruściel, P.T., “On completeness of orbits of Killing vector fields”, Class. Quantum Grav., 10, 2091–2101, (1993). [External LinkDOI], [External Linkgr-qc/9304029].
19 Chruściel, P.T., Galloway, G. and Pollack, D., Mathematical general relativity: a sampler, Preprint Series, 03, (Institut Mittag-Leffler, Djursholm, Sweden, 2009). URL (accessed 8 January 2010):
External Link
20 Chruściel, P.T. and Isenberg, J., “Non-isometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes”, Phys. Rev. D, 48, 1616–1628, (1993). [External LinkDOI].
21 Chruściel, P.T., Isenberg, J. and Moncrief, V., “Strong Cosmic Censorship in Polarized Gowdy Spacetimes”, Class. Quantum Grav., 7, 1671–1680, (1990). [External LinkDOI].
22 Chruściel, P.T. and Lake, K., “Cauchy horizons in Gowdy spacetimes”, Class. Quantum Grav., 21, S153–S169, (2004). [External LinkDOI], [External Linkgr-qc/0307088].
23 Dafermos, M., “Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations”, Ann. Math., 158, 875–928, (2003). [External LinkDOI].
24 Dafermos, M., “The interior of charged black holes and the problem of uniqueness in general relativity”, Commun. Pure Appl. Math., 58, 445–504, (2005). [External LinkDOI], [External Linkgr-qc/0307013].
25 Dafermos, M. and Rendall, A.D., “Inextendibility of expanding cosmological models with symmetry”, Class. Quantum Grav., 22, L143–L147, (2005). [External LinkDOI], [External Linkgr-qc/0509106].
26 Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for T2-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2006). [External Linkgr-qc/0610075].
27 Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2007). [External Linkgr-qc/0701034].
28 Damour, T., Henneaux, M. and Nicolai, H., “Cosmological billiards”, Class. Quantum Grav., 20, R145–R200, (2003). [External LinkDOI], [External Linkhep-th/0212256].
29 Damour, T., Henneaux, M., Rendall, A.D. and Weaver, M., “Kasner-like behaviour for subcritical Einstein-matter systems”, Ann. Henri Poincare, 3, 1049–1111, (2002). [External LinkDOI], [External Linkgr-qc/0202069].
30 Damour, T. and Nicolai, H., “Higher order M-theory corrections and the Kac–Moody algebra E10”, Class. Quantum Grav., 22, 2849–2880, (2005). [External LinkDOI], [External Linkhep-th/0504153].
31 Eardley, D., Liang, E. and Sachs, R., “Velocity-Dominated Singularities in Irrotational Dust Cosmologies”, J. Math. Phys., 13, 99–107, (1972). [External LinkDOI].
32 Eardley, D.M. and Moncrief, V., “The Global Existence Problem and Cosmic Censorship in General Relativity”, Gen. Relativ. Gravit., 13, 887–892, (1981). [External LinkDOI].
33 Fischer, A.E. and Moncrief, V., “The reduced Einstein equations and the conformal volume collapse of 3-manifolds”, Class. Quantum Grav., 18, 4493–4515, (2001). [External LinkDOI].
34 Fourès-Bruhat, Y., “Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires”, Acta Math., 88, 141–225, (1952). [External LinkDOI].
35 Friedrich, H. and Rendall, A.D., “The Cauchy problem for the Einstein equations”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New York, 2000). [External Linkgr-qc/0002074], [External LinkGoogle Books].
36 Garfinkle, D. and Weaver, M., “High velocity spikes in Gowdy spacetimes”, Phys. Rev. D, 67, 124009, (2003). [External LinkDOI], [External Linkgr-qc/0303017].
37 Gowdy, R.H., “Errata: Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 1102, (1971). [External LinkDOI].
38 Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826–829, (1971). [External LinkDOI].
39 Gowdy, R.H., “Vacuum Spacetimes with Two-Parameter Spacelike Isometry Groups and Compact Invariant Hypersurfaces: Topologies and Boundary Conditions”, Ann. Phys. (N.Y.), 83, 203–241, (1974). [External LinkDOI].
40 Grubišić, B. and Moncrief, V., “Asymptotic behaviour of the T3 × R Gowdy space-times”, Phys. Rev. D, 47, 2371–2382, (1993). [External LinkDOI], [External Linkgr-qc/9209006].
41 Hawking, S.W., “The Occurrence of singularities in cosmology. III. Causality and singularities”, Proc. R. Soc. London, Ser. A, 300, 187–201, (1967). [External LinkADS].
42 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
43 Hawking, S.W. and Penrose, R., “The singularities of gravitational collapse and cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548, (1970). [External LinkADS].
44 Heinzle, J.M. and Ringström, H., “Future asymptotics of vacuum Bianchi type VI0 solutions”, Class. Quantum Grav., 26, 145001, (2009). [External LinkDOI].
45 Heinzle, J.M. and Uggla, C., “Mixmaster: fact and belief”, Class. Quantum Grav., 26, 075016, (2009). [External LinkDOI], [External LinkarXiv:0901.0776].
46 Heinzle, J.M. and Uggla, C., “A new proof of the Bianchi type IX attractor theorem”, Class. Quantum Grav., 26, 075015, (2009). [External LinkDOI], [External LinkarXiv:0901.0806].
47 Heinzle, J.M., Uggla, C. and Röhr, N., “The cosmological billiard attractor”, Adv. Theor. Math. Phys., 13, 293–407, (2009). [External Linkgr-qc/0702141].
48 Isenberg, J. and Kichenassamy, S., “Asymptotic behavior in polarized T2-symmetric vacuum space-times”, J. Math. Phys., 40, 340–352, (1999). [External LinkDOI].
49 Isenberg, J. and Moncrief, V., “The Existence of Constant Mean Curvature Foliations of Gowdy 3-Torus Spacetimes”, Commun. Math. Phys., 86, 485–493, (1983). [External LinkDOI]. Online version (accessed 12 March 2010):
External Link
50 Isenberg, J. and Moncrief, V., “Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes”, Ann. Phys. (N.Y.), 199, 84–122, (1990). [External LinkDOI].
51 Isenberg, J. and Weaver, M., “On the area of the symmetry orbits in T2 symmetric spacetimes”, Class. Quantum Grav., 20, 3783–3796, (2003). [External LinkDOI], [External Linkgr-qc/0304019].
52 Jurke, T., “On future asymptotics of polarized Gowdy T3-models”, Class. Quantum Grav., 20, 173–191, (2003). [External LinkDOI], [External Linkgr-qc/0210022].
53 Kichenassamy, S., Nonlinear Wave Equations, Monographs and Textbooks in Pure and Applied Mathematics, 194, (Marcel Dekker, New York, 1996). [External LinkGoogle Books].
54 Kichenassamy, S. and Rendall, A.D., “Analytic description of singularities in Gowdy spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). [External LinkDOI].
55 Lifshitz, E.M. and Khalatnikov, I.M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185–249, (1963). [External LinkDOI].
56 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969). [External LinkDOI].
57 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Fransisco, 1973).
58 Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys. (N.Y.), 132, 87–107, (1981). [External LinkDOI].
59 Mostert, P.S., “On a compact Lie group acting on a manifold”, Ann. Math., 65, 447–455, (1957).
60 O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103, (Academic Press, San Diego; London, 1983). [External LinkGoogle Books].
61 Penrose, R., “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett., 14, 57–59, (1965). [External LinkDOI].
62 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [External LinkADS].
63 Penrose, R., “Singularities and Time-Asymmetry”, in Hawking, S.W. and Israel, W., eds., General Relativity: An Einstein Centenary Survey,  1, pp. 581–638, (Cambridge University Press, Cambridge; New York, 1979).
64 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Gen. Relativ. Gravit., 34, 1141–1165, (2002). [External LinkDOI]. Reprint of Riv. Nuovo Cimento, 1, 257, (1969).
65 Rendall, A.D., “Reduction of the Characteristic Initial Value Problem to the Cauchy Problem and Its Applications to the Einstein Equations”, Proc. R. Soc. London, Ser. A, 427, 221–239, (1990). [External LinkDOI].
66 Rendall, A.D., “Constant mean curvature foliations in cosmological spacetimes”, Helv. Phys. Acta, 69, 490–500, (1996). [External Linkgr-qc/9606049].
67 Rendall, A.D., “Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). [External LinkDOI], [External Linkgr-qc/9605022].
68 Rendall, A.D., “Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity”, Class. Quantum Grav., 17, 3305–3316, (2000). [External LinkDOI], [External Linkgr-qc/0004044].
69 Rendall, A.D., “Theorems on Existence and Global Dynamics for the Einstein Equations”, Living Rev. Relativity, 8, lrr-2005-6, (2005). URL (accessed 7 August 2009):
70 Rendall, A.D., Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics,  16, (Oxford University Press, Oxford; New York, 2008).
71 Rendall, A.D. and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class. Quantum Grav., 18, 2959–2975, (2001). [External LinkDOI], [External Linkgr-qc/0103102].
72 Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class. Quantum Grav., 4, 713–731, (2000). [External LinkDOI], [External Linkgr-qc/9911115].
73 Ringström, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405–500, (2001). [External LinkDOI], [External Linkgr-qc/0006035].
74 Ringström, H., “Asymptotic expansions close to the singularity in Gowdy spacetimes”, Class. Quantum Grav., 21, S305–S322, (2004). [External LinkDOI], [External Linkgr-qc/0303051].
75 Ringström, H., “On a wave map equation arising in general relativity”, Commun. Pure Appl. Math., 57, 657–703, (2004). [External LinkDOI].
76 Ringström, H., “On Gowdy vacuum spacetimes”, Math. Proc. Camb. Phil. Soc., 136, 485–512, (2004). [External LinkDOI], [External Linkgr-qc/0204044].
77 Ringström, H., “Curvature blow up on a dense subset of the singularity in T3-Gowdy”, J. Hyperbol. Differ. Equations, 2, 547–564, (2005). [External LinkDOI].
78 Ringström, H., “Data at the moment of infinite expansion for polarized Gowdy”, Class. Quantum Grav., 22, 1647–1653, (2005). [External LinkDOI].
79 Ringström, H., “Existence of an asymptotic velocity and implications for the asymptotic behaviour in the direction of the singularity in T3-Gowdy”, Commun. Pure Appl. Math., 59, 977–1041, (2006). [External LinkDOI].
80 Ringström, H., “On curvature decay in expanding cosmological models”, Commun. Math. Phys., 264, 613–630, (2006). [External LinkDOI].
81 Ringström, H., “On the T3-Gowdy Symmetric Einstein–Maxwell Equations”, Ann. Henri Poincare, 7, 1–20, (2006). [External LinkDOI].
82 Ringström, H., The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and Physics, (EMS Publishing House, Zürich, 2009). [External LinkDOI], [External LinkGoogle Books].
83 Ringström, H., “Strong cosmic censorship in T3-Gowdy spacetimes”, Ann. Math., 170, 1181–1240, (2009).
84 Smulevici, J., “Strong Cosmic Censorship for T2-Symmetric Spacetimes with Cosmological Constant and Matter”, Ann. Henri Poincare, 9, 1425–1453, (2008). [External LinkDOI], [External LinkarXiv:0710.1351].
85 Smulevici, J., “On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry”, arXiv e-print, (2009). [External LinkarXiv:0904.0806].
86 Ståhl, F., “Fuchsian analysis of S2 × S1 and S3 Gowdy spacetimes”, Class. Quantum Grav., 19, 4483–4504, (2002). [External LinkDOI], [External Linkgr-qc/0109011].
87 Tanimoto, M., “Locally U(1) × U(1) symmetric cosmological models”, Class. Quantum Grav., 18, 479–507, (2001). [External LinkDOI], [External Linkgr-qc/0003033].
88 Uggla, C., van Elst, H., Wainwright, J. and Ellis, G.F.R., “The past attractor in inhomogeneous cosmology”, Phys. Rev. D, 68, 103502, (2003). [External LinkDOI], [External Linkgr-qc/0304002].
89 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
90 Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv e-print, (1997). [External Linkgr-qc/9710068].
91 Weaver, M., “On the area of the symmetry orbits in T2 symmetric pacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079–1097, (2004). [External LinkDOI], [External Linkgr-qc/0308055].