Acoustics in a moving fluid is the simplest and cleanest example of an analogue
model [607, 622, 626, 624]. The basic physics is simple, the conceptual framework is simple,
and specific computations are often simple (whenever, that is, they are not impossibly
hard).^{1}

2.1 Background

2.2 Geometrical acoustics

2.3 Physical acoustics

2.4 General features of the acoustic metric

2.4.1 Horizons and ergo-regions

2.4.2 Surface gravity

2.4.3 Example: vortex geometry

2.4.4 Example: slab geometry

2.4.5 Example: Painlevé–Gullstrand geometry

2.4.6 Causal structure

2.5 Cosmological metrics

2.5.1 Explosion

2.5.2 Varying the effective speed of light

2.6 Regaining geometric acoustics

2.7 Generalizing the physical model

2.7.1 External forces

2.7.2 The role of dimension

2.7.3 Adding vorticity

2.8 Simple Lagrangian meta-model

2.9 Going further

2.2 Geometrical acoustics

2.3 Physical acoustics

2.4 General features of the acoustic metric

2.4.1 Horizons and ergo-regions

2.4.2 Surface gravity

2.4.3 Example: vortex geometry

2.4.4 Example: slab geometry

2.4.5 Example: Painlevé–Gullstrand geometry

2.4.6 Causal structure

2.5 Cosmological metrics

2.5.1 Explosion

2.5.2 Varying the effective speed of light

2.6 Regaining geometric acoustics

2.7 Generalizing the physical model

2.7.1 External forces

2.7.2 The role of dimension

2.7.3 Adding vorticity

2.8 Simple Lagrangian meta-model

2.9 Going further

Living Rev. Relativity 14, (2011), 3
http://www.livingreviews.org/lrr-2011-3 |
This work is licensed under a Creative Commons License. E-mail us: |