5 Summary

How likely are we to detect GWs from stellar collapse? And if we detect them, will we be able to use the observation to constrain our understanding of their source? The former question has been at the head of almost every investigation of GWs from gravitational collapse. But with the almost certain detection of neutron-star mergers with advanced LIGO12, the question of detection is gradually being superseded by the question of what we will learn from the detection. To answer either question, a key first step is to determine how nearby the stellar collapse must be to be detectable by current or up-and-coming instruments. Improvements on both the LIGO and VIRGO detectors as well as new observatories, such as LCGT, will soon make GW astronomy a reality. For SMSs, low-frequency detectors like LISA will also play a role. For our discussion, we will use LIGO and LISA as our guides, but bear in mind that these other detectors have comparable detection limits and will be crucial for the success of GW astronomy.

 5.1 Detection of collapse GW signals
 5.2 Using GWs to study core collapse

  Go to previous page Go up Go to next page