References

1 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run”, Phys. Rev. D, 81, 102001, (2010). [External LinkDOI], [External LinkarXiv:1002.1036 [gr-qc]].
2 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First Search for Gravitational Waves from the Youngest Known Neutron Star”, Astrophys. J., 722, 1504–1513, (2010). [External LinkDOI], [External LinkarXiv:1006.2535 [gr-qc]].
3 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001, (2010). [External LinkDOI], [External LinkarXiv:1003.2480 [astro-ph.HE]].
4 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO’s Fifth and Virgo’s First Science Run”, Astrophys. J., 715, 1453–1461, (2010). [External LinkDOI], [External LinkarXiv:1001.0165 [astro-ph.HE]].
5 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1”, Phys. Rev. D, 82, 102001, (2010). [External LinkDOI].
6 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Beating the spin-down limit on gravitational wave emission from the Vela pulsar”, arXiv, e-print, (2011). [External LinkarXiv:1104.2712 [astro-ph.HE]].
7 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational Wave Bursts from Six Magnetars”, Astrophys. J. Lett., 734, L35, (2011). [External LinkDOI], [External LinkarXiv:1011.4079 [astro-ph.HE]].
8 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar”, Phys. Rev. D, 83, 042001, (2011). [External LinkDOI], [External LinkarXiv:1011.1357].
9 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from binary black hole inspiral, merger and ringdown”, Phys. Rev. D, 83, 122005, (2011). [External LinkDOI], [External LinkarXiv:1102.3781 [gr-qc]].
10 Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of first LIGO science data for stochastic gravitational waves”, Phys. Rev. D, 69, 122004, (2004). [External LinkDOI], [External Linkgr-qc/0312088].
11 Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of LIGO data for gravitational waves from binary neutron stars”, Phys. Rev. D, 69, 122001, (2004). [External LinkDOI], [External Linkgr-qc/0308069].
12 Abbott, B. et al. (LIGO Scientific Collaboration), “Detector description and performance for the first coincidence observations between LIGO and GEO”, Nucl. Instrum. Methods A, 517, 154–179, (2004). [External LinkDOI], [External Linkgr-qc/0308043].
13 Abbott, B. et al. (LIGO Scientific Collaboration), “First upper limits from LIGO on gravitational wave bursts”, Phys. Rev. D, 69, 102001, (2004). [External LinkDOI].
14 Abbott, B. et al. (LIGO Scientific Collaboration), “Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors”, Phys. Rev. D, 69, 082004, (2004). [External LinkDOI], [External Linkgr-qc/0308050].
15 Abbott, B. et al. (LIGO Scientific Collaboration), “First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform”, Phys. Rev. D, 72, 102004, (2005). [External LinkDOI], [External Linkgr-qc/0508065].
16 Abbott, B. et al. (LIGO Scientific Collaboration), “Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data”, Phys. Rev. Lett., 94, 181103, (2005). [External LinkDOI], [External Linkgr-qc/0410007].
17 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors”, Phys. Rev. D, 72, 042002, (2005). [External LinkDOI], [External Linkgr-qc/0501068].
18 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from galactic and extra-galactic binary neutron stars”, Phys. Rev. D, 72, 082001, (2005). [External LinkDOI], [External Linkgr-qc/0505041].
19 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from primordial black hole binary coalescences in the galactic halo”, Phys. Rev. D, 72, 082002, (2005). [External LinkDOI], [External Linkgr-qc/0505042].
20 Abbott, B. et al. (LIGO Scientific Collaboration and TAMA Collaboration), “Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts”, Phys. Rev. D, 72, 122004, (2005). [External LinkDOI].
21 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper Limits on a Stochastic Background of Gravitational Waves”, Phys. Rev. Lett., 95, 221101, (2005). [External LinkDOI], [External Linkastro-ph/0507254].
22 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave bursts in LIGO’s second science run”, Phys. Rev. D, 72, 062001, (2005). [External LinkDOI].
23 Abbott, B. et al. (LIGO Scientific Collaboration and TAMA Collaboration), “Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries”, Phys. Rev. D, 73, 102002, (2006). [External LinkDOI], [External Linkgr-qc/0512078].
24 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from binary black hole inspirals in LIGO data”, Phys. Rev. D, 73, 062001, (2006). [External LinkDOI], [External Linkgr-qc/0509129].
25 Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home S3 Analysis Summary”, project homepage, UW-Milwaukee, (2007). URL (accessed 3 October 2008):
External Linkhttp://einstein.phys.uwm.edu/FinalS3Results/.
26 Abbott, B. et al. (LIGO Scientific Collaboration and ALLEGRO Collaboration), “First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds”, Phys. Rev. D, 76, 022001, (2007). [External LinkDOI], [External Linkgr-qc/0703068].
27 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in LIGO data from the fourth science run”, Class. Quantum Grav., 24, 5343–5369, (2007). [External LinkDOI], [External LinkarXiv:0704.0943].
28 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO”, Phys. Rev. D, 76, 062003, (2007). [External LinkDOI], [External Linkastro-ph/0703419].
29 Abbott, B. et al. (LIGO Scientific Collaboration), “Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run”, Phys. Rev. D, 76, 082001, (2007). [External LinkDOI].
30 Abbott, B. et al. (LIGO Scientific Collaboration), “Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory”, Astrophys. J., 659, 918–930, (2007). [External LinkDOI], [External Linkastro-ph/0608606].
31 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limit map of a background of gravitational waves”, Phys. Rev. D, 76, 082003, (2007). [External LinkDOI], [External Linkastro-ph/0703234].
32 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave emission from 78 radio pulsars”, Phys. Rev. D, 76, 042001, (2007). [External LinkDOI], [External Linkgr-qc/0702039].
33 Abbott, B. et al. (LIGO Scientific Collaboration), “All-sky search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 77, 022001, (2008). [External LinkDOI], [External LinkarXiv:0708.3818].
34 Abbott, B. et al. (LIGO Scientific Collaboration), “Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar”, Astrophys. J. Lett., 683, L45–L49, (2008). [External LinkDOI], [External LinkarXiv:0805.4758].
35 Abbott, B. et al. (LIGO Scientific Collaboration), “First joint search for gravitational-wave bursts in LIGO and GEO 600 data”, Class. Quantum Grav., 25, 245008, (2008). [External LinkDOI], [External LinkarXiv:0807.2834].
36 Abbott, B. et al. (LIGO Scientific Collaboration), “Implications for the Origin of GRB 070201 from LIGO Observations”, Astrophys. J., 681, 1419–1430, (2008). [External LinkDOI], [External LinkarXiv:0711.1163].
37 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for Gravitational-Wave Bursts from Soft Gamma Repeaters”, Phys. Rev. Lett., 101, 211102, (2008). [External LinkDOI], [External LinkarXiv:0808.2050].
38 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs”, Phys. Rev. D, 77, 062004, (2008). [External LinkDOI], [External LinkarXiv:0709.0766].
39 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from binary inspirals in S3 and S4 LIGO data”, Phys. Rev. D, 77, 062002, (2008). [External LinkDOI].
40 Abbott, B. et al. (LIGO Scientific Collaboration), “Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals”, Phys. Rev. D, 78, 042002, (2008). [External LinkDOI], [External LinkarXiv:0712.2050].
41 Abbott, B. et al. (LIGO Scientific Collaboration), “All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data”, Phys. Rev. Lett., 102, 111102, (2009). [External LinkDOI], [External LinkarXiv:0810.0283].
42 Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home search for periodic gravitational waves in early S5 LIGO data”, Phys. Rev. D, 80, 042003, (2009). [External LinkDOI], [External LinkarXiv:0905.1705].
43 Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 79, 022001, (2009). [External LinkDOI], [External LinkarXiv:0804.1747].
44 Abbott, B. et al. (LIGO Scientific Collaboration), “First LIGO search for gravitational wave bursts from cosmic (super)strings”, Phys. Rev. D, 80, 062002, (2009). [External LinkDOI], [External LinkarXiv:0904.4718 [astro-ph.CO]].
45 Abbott, B. et al. (LIGO Scientific Collaboration), “LIGO: the Laser Interferometer Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901, (2009). [External LinkDOI].
46 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in the first year of the fifth LIGO science run”, Phys. Rev. D, 80, 102001, (2009). [External LinkDOI], [External LinkarXiv:0905.0020 [gr-qc]].
47 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data”, Phys. Rev. D, 80, 062001, (2009). [External LinkDOI], [External LinkarXiv:0905.1654].
48 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from low mass binary coalescences in the first year of LIGO’s S5 data”, Phys. Rev. D, 79, 122001, (2009). [External LinkDOI], [External LinkarXiv:0901.0302].
49 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO’s fifth science run”, Phys. Rev. D, 80, 047101, (2009). [External LinkDOI], [External LinkarXiv:0905.3710].
50 Abbott, B. et al. (LIGO Scientific Collaboration), “Search for high frequency gravitational-wave bursts in the first calendar year of LIGO’s fifth science run”, Phys. Rev. D, 80, 102002, (2009). [External LinkDOI], [External LinkarXiv:0904.4910 [gr-qc]].
51 Abbott, B. et al. (LIGO Scientific Collaboration), “Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm”, Astrophys. J. Lett., 701, L68–L74, (2009). [External LinkDOI], [External LinkarXiv:0905.0005].
52 Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “An upper limit on the stochastic gravitational-wave background of cosmological origin”, Nature, 460, 990–994, (2009). [External LinkDOI].
53 Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search For Gravitational-wave Bursts Associated with Gamma-ray Bursts using Data from LIGO Science Run 5 and Virgo Science Run 1”, Astrophys. J., 715, 1438–1452, (2010). [External LinkDOI], [External LinkarXiv:0908.3824 [astro-ph.HE]].
54 Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data”, Astrophys. J., 713, 671–685, (2010). [External LinkDOI], [External LinkarXiv:0909.3583 [astro-ph.HE]].
55 Abbott, R. et al., “Seismic isolation for Advanced LIGO”, Class. Quantum Grav., 19, 1591–1597, (2002). [External LinkDOI].
56 Abramovici, A. et al., “Improved sensitivity in a gravitational wave interferometer and implications for LIGO”, Phys. Lett. A, 218, 157–163, (1996). [External LinkDOI].
57 Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo detector during its second science run”, Class. Quantum Grav., 28, 025005, (2011). [External LinkDOI], [External LinkarXiv:1009.5190 [gr-qc]].
58 Acernese, F. et al. (VIRGO Collaboration), “Status of VIRGO”, in Hough, J. and Sanders, G.H. (VIRGO Collaboration), eds., Gravitational Wave and Particle Astrophysics Detectors, Glasgow, Scotland, UK, 23 June 2004, Proc. SPIE, 5500, pp. 58–69, (SPIE, Bellingham, WA, 2004). [External LinkDOI].
59 Acernese, F. et al. (VIRGO Collaboration), “Status of Virgo”, Class. Quantum Grav., 22, S869–S880, (2005). [External LinkDOI].
60 Acernese, F. et al. (VIRGO Collaboration), “The status of VIRGO”, Class. Quantum Grav., 23, S63–S69, (2006). [External LinkDOI].
61 Acernese, F. et al. (Virgo Collaboration), “Status of Virgo detector”, Class. Quantum Grav., 24, S381–S388, (2007). [External LinkDOI].
62 Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Preliminary Design, VIR-089A-08, (Virgo, Cascina, 2008). URL (accessed 16 February 2011):
External Linkhttps://tds.ego-gw.it/ql/?c=2110.
63 Acernese, F. et al. (Virgo Collaboration), “Search for gravitational waves associated with GRB 050915a using the Virgo detector”, Class. Quantum Grav., 25, 225001, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.0376 [gr-qc]].
64 Acernese, F. et al. (Virgo Collaboration), “Virgo status”, Class. Quantum Grav., 25, 184001, (2008). [External LinkDOI].
65 Adhikari, R., Fritschel, P. and Waldman, S., Enhanced LIGO, LIGO-T060156-01, (LIGO, Pasadena, CA, 2006). URL (accessed 10 November 2008):
External Linkhttp://www.ligo.caltech.edu/docs/T/T060156-01.pdf.
66 “Advanced LIGO”, project homepage, Massachusetts Institute of Technology. URL (accessed 19 November 2008):
External Linkhttp://www.advancedligo.mit.edu/.
67 “Advanced Virgo”, project homepage, INFN. URL (accessed 16 February 2011):
External Linkhttp://www.virgo.infn.it/advirgo/.
68 Ageev, A., Palmer, B.C., Felice, A.D., Penn, S.D. and Saulson, P.R., “Very high quality factor measured in annealed fused silica”, Class. Quantum Grav., 21, 3887–3892, (2004). [External LinkDOI].
69 Agresti, J., Castaldi, G., DeSalvo, R., Galdi, V., Pierro, V. and Pinto, I.M., “Optimized multilayer dielectric mirror coatings for gravitational wave interferometers”, in Ellison, M.J., ed., Advances in Thin-Film Coatings for Optical Applications III, San Diego, CA, USA, 13 August 2006, Proc. SPIE, 6286, (SPIE, Bellingham, WA, 2006). [External LinkDOI].
70 Aguiar, O.D. et al., “The Brazilian gravitational wave detector Mario Schenberg: status report”, Class. Quantum Grav., 23, S239–S244, (2006). [External LinkDOI].
71 Akutsu, T. et al., “Search for continuous gravitational waves from PSR J0835-4510 using CLIO data”, Class. Quantum Grav., 25, 184013, (2008). [External LinkDOI].
72 Akutsu, T. et al. (TAMA Collaboration), “Results of the search for inspiraling compact star binaries from TAMA300’s observation in 2000–2004”, Phys. Rev. D, 74, 122002, (2006). [External LinkDOI].
73 Allen, B. and Romano, J.D., “Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities”, Phys. Rev. D, 59, 102001, (1999). [External LinkDOI], [External Linkgr-qc/9710117].
74 Allen, B. et al., “Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy”, Phys. Rev. Lett., 83, 1498–1501, (1999). [External LinkDOI], [External Linkgr-qc/9903108].
75 Alnis, J., Matveev, A., Kolachevsky, N., Udem, T. and Hänsch, T.W., “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities”, Phys. Rev. A, 77, 053809, (2008). [External LinkDOI].
76 Amaldi, E. et al., “First gravity wave coincident experiment between resonant cryogenic detectors: Louisiana-Rome-Stanford”, Astron. Astrophys., 216, 325–332, (1989). [External LinkADS].
77 Anderson, W.G., Brady, P.R., Creighton, J.D. and Flanagan, É.É., “Excess power statistic for detection of burst sources of gravitational radiation”, Phys. Rev. D, 63, 042003, (2001). [External LinkDOI], [External Linkgr-qc/0008066].
78 Ando, M. (TAMA Collaboration), “Current status of TAMA”, Class. Quantum Grav., 19, 1409–1419, (2002). [External LinkDOI].
79 Ando, M. et al. (TAMA Collaboration), “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950–3954, (2001). [External LinkDOI], [External Linkastro-ph/0105473].
80 Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26, 094019, (2009). [External LinkDOI].
81 Arai, K. et al. (TAMA Collaboration), “Report on the Observation Run of TAMA300 in the Spring of 2003”, in Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y. and Sasaki, M. (TAMA Collaboration), eds., 28th International Cosmic Ray Conference (ICRC 2003), July 31 – August 7, 2003, Trukuba, Japan, Frontiers science series,  41, pp. 3085–3088, (Universal Academy Press, Tokyo, 2003). [External LinkADS].
82 Arai, K. et al. (TAMA Collaboration and CLIO Collaboration and LCGT Collaboration), “Status of Japanese gravitational wave detectors”, Class. Quantum Grav., 26, 204020, (2009). [External LinkDOI].
83 Araya, A., Mio, N., Tsubono, K., Suehiro, K., Telada, S., Ohashi, M. and Fujimoto, M.-K., “Optical mode cleaner with suspended mirrors”, Appl. Opt., 36(7), 1446–1453, (1997). [External LinkDOI].
84 Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum Grav., 26, 094001, (2009). [External LinkDOI].
85 Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (accessed 14 February 2011):
http://www.livingreviews.org/lrr-2006-1.
86 Aso, Y., Márka, Z., Finley, C., Dwyer, J., Kotake, K. and Márka, S., “Search method for coincident events from LIGO and IceCube detectors”, Class. Quantum Grav., 25, 114039, (2008). [External LinkDOI], [External LinkarXiv:0711.0107].
87 “Astro2010: The Astronomy and Astrophysics Decadal Survey”, project homepage, The National Acadamies. URL (accessed 14 December 2010):
External Linkhttp://sites.nationalacademies.org/bpa/BPA_049810.
88 “AURIGA Home Page”, project homepage, INFN. URL (accessed 14 January 2008):
External Linkhttp://www.auriga.lnl.infn.it.
89 Aylott, B. et al., “Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project”, Class. Quantum Grav., 26, 165008, (2009). [External LinkDOI], [External LinkarXiv:0901.4399].
90 Baggio, L. et al. (AURIGA Collaboration and LIGO Scientific Collaboration), “A joint search for gravitational wave bursts with AURIGA and LIGO”, Class. Quantum Grav., 25, 095004, (2008). [External LinkDOI].
91 Barriga, P. et al., “AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors”, Class. Quantum Grav., 27, 084005, (2010). [External LinkDOI].
92 Bartusiak, M., Einstein’s Unfinished Symphony: Listening to the Sounds of Space-Time, (Joseph Henry Press, Washington, DC, 2000). [External LinkGoogle Books].
93 Beccaria, M. et al., “Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity”, Class. Quantum Grav., 15, 3339–3362, (1998). [External LinkDOI].
94 Beker, M.G. et al., “Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise”, Gen. Relativ. Gravit., 43, 623–656, (2011). [External LinkDOI].
95 Billing, H., Maischberger, K., Rüdiger, A., Schilling, R., Schnupp, L. and Winkler, W., “An argon laser interferometer for the detection of gravitational radiation”, J. Phys. E: Sci. Instrum., 12, 1043–1050, (1979). [External LinkDOI].
96 Blair, D.G., ed., The Detection of Gravitational Waves, (Cambridge University Press, Cambridge, New York, 1991).
97 “BOINC: Open-source software for volunteer computing and grid computing”, project homepage, University of California. URL (accessed 3 October 2008):
External Linkhttp://boinc.berkeley.edu/.
98 Braccini, S. et al., “An improvement in the VIRGO Super Attenuator for interferometric detection of gravitational waves: The use of a magnetic antispring”, Rev. Sci. Instrum., 64, 310–313, (1993). [External LinkDOI].
99 Braccini, S. et al., “Seismic vibrations mechanical filters for the gravitational waves detector VIRGO”, Rev. Sci. Instrum., 67, 2899–2902, (1996). [External LinkDOI].
100 Brady, P.R. and Creighton, T., “Searching for periodic sources with LIGO. II. Hierarchical searches”, Phys. Rev. D, 61, 082001, (2000). [External LinkDOI], [External Linkgr-qc/9812014].
101 Braginsky, V.B. and Gorodetsky, M.L., “Optical bars in gravitational wave antenna”, Phys. Lett. A, 232, 340–348, (1997). [External LinkDOI].
102 Braginsky, V.B., Gorodetsky, M.L. and Vyatchanin, S.P., “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae”, Phys. Lett. A, 264, 1–10, (1999). [External LinkDOI], [External Linkcond-mat/9912139].
103 Braginsky, V.B. and Khalili, F.Y., “Nonlinear meter for the gravitational wave antenna”, Phys. Lett. A, 218, 167–174, (1996). [External LinkDOI].
104 Braginsky, V.B., Mitrofanov, V.P. and Panov, V.I., Systems with Small Dissipation, (University of Chicago Press, Chicago, 1985).
105 Braginsky, V.B., Mitrofanov, V.P. and Tokmakov, K.V., “Energy dissipation in the pendulum mode of the test mass suspension of a gravitational wave antenna”, Phys. Lett. A, 218, 164–166, (1996). [External LinkDOI].
106 Braginsky, V.B., Strigin, S.E. and Vyatchanin, S.P., “Parametric oscillatory instability in Fabry–Perot interferometer”, Phys. Lett. A, 287, 331–338, (2001). [External LinkDOI].
107 Cadonati, L., “Coherent waveform consistency test for LIGO burst candidates”, Class. Quantum Grav., 21, S1695–S1703, (2004). [External LinkDOI].
108 Carilli, C. and Rawlings, S., eds., Science with the Square Kilometre Array, New Astron. Rev.,  48, (Elsevier, Amsterdam, 2004). Online version (accessed 15 June 2011):
External Linkhttp://www.skads-eu.org/p/SKA_SciBook.php.
109 Caves, C.M., “Quantum-mechanical radiation pressure fluctuations in an interferometer”, Phys. Rev. Lett., 45, 75–79, (1980). [External LinkDOI].
110 Caves, C.M., “Quantum-mechanical noise in an interferometer”, Phys. Rev. D, 23, 1693–1708, (1981). [External LinkDOI].
111 Chassande-Mottin, E. (Ligo Scientific Collaboration and Virgo Collaboration), “Joint searches for gravitational waves and high-energy neutrinos”, J. Phys.: Conf. Ser., 243, 012002, (2010). [External LinkDOI].
112 Chatterji, S., Blackburn, L., Martin, G. and Katsavounidis, E., “Multiresolution techniques for the detection of gravitational-wave bursts”, Class. Quantum Grav., 21, S1809–S1818, (2004). [External LinkDOI].
113 Chatterji, S., Lazzarini, A., Stein, L., Sutton, P.J., Searle, A. and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005, (2006). [External LinkDOI], [External Linkgr-qc/0605002].
114 Chelkowski, S., Vahlbruch, H., Danzmann, K. and Schnabel, R., “Coherent control of broadband vacuum squeezing”, Phys. Rev. A, 75, 043814, (2007). [External LinkDOI].
115 Ciufolini, I. and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), 19 – 23 March 1996, Edoardo Amaldi Foundation Series,  2, (World Scientific, Singapore; River Edge, NJ, 1997).
116 Corbitt, T. and Mavalvala, N., “Review: Quantum noise in gravitational-wave interferometers”, J. Opt. B: Quantum Semiclass. Opt., 65, S675–S683, (2004). [External LinkDOI].
117 Corbitt, T. and Mavalvala, N., “Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity”, Phys. Rev. A, 74, 021802, (2006). [External LinkDOI].
118 “Cosmic Vision L-class missions presentation event 2011”, project homepage, European Space Agency, (2011). URL (accessed 31 May 2011):
External Linkhttp://sci.esa.int/Lmissions2011.
119 Coward, D.M. et al., “The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education”, Publ. Astron. Soc. Australia, 27, 331–339, (2010). [External LinkDOI], [External LinkarXiv:1006.3933 [astro-ph.IM]].
120 Cregut, O. et al., “18 W single-frequency operation of an injection-locked, CW, Nd:YAG laser”, Phys. Lett. A, 140, 294–298, (1989). [External LinkDOI].
121 Crooks, D.R.M. et al., “Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors”, Class. Quantum Grav., 19, 883–896, (2002). [External LinkDOI].
122 Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”, Phys. Rev. D, 72, 083005, (2005). [External LinkDOI], [External Linkgr-qc/0506015].
123 Cunningham, L. et al., “Re-evaluation of the mechanical loss factor of hydroxide-catalysis bonds and its significance for the next generation of gravitational wave detectors”, Phys. Lett. A, 374, 3993–3998, (2010). [External LinkDOI].
124 Cutler, C. and Holz, D.E., “Ultrahigh precision cosmology from gravitational waves”, Phys. Rev. D, 80, 104009, (2009). [External LinkDOI], [External LinkarXiv:0906.3752].
125 Danzmann, K. et al. (LISA Study Team), “LISA: Laser Interferometer Space Antenna for Gravitational Wave Measurements”, Class. Quantum Grav., 13, A247–A250, (1996). [External LinkDOI].
126 Decher, R.J., Randall, L., Bender, P.L. and Faller, J.E., “Design Aspects of a Laser Gravitational Wave Detector in Space”, in Cuneo, W.J., ed., Active Optical Devices and Applications, Washington, DC, USA, April 10 – 11, 1980, Proc. SPIE, 228, pp. 149–153, (SPIE, Bellingham, WA, 1980).
127 DeSalvo, R. et al., “Second generation suspensions for LIGO”, in Trân Than Vân, J., Dumarchez, J., Raynoud, S., Salomon, C., Thorsett, S. and Vinet, J.Y., eds., Gravitational Waves and Experimental Gravity, Proceedings of the XXXIVth Rencontres De Moriond, Les Arcs, France, January 23 – 30, 1999, (World Publishers, Hanoi, 2000).
128 Douglass, D.H. and Braginsky, V.B., “Gravitational-radiation experiments”, in Hawking, S.W. and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 90–137, (Cambridge University Press, Cambridge; New York, 1979).
129 Drever, R.W.P., “Interferometric detectors of gravitational radiation”, in Deroulle, N. and Piran, T., eds., Gravitational Radiation (Rayonnenment Gravitationnel), NATO Advanced Study Institute, Centre de physique des Houches, 2 – 21 June 1982, pp. 321–338, (North Holland; Elsevier, Amsterdam; New York, 1983).
130 Drever, R.W.P., Hough, J., Edelstein, W.A., Pugh, J.R. and Martin, W., “On Gravitational Radiation Detectors Using Optical Sensing Techniques”, in Bertotti, B., ed., Experimental Gravitation (Gravitazione Sperimentale), Proceedings of the International Meeting, Pavia, 17 – 20 September 1976, pp. 365–369, (Academic Press, New York, 1977), Accademi Nazionale Dei Lincei.
131 Drever, R.W.P. et al., “Gravitational wave detectors using laser interferometers and optical cavities: Ideas, principles and prospects”, in Meystre, P. and Scully, M.O., eds., Quantum Optics, Experimental Gravity, and Measurement Theory, Proceedings of the NATO Advanced Study Institute, held August 16 – 29, 1981 in Bad Windsheim, Germany, NATO ASI Series B,  94, pp. 503–514, (Plenum Press, New York, 1983).
132 Dupuis, R.J. and Woan, G., “Bayesian estimation of pulsar parameters from gravitational wave data”, Phys. Rev. D, 72, 102002, (2005). [External LinkDOI], [External Linkgr-qc/0508096].
133 Edelstein, W.A., Hough, J., Pugh, J.R. and Martin, W., “Limits to the measurement of displacement in an interferometric gravitational radiation detector”, J. Phys. E: Sci. Instrum., 11(7), 710–711, (1978). [External LinkDOI].
134 “Einstein Telescope”, project homepage, European Gravitational Observatory (EGO), (2008). URL (accessed 5 January 2009):
External Linkhttp://www.et-gw.eu/.
135 “Einstein(AT)Home”, project homepage, UW-Milwaukee. URL (accessed 3 October 2008):
External Linkhttp://einstein.phys.uwm.edu.
136 Estabrook, F.B. and Wahlquist, H.D., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439–447, (1975). [External LinkDOI], [External LinkADS].
137 “ET sensitivities page”, project homepage, EGO. URL (accessed 23 December 2010):
External Linkhttp://www.et-gw.eu/etsensitivities.
138 Fairhurst, S., “Source localization with an advanced gravitational wave detector network”, Class. Quantum Grav., 28, 105021, (2011). [External LinkDOI], [External LinkarXiv:1010.6192 [gr-qc]].
139 Fairhurst, S., Guidi, G.M., Hello, P., Whelan, J.T. and Woan, G., “Current status of gravitational wave observations”, Gen. Relativ. Gravit., 43, 387–407, (2010). [External LinkDOI], [External LinkarXiv:0908.4006 [gr-qc]].
140 Faller, J.E., Bender, P.L., Hall, J.L., Hils, D. and Vincent, M.A., “Space antenna for gravitational wave astronomy”, in Longdon, N. and Melita, O., eds., Kilometric Optical Arrays in Space, Proceedings of the Colloquium held 23 – 25 October 1984, Cargèse, Corsica, France, ESA Conference Proceedings, SP-226, pp. 157–163, (ESA Publications Division, Noordwijk, 1985).
141 Flaminio, R. et al. (Virgo Collaboration), Advanced Virgo White Paper, VIR-NOT-DIR-1390-304, (Virgo, Cascina, 2005). URL (accessed 16 February 2011):
External Linkhttps://tds.ego-gw.it/ql/?c=1544.
142 Forward, R.L., Zipoy, D., Weber, J., Smith, S. and Benioff, H., “Upper Limit for Interstellar Millicycle Gravitational Radiation”, Nature, 189, 473, (1961). [External LinkDOI].
143 Frede, M., Schulz, B., Wilhelm, R., Kwee, P., Seifert, F., Willke, B. and Kracht, D., “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors”, Opt. Express, 15, 459–465, (2007). [External LinkDOI].
144 Frede, M., Wilhelm, R., Kracht, D. and Fallnich, C., “Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power”, Opt. Express, 13, 7516–7519, (2005). [External LinkDOI].
145 Freise, A., Chelkowski, S., Hild, S., Del Pozzo, W., Perreca, A. and Vecchio, A., “Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector”, Class. Quantum Grav., 26, 085012, (2009). [External LinkDOI], [External LinkarXiv:0804.1036].
146 Freise, A. and Strain, K., “Interferometer Techniques for Gravitational-Wave Detection”, Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 10 December 2010):
http://www.livingreviews.org/lrr-2010-1.
147 Fritschel, P, “DC Readout for Advanced LIGO”, LSC meeting, Hannover, 21 August 2003, conference paper, (2003). Online version (accessed 16 February 2011):
External Linkhttp://www.ligo.caltech.edu/docs/G/G030460-00/G030460-00.pdf.
148 Fritschel, P., González, G., Lantz, B., Saha, P. and Zucker, M., “High Power Interferometric Phase Measurement Limited by Quantum Noise and Application to Detection of Gravitational Waves”, Phys. Rev. Lett., 80, 3181–3184, (1998). [External LinkDOI].
149 “GCN: The Gamma-ray Coordinates Network (Transient Astronomy Network)”, project homepage, GSFC/NASA. URL (accessed 3 October 2008):
External Linkhttp://gcn.gsfc.nasa.gov/.
150 “GEO600 Sensitivity Curves”, project homepage, University of Hannover. URL (accessed 22 January 2008):
External Linkhttp://www.geo600.uni-hannover.de/geocurves/.
151 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 16 February 2011):
External Linkhttp://www.geo600.org/.
152 Giampieri, G., Hellings, R.W., Tinto, M. and Faller, J.E., “Algorithms for unequal-arm Michelson interferometers”, Opt. Commun., 123, 669–678, (1996). [External LinkDOI].
153 Gillespie, A.D. and Raab, F.J., “Thermally Excited Vibrations of the Mirrors of Laser Interferometer Gravitational-Wave Detectors”, Phys. Rev. D, 52, 577–585, (1995). [External LinkDOI].
154 Glauber, R.J., “Coherent and Incoherent States of the Radiation Field”, Phys. Rev., 131, 2766, (1963). [External LinkDOI].
155 Golenetskii, S., Aptekar, R., Mazets, E., Pal’Shin, V., Frederiks, D. and Cline, T., GRB 070201: clarification on localization and konus-wind spectra, GCN Circular, (GSFC/NASA, Greenbelt, MD, 2007). URL (accessed 16 February 2011):
External Linkhttp://gcn.gsfc.nasa.gov/gcn3/6094.gcn3.
156 Golenetskii, S. et al., IPN localization of very intense short GRB 070201, GCN Circular, (GSFC/NASA, Greenbelt, MD, 2007). URL (accessed 16 February 2011):
External Linkhttp://gcn.gsfc.nasa.gov/gcn/gcn3/6088.gcn3.
157 Golla, D., Freitag, I., Zellmer, H., Schone, W., Kropke, I. and Welling, H., “15 W single-frequency operation of a CW diode laser-pumped Nd:YAG ring laser”, Opt. Commun., 98, 86–90, (1993). [External LinkDOI].
158 Gottardi, L. et al., “Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K”, Phys. Rev. D, 76, 102005, (2007). [External LinkDOI], [External LinkarXiv:0705.0122 [gr-qc]].
159 “Graviton Group”, project homepage, DAS/INPE. URL (accessed 14 January 2008):
External Linkhttp://www.das.inpe.br/graviton/.
160 Green, M.A. and Keevers, M.J., “Optical properties of intrinsic silicon at 300 K”, Prog. Photovolt: Res. Appl., 3, 189–192, (1995). [External LinkDOI].
161 Gréverie, C., Brillet, A., Man, C.N., Chaibi, W., Coulon, J.P. and Feliksik, K., “High power fiber amplifier for Advanced Virgo”, in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), San Jose, CA, May 16 – 21, 2010, OSA Technical Digest, (IEEE, Washington, DC, 2010).
162 Grote, H. (LIGO Scientific Collaboration), “The GEO 600 status”, Class. Quantum Grav., 27, 084003, (2010). [External LinkDOI].
163 Grote, H. et al., “The status of GEO 600”, Class. Quantum Grav., 22, S193–S198, (2005). [External LinkDOI].
164 “GW group in ICRR UT”, project homepage, University of Tokyo. URL (accessed 16 February 2011):
External Linkhttp://www.icrr.u-tokyo.ac.jp/gr/home/gre.html.
165 “GWIC Sponsored Conferences”, project homepage, Gravitational Wave International Committee. URL (accessed 8 December 2010):
External Linkhttp://gwic.ligo.org/conferences/.
166 Harry, G.M. (LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006, (2010). [External LinkDOI].
167 Harry, G.M., Fritschel, P., Shaddock, D.A., Folkner, W. and Phinney, E.S., “Laser interferometry for the Big Bang Observer”, Class. Quantum Grav., 23, 4887–4894, (2006). [External LinkDOI].
168 Harry, G.M. et al., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav., 65, 897–917, (2002). [External LinkDOI], [External Linkgr-qc/0109073].
169 Heinzel, G., Strain, K.A., Mizuno, J., Skeldon, K.D., Willke, B., Winkler, W., Schilling, R. and Danzmann, K., “An experimental demonstration of dual recycling on a suspended interferometer”, Phys. Rev. Lett., 81, 5493–5496, (1998). [External LinkDOI].
170 Heng, I.S., Blair, D.G., Ivanov, E.N. and Tobar, M.E., “Long term operation of a niobium resonant bar gravitational wave antenna”, Phys. Lett. A, 218, 190–196, (1996). [External LinkDOI].
171 Hereld, M., A search for gravitational radiation from PSR 1937+214, Ph.D. Thesis, (California Institute of Technology, Pasadena, CA, 1984).
172 Hewitson, M. et al., “A report on the status of the GEO 600 gravitational wave detector”, Class. Quantum Grav., 20, S581–S591, (2003). [External LinkDOI].
173 Hild, S. (LIGO Scientific Collaboration), “The status of GEO 600”, Class. Quantum Grav., 23, S643–S651, (2006). [External LinkDOI].
174 Hild, S., Chelkowski, S. and Freise, A., “Pushing towards the ET sensitivity using ‘conventional’ technology”, arXiv, e-print, (2008). [External LinkarXiv:0810.0604 [gr-qc]].
175 Hild, S., Chelkowski, S., Freise, A., Franc, J., Morgado, N., Flaminio, R. and DeSalvo, R., “A xylophone configuration for a third-generation gravitational wave detector”, Class. Quantum Grav., 27, 015003, (2010). [External LinkDOI], [External LinkarXiv:0906.2655 [gr-qc]].
176 Hild, S., Grote, H., Smith, J.R. and Hewitson, M. (GEO600-team), “Towards gravitational wave astronomy: Commissioning and characterization of GEO600”, J. Phys.: Conf. Ser., 32, 66–73, (2006). [External LinkDOI].
177 Hild, S. et al., “DC-readout of a signal-recycled gravitational wave detector”, Class. Quantum Grav., 26, 055012, (2009). [External LinkDOI], [External LinkarXiv:0811.3242 [gr-qc]].
178 Hild, S. et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observatories”, arXiv, e-print, (2010). [External LinkarXiv:1012.0908 [gr-qc]].
179 Hobbs, G.B. et al., “Gravitational-Wave Detection Using Pulsars: Status of the Parkes Pulsar Timing Array Project”, Publ. Astron. Soc. Australia, 26, 103–109, (2008). [External LinkDOI], [External LinkarXiv:0812.2721 [astro-ph]].
180 Holtz, D.E. and Hughes, S.A., “Using gravitational-wave standard sirens”, Astrophys. J., 629, 15–22, (2005). [External LinkDOI], [External Linkastro-ph/0504616].
181 Hough, J., “Prospects for Gravitational Wave Detection with Laser Interferometer Detectors”, in Blair, D.G. and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Part A, Proceedings of the meeting held at The University of Western Australia, 8 – 13 August 1988, pp. 265–282, (World Scientific, Singapore; River Edge, NJ, 1989).
182 Hough, J. et al., “The stabilisation of lasers for interferometric gravitational wave detectors”, in Blair, D.G., ed., The Detection of Gravitational Waves, pp. 329–351, (Cambridge University Press, Cambridge; New York, 1991). [External LinkGoogle Books].
183 Hough, J. et al. (LISA Science Team), “LISA - The Interferometer”, in Wilson, A. (LISA Science Team), ed., Fundamental Physics in Space, Proceedings of the Alpbach Summer School 1997, Alpbach, Tyrol, Austria 22 – 31 July 1997, ESA Conference Proceedings, SP-420, pp. 253–258, (ESA Publications Division, Noordwijk, 1997).
184 Hughes, S.A. and Thorne, K.S., “Seismic gravity-gradient noise in interferometric gravitational-wave detectors”, Phys. Rev. D, 58, 122002, (1998). [External LinkDOI].
185 Hulse, R.A., “The discovery of the binary pulsar”, Rev. Mod. Phys., 66, 699–710, (1994). [External LinkDOI].
186 Hurley, K. et al., “An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts”, Nature, 434, 1098–1103, (2005). [External LinkDOI], [External Linkastro-ph/0502329].
187 Janssen, G.H., Stappers, B.W., Kramer, M., Purver, M., Jessner, A. and Cognard, I., “European Pulsar Timing Array”, in Bassa, C., Wang, Z., Cumming, A. and Kaspi, V.M., eds., 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, Montreal, Canada, 12 – 17 August 2007, AIP Conference Proceedings, 983, pp. 633–635, (American Institute of Physics, Melville, NY, 2008). [External LinkDOI].
188 Jaranowski, P., Królak, A. and Schutz, B.F., “Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection”, Phys. Rev. D, 58, 063001, (1998). [External LinkDOI], [External Linkgr-qc/9804014].
189 Jarosik, N. et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results”, Astrophys. J. Suppl. Ser., 192, 14, (2011). [External LinkDOI], [External LinkarXiv:1001.4744 [astro-ph.CO]].
190 Jenet, F.A. et al., “Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects”, Astrophys. J., 653, 1571–1576, (2006). [External LinkDOI].
191 Jenet, F. et al., “The North American Nanohertz Observatory for Gravitational Waves”, arXiv, e-print, (2009). [External LinkarXiv:0909.1058 [astro-ph.IM]].
192 Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001, (2009). [External LinkDOI], [External LinkarXiv:0906.2901].
193 Johann, U.A., Ayre, M., Gath, P.F., Holota, W., Marenaci, P., Schulte, H.R., Weimer, P. and Weise, D., “The European Space Agency’s LISA mission study: status and present results”, J. Phys.: Conf. Ser., 122, 012005, (2008). [External LinkDOI].
194 Ju, L. and Blair, D.G., “Low Resonant-Frequency Cantilever Spring Vibration Isolator for Gravitational-Wave Detectors”, Rev. Sci. Instrum., 65, 3482–3488, (1994). [External LinkDOI].
195 Ju, L., Notcutt, M., Blair, D.G., Bondu, F. and Zhao, C.N., “Sapphire beamsplitters and test masses for advanced laser interferometric gravitational wave detectors”, Phys. Lett. A, 218, 197–206, (1996). [External LinkDOI].
196 Kalogera, V. et al., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004). [External LinkDOI].
197 Kalogera, V. et al., “Erratum: ‘The Cosmic Coalescence Rates for Double Neutron Star Binaries”’, Astrophys. J. Lett., 614, L137–L138, (2004). [External LinkDOI], [External Linkastro-ph/0312101].
198 Kanner, J., Huard, T.L., Márka, S., Murphy, D.C., Piscionere, J., Reed, M. and Shawhan, P., “LOOC UP: locating and observing optical counterparts to gravitational wave bursts”, Class. Quantum Grav., 25, 184034, (2008). [External LinkDOI], [External LinkarXiv:0803.0312].
199 Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna: DEECIGO”, Class. Quantum Grav., 28, 094011, (2011). [External LinkDOI].
200 Kerr, G.A. and Hough, J., “Coherent addition of laser oscillators for use in gravitational wave antenna”, Appl. Phys. B, 49, 491–495, (1989). [External LinkDOI].
201 Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S. and Vyatchanin, S.P., “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics”, Phys. Rev. D, 65, 022002, (2002). [External LinkDOI].
202 Klimenko, S. and Mitselmakher, G., “A wavelet method for detection of gravitational wave bursts”, Class. Quantum Grav., 21, S1819–S1830, (2004). [External LinkDOI].
203 Knispel, B. and Allen, B., “Blandford’s argument: The strongest continuous gravitational wave signal”, Phys. Rev. D, 78, 044031, (2008). [External LinkDOI], [External LinkarXiv:0804.3075].
204 Kogelnik, H. and Li, T., “Laser beams and resonators”, Proc. IEEE, 54, 1312–1329, (1966). [External LinkDOI].
205 Kopparapu, R.K., Hanna, C., Kalogera, V., O’Shaughnessy, R., González, G., Brady, P.R. and Fairhurst, S., “Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events”, Astrophys. J., 675, 1459–1467, (2008). [External LinkDOI], [External LinkarXiv:0706.1283].
206 Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S. and Palomba, C., “Hough transform search for continuous gravitational waves”, Phys. Rev. D, 70, 082001, (2004). [External LinkDOI], [External Linkgr-qc/0407001].
207 Kuroda, K. (LCGT Collaboration), “Status of LCGT”, Class. Quantum Grav., 27, 084004, (2010). [External LinkDOI].
208 Larson, S., “Sensitivity Curves for Spaceborne Gravitational Wave Observatories”, project homepage, California Institute of Technology. URL (accessed 23 December 2010):
External Linkhttp://www.srl.caltech.edu/~shane/sensitivity/.
209 Lawrence, R., Zucker, M., Fritschel, P., Marfuta, P. and Shoemaker, D., “Adaptive thermal compensation of test masses in Advanced LIGO”, Class. Quantum Grav., 19, 1803–1812, (2002). [External LinkDOI].
210 Lazzarini, A. and Weiss, R., LIGO Science Requirements Document (SRD), LIGO-E950018-02, (California Institute of Technology, Pasadena, CA, 1996). URL (accessed 16 January 2008):
External Linkhttp://www.ligo.caltech.edu/docs/E/E950018-02.pdf.
211 Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D, 57, 659–663, (1998). [External LinkDOI], [External Linkgr-qc/9707013].
212 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 15 January 2000):
External Linkhttp://www.ligo.caltech.edu.
213 “LIGO Laboratory Home Page for Interferometer Sensitivities”, project homepage, LIGO/California Institute of Technology. URL (accessed 22 January 2008):
External Linkhttp://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/.
214 LIGO Scientific Collaboration, Advanced LIGO Reference Design, LIGO-M060056-08, (LIGO, Pasadena, CA, 2007). URL (accessed 14 November 2008):
External Linkhttp://www.ligo.caltech.edu/docs/M/M060056-08/M060056-08.pdf.
215 “LIGO Scientific Collaboration Home Page”, project homepage, California Institute of Technology. URL (accessed 21 January 2008):
External Linkhttp://www.ligo.org.
216 “LISA Home Page (ESA)”, project homepage, European Space Agency. URL (accessed 16 February 2011):
External Linkhttp://sci.esa.int/lisa.
217 “LISA Home Page (NASA)”, project homepage, JPL/NASA. URL (accessed 15 January 2000):
External Linkhttp://lisa.jpl.nasa.gov.
218 “LISA: Laser Interferometer Space Antenna Project – Documentation”, project homepage, GSFC/NASA. URL (accessed 3 September 2009):
External Linkhttp://lisa.gsfc.nasa.gov/documentation.html.
219 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8, (2008). URL (accessed 4 January 2011):
http://www.livingreviews.org/lrr-2008-8.
220 Losurdo, G. et al., “Active Control Hierarchy in VIRGO Superattenuator: The Role of the Inverted Pendulum”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,  4, pp. 334–338, (World Scientific, Singapore; River Edge, NJ, 1998).
221 Loudon, R., “Quantum limit on the Michelson interferometer used for gravitational-wave detection”, Phys. Rev. Lett., 47, 815–818, (1981). [External LinkDOI].
222 Lück, H., Freise, A., Goßler, S, Hild, S., Kawabe, K. and Danzmann, K., “Thermal correction of the radii of curvature of mirrors for GEO 600”, Class. Quantum Grav., 21, S985–S989, (2004). [External LinkDOI].
223 Ludlow, A.D., Boyd, M.M., Zelevinsky, T., Foreman, S.M., Blatt, S., Notcutt, M., Ido, T. and Ye, J., “Systematic Study of the 87Sr Clock Transition in an Optical Lattice”, Phys. Rev. Lett., 96, 033003, (2006). [External LinkDOI].
224 Martin, I.W. et al., “Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2”, Class. Quantum Grav., 25, 055005, (2008). [External LinkDOI], [External Link0802.2686].
225 Marx, J. et al., Expanding the LIGO Network: The Case for Installing an Advanced LIGO Detector in Australia, LIGO-M1000115-v6, (LIGO, Pasadena, CA, 2010). URL (accessed 24 November 2010):
External Linkhttps://dcc.ligo.org/public/0011/M1000115/006/M1000115-v6-LIGO-AUS_WhitePaper.pdf.
226 Mauceli, E., Geng, Z.K., Hamilton, W.O., Johnson, W.W., Merkowitz, S.M., Morse, A., Price, B. and Solomonson, N., “The Allegro gravitational wave detector: Data acquisition and analysis”, Phys. Rev. D, 54, 1264–1275, (1996). [External LinkDOI].
227 Mavalvala, N., McClelland, D.E., Mueller, G., Reitze, D.H., Schnabel, R. and Willke, B., “Looking towards third generation gravitational wave detectors”, Gen. Relativ. Gravit., 25, 1–24, (2010). [External LinkDOI].
228 McNabb, J.W.C. et al., “Overview of the BlockNormal event trigger generator”, Class. Quantum Grav., 21, S1705–S1710, (2004). [External LinkDOI].
229 McNamara, P.W., Ward, H., Hough, J. and Robertson, D.I., “Laser frequency stabilization for spaceborne gravitational wave detectors”, Class. Quantum Grav., 14, 1543–1547, (1997). [External LinkDOI].
230 Meers, B.J., Some aspects of the development of an optically sensed gravitational-wave detector, Ph.D. Thesis, (University of Glasgow, Glasgow, 1983).
231 Meers, B.J., “Recycling in laser-interferometric gravitational-wave detectors”, Phys. Rev. D, 38, 2317–2326, (1988). [External LinkDOI].
232 Meshkov, S., ed., Gravitational Waves, Sources and Detectors, Third Edoardo Amaldi Conference, Pasadena, California, 12 – 16 July, 1999, AIP Conference Proceedings, 523, (American Institute of Physics, Melville, NY, 2000).
233 “MiniGRAIL, the first spherical gravitational wave detector”, project homepage, Leiden University. URL (accessed 14 January 2008):
External Linkhttp://www.minigrail.nl/.
234 Miyoki, S. (LCGT Collaboration), “Large scale cryogenic gravitational wave telescope”, Nucl. Phys. B (Proc. Suppl.), 138, 439–442, (2005). [External LinkDOI].
235 Mizuno, E., Kawashima, N., Miyoke, S., Heflin, E.G., Wada, K., Naito, W., Nagano, S. and Arakawa, K., “Effort of Stable Operation by Noise Rreduction of 100m DL Laser Iinterferometer [TENKO-100] for Gravitational Wave Detection”, in Ciufolini, I. and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), 19 – 23 March 1996, Edoardo Amaldi Foundation Series,  2, pp. 108–110, (World Scientific, Singapore; River Edge, NJ, 1997).
236 Moss, G.E., Miller, L.R. and Forward, R.L., “Photon-noise-limited laser transducer for gravitational antenna”, Appl. Opt., 10, 2495, (1971). [External LinkDOI].
237 Nabors, C.D., Farinas, A.D., Day, T., Yang, S.T., Gustafson, E.K. and Byer, R.L., “Injection locking of a 13-W CW Nd:YAG ring laser”, Opt. Lett., 14, 1189–1191, (1989). [External LinkDOI].
238 Nakagawa, N, Gretarsson, A.M., Gustafson, E.K. and Fejer, M.M.F., “Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror”, Phys. Rev. D, 65, 102001, (2002). [External LinkDOI], [External Linkgr-qc/0105046].
239 “NAUTILUS Gravitational Wave Antenna”, project homepage, INFN. URL (accessed 14 January 2008):
External Linkhttp://www.roma1.infn.it/rog/.
240 “Next steps for LISA”, project homepage, European Space Agency. URL (accessed 10 June 2011):
External Linkhttp://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48728.
241 Ng, C.-Y. and Romani, R.W., “Fitting Pulsar Wind Tori. II. Error Analysis and Applications”, Astrophys. J., 673, 411–417, (2008). [External LinkDOI], [External LinkarXiv:0710.4168].
242 Ni, W.-T., “Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system”, Class. Quantum Grav., 26, 075021, (2009). [External LinkDOI], [External LinkarXiv:0812.0887].
243 Nicholson, D. et al., “Results of the first coincident observations by two laser-interferometric gravitational wave detectors”, Phys. Lett. A, 218, 175–180, (1996). [External LinkDOI], [External Linkgr-qc/9605048].
244 Niebauer, T.M., Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W. and Danzmann, K., “Pulsar search using data compression with the Garching gravitational wave detector”, Phys. Rev. D, 47, 3106–3123, (1993). [External LinkDOI].
245 Notcutt, M., Ma, L.-S., Ludlow, A.D., Foreman, S.M., Ye, J. and Hall, J.L., “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers”, Phys. Rev. A, 73, 031804, (2006).
246 Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids, Materials Science Series,  1, (Academic Press, New York, 1972).
247 Ohashi, M. (LCGT Collaboration), “Status of LCGT and CLIO”, J. Phys.: Conf. Ser., 120, 032008, (2008). [External LinkDOI].
248 O’Shaughnessy, R., Kim, C., Fragos, T., Kalogera, V. and Belczynski, K., “Constraining Population Synthesis Models via the Binary Neutron Star Population”, Astrophys. J., 633, 1076–1084, (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0504479].
249 O’Shaughnessy, R., Kim, C., Kalogera, V. and Belczynski, K., “Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates”, Astrophys. J., 672, 479–488, (2008). [External LinkDOI].
250 Owen, B.J., “Search templates for gravitational waves from inspiraling binaries: Choice of template spacing”, Phys. Rev. D, 53, 6749–6761, (1996). [External LinkDOI], [External Linkgr-qc/9511032].
251 Owen, B.J., “How to adapt broad-band gravitational-wave searches for r-modes”, Phys. Rev. D, 82, 104002, (2010). [External LinkDOI], [External LinkarXiv:1006.1994 [gr-qc]].
252 Owen, B.J. and Sathyaprakash, B.S., “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement”, Phys. Rev. D, 60, 022002, (1999). [External LinkDOI], [External Linkgr-qc/9808076].
253 Pallottino, G.V., “The Resonant Mass Detectors of the Rome Group”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,  4, pp. 105–114, (World Scientific, Singapore; River Edge, NJ, 1998).
254 Papa, M.A., “Progress towards gravitational-wave astronomy”, Class. Quantum Grav., 25, 114009, (2008). [External LinkDOI], [External LinkarXiv:0802.0936].
255 Phinney, E.S., “Finding and Using Electromagnetic Counterparts of Gravitational Wave Sources”, arXiv, e-print, (2009). [External LinkarXiv:0903.0098 [astro-ph.CO]].
256 Plissi, M.V., Torrie, C.I., Husman, M.E., Robertson, N.A., Strain, K.A., Ward, H., Lück, H. and Hough, J., “GEO 600 triple pendulum suspension system: Seismic isolation and control”, Rev. Sci. Instrum., 71, 2539–2545, (2000). [External LinkDOI].
257 Plissi, M.V. et al., “Aspects of the suspension system for GEO 600”, Rev. Sci. Instrum., 69, 3055–3061, (1998). [External LinkDOI].
258 Pradier, T. (Antares Collaboration), “The Antares neutrino telescope and multi-messenger astronomy”, Class. Quantum Grav., 27, 194004, (2010). [External LinkDOI], [External LinkarXiv:1004.5579 [astro-ph.HE]].
259 Predoi, V. et al., “Prospects for joint radio telescope and gravitational-wave searches for astrophysical transients”, Class. Quantum Grav., 27, 084018, (2010). [External LinkDOI], [External LinkarXiv:0912.0476 [gr-qc]].
260 Prix, R. et al. (LIGO Scientific Collaboration), “Gravitational Waves from Spinning Neutron Stars”, in Becker, W. and Huang, H.H. (LIGO Scientific Collaboration), eds., Neutron Stars and Pulsars, 363rd WE-Heraeus Seminar, Bad Honnef, Germany, May 14 – 16, 2006, Astrophysics and Space Science Library, 357, pp. 651–685, (Springer, Berlin, 2009). [External LinkDOI]. Online version (accessed 28 June 2011):
External Linkhttp://edoc.mpg.de/288718.
261 Prodi, G.A. et al., “Initial Operation of the Gravitational Wave Detector AURIGA”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,  4, pp. 148–158, (World Scientific, Singapore; River Edge, NJ, 1998). Online version (accessed 2 December 2004):
External Linkhttp://www.auriga.lnl.infn.it/auriga/papers_src/amaldi97_prodi.ps.gz.
262 Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave observatory”, Class. Quantum Grav., 27, 194002, (2010). [External LinkDOI].
263 Rafac, R.J., Young, B.C., Beall, J.A., Itano, W.M., Wineland, D.J. and Bergquist, J.C., “Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+”, Phys. Rev. Lett., 85, 2462, (2000). [External LinkDOI].
264 Robertson, D.I. et al., “The Glasgow 10 m prototype laser interferometric gravitational wave detector”, Rev. Sci. Instrum., 66(9), 4447–4452, (1995). [External LinkDOI].
265 Robertson, N.A., Hoggan, S., Mangan, J.B. and Hough, J., “Intensity stabilisation of an argon laser using an electro-optic modulator”, Appl. Phys. B, 39, 149–153, (1986). [External LinkDOI].
266 Rowan, S., Twyford, S.M. and Hough, J., “The design of low loss suspensions for advanced gravitational wave detectors”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,  4, pp. 363–369, (World Scientific, Singapore; River Edge, NJ, 1998).
267 Rowan, S., Twyford, S.M., Hough, J., Gwo, D.-H. and Route, R., “Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica”, Phys. Lett. A, 246, 471–478, (1998). [External LinkDOI].
268 Rowan, S., Twyford, S.M., Hutchins, R., Kovalik, J., Logan, J.E., McLaren, A.C., Robertson, N.A. and Hough, J., “Q factor measurements on prototype fused quartz pendulum suspensions for use in gravitational wave detectors”, Phys. Lett. A, 233, 303–308, (1997). [External LinkDOI].
269 Rowan, S. et al., “Test Mass Materials for a New Generation of Gravitational Wave Detectors”, in Cruise, M. and Saulson, P., eds., Gravitational-Wave Detection, Waikoloa, HI, USA, 23 August 2002, Proc. SPIE, 4856, pp. 292–297, (SPIE, Bellingham, WA, 2003). [External LinkDOI].
270 Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W., Billing, H. and Maischberger, K., “A mode selector to suppress fluctuations in laser beam geometry”, Opt. Acta, 26(5), 641–658, (1981).
271 Sakata, S., Kawamura, S., Sato, S., Somiya, K., Arai, K., Fukushima, M. and Sugamoto, A., “Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer”, J. Phys.: Conf. Ser., 32, 464–469, (2006). [External LinkDOI].
272 Sandford, M.C.W., ed., First International LISA Symposium, Proceedings of the symposium, held at the Rutherford Appleton Laboratory in Chilton, 9 – 12 July 1996, Class. Quantum Grav.,  14, (Institute of Physics Publishing, Bristol, 1997).
273 Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [External LinkarXiv:0903.0338]. URL (accessed 03 March 2009):
http://www.livingreviews.org/lrr-2009-2.
274 Sato, S. et al. (DECIGO Collaboration), “DECIGO: The Japanese space gravitational wave antenna”, J. Phys.: Conf. Ser., 154, 012040, (2009). [External LinkDOI].
275 Saulson, P.R., “Terrestrial gravitational noise on a gravitational wave antenna”, Phys. Rev. D, 30, 732–736, (1984). [External LinkDOI].
276 Saulson, P.R., “Thermal noise in mechanical experiments”, Phys. Rev. D, 42, 2437–2445, (1990). [External LinkDOI].
277 Saulson, P.R., Fundamentals of Interferometric Gravitational Wave Detectors, (World Scientific, Singapore; River Edge, NJ, 1994).
278 Schilling, R., personal communication, (1981).
279 Schmidt-Kaler, F. et al., “The coherence of qubits based on single Ca+ ions”, J. Phys. B: At. Mol. Opt. Phys., 36, 623, (2003). [External LinkDOI].
280 Schnabel, R. et al., “Building blocks for future detectors: Silicon test masses and 1550 nm laser light”, J. Phys.: Conf. Ser., 228, 012029, (2010). [External Link0912.3164].
281 Schnupp, L., “Internal modulation schemes”, Presentation at European Collaboration Meeting on Interferometric Detection of Gravitational Waves, (Sorrent, Italy), conference paper, (1988).
282 Schutz, B.F., “Determining the nature of the Hubble constant”, Nature, 323, 310–311, (1986). [External LinkDOI].
283 Schutz, B.F., Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity, (Cambridge University Press, Cambridge, 2003).
284 Searle, A.C., Sutton, P.J. and Tinto, M., “Bayesian detection of unmodeled bursts of gravitational waves”, Class. Quantum Grav., 26, 155017, (2009). [External LinkDOI], [External LinkarXiv:0809.2809].
285 Sheard, B.S., Gray, M.B., McClelland, D.E. and Shaddock, D.A., “Laser frequency stabilization by locking to a LISA arm”, Phys. Lett. A, 320, 9–21, (2003). [External LinkDOI].
286 Shine Jr, R.J., Alfrey, A.J. and Byer, R.L., “40-W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser”, Opt. Lett., 20(5), 459–461, (1995). [External LinkDOI].
287 Shoemaker, D.H., Schilling, R., Schnupp, L., Winkler, W., Maischberger, K. and Rüdiger, A., “Noise behavior of the Garching 30-meter prototype gravitational-wave detector”, Phys. Rev. D, 38, 423–432, (1988). [External LinkDOI].
288 Skeldon, K.D., Strain, K.A., Grant, A.I. and Hough, J., “Test of an 18-m-long suspended modecleaner cavity”, Rev. Sci. Instrum., 67(7), 2443–2448, (1996). [External LinkDOI].
289 Smith, J.R. et al., “Commissioning, characterization and operation of the dual-recycled GEO 600”, Class. Quantum Grav., 21, S1737–S1745, (2004). [External LinkDOI].
290 Smith, S.L., A search for gravitational waves from coalesing binary stars using the Caltech 40 meter gravity wave detector, Ph.D. Thesis, (California Institute of Technology, Pasadena, CA, 1988).
291 Spero, R.E., “Prospects for Ground Based Detectors of Low Frequency Gravitational Radiation”, in Nieto, M.M., Hoffman, C.M., Kolb, E.W., Sandberg, V.D., Toevs, J.W. and Haxton, W.C., eds., Science Underground, Proceedings of the Workshop, Los Alamos, 1982, AIP Conference Proceedings,  96, pp. 347–350, (American Institute of Physics, Melville, NY, 1983). [External LinkDOI].
292 Strain, K.A. and Meers, B.J., “Experimental demonstration of dual recycling for interferometric gravitational-wave detectors”, Phys. Rev. Lett., 66, 1391–1394, (1991). [External LinkDOI].
293 Sutton, P., S3 Performance of the LIGO Interferometers as Measured by SenseMonitor, LIGO-T030276-00-Z, (LIGO/California Institute of Technology, Pasadena, CA, 2003). URL (accessed 16 January 2008):
External Linkhttp://www.ligo.caltech.edu/docs/T/T030276-00.pdf.
294 “TAMA300 Project”, project homepage, National Astronomical Observatory of Japan. URL (accessed 15 January 2000):
External Linkhttp://tamago.mtk.nao.ac.jp.
295 Taylor, J.H., “Binary Pulsars and Relativistic Gravity”, Rev. Mod. Phys., 66, 711–719, (1994). [External LinkDOI].
296 Thorne, K.S., Black Holes and Time Warps: Einstein’s Outrageous Legacy, (W.W. Norton, New York, 1994).
297 Tinto, M. and Dhurandhar, S.V., “Time Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4, (2005). URL (accessed 03 September 2009):
http://www.livingreviews.org/lrr-2005-4.
298 Torrie, C.I. et al., “Suspension system design for the main optics for GEO 600”, in Trân Than Vân, J., Dumarchez, J., Raynoud, S., Salomon, C., Thorsett, S. and Vinet, J.Y., eds., Gravitational Waves and Experimental Gravity, Proceedings of the XXXIVth Rencontres De Moriond, Les Arcs, France, January 23 – 30, 1999, pp. 235–240, (World Publishers, Hanoi, 2000).
299 Tyson, J.A. and Giffard, R.P., “Gravitational-Wave Astronomy”, Annu. Rev. Astron. Astrophys., 16, 521–554, (1978). [External LinkDOI].
300 Unruh, W.G., “Quantum Noise in the Interferometer Detector”, in Meystre, P. and Scully, M.O., eds., Quantum Optics, Experimental Gravitation, and Measurement Theory, Proceedings of the NATO Advanced Study Institute on Quantum Optics and Experimental General Relativity, August 1981, Bad Windsheim, Germany, NATO ASI Series B,  94, (Plenum Press, New York, 1983).
301 Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K. and Schnabel, R., “Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band”, Phys. Rev. Lett., 97, 011101, (2006). [External LinkDOI], [External LinkarXiv:0707.0164].
302 Vahlbruch, H. et al., “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction”, Phys. Rev. Lett., 100, 033602, (2008). [External LinkDOI], [External LinkarXiv:0706.1431].
303 Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 25 January 2011):
http://www.livingreviews.org/lrr-2009-5.
304 “Virgo”, project homepage, INFN. URL (accessed 16 February 2011):
External Linkhttp://www.virgo.infn.it.
305 “Virgo Sensitivity Curves”, project homepage, Virgo/INFN. URL (accessed 16 February 2011):
External Linkhttp://www.virgo.infn.it/DataAnalysis/Calibration/Sensitivity/.
306 Vogt, R.E., Drever, R.W.P., Thorne, K.S., Raab, F.J. and Weiss, R., “A Laser Interferometer Gravitational Wave Observatory (Proposal to the National Science Foundation)”, unknown format, (1989).
307 Vyatchanin, S.P. and Matsko, A.B., “Quantum limit on force measurements”, J. Exp. Theor. Phys., 77, 218–221, (1993).
308 Waldman, S.J. et al. (LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run”, Class. Quantum Grav., 23, S653–S660, (2006). [External LinkDOI].
309 Ward, R.L. et al., “dc readout experiment at the Caltech 40m prototype interferometer”, Class. Quantum Grav., 25, 114030, (2008). [External LinkDOI].
310 Weber, J., “Evidence for Discovery of Gravitational Radiation”, Phys. Rev. Lett., 22, 1320–1324, (1969). [External LinkDOI].
311 Weber, J., “Anisotropy and Polarization in the Gravitational-Radiation Experiments”, Phys. Rev. Lett., 25, 180–184, (1970). [External LinkDOI].
312 Webster, S.A., Oxborrow, M. and Gill, P., “Subhertz-linewidth Nd:YAG laser”, Opt. Lett., 29, 1497–1499, (2004). [External LinkDOI].
313 Weiss, R., Electromagnetically Coupled Broadband Gravitational Antenna, Quart. Progr. Rep., 105:54–76, (Research Lab. Electron., MIT, Cambridge, MA, 1972).
314 Weiss, R. and Block, B., “A Gravimeter to Monitor the 0S0 Dilational Mode of the Earth”, J. Geophys. Res., 70(22), 6515–5627, (1965).
315 Whitcomb, S.E., “Ground-based gravitational-wave detection: now and future”, Class. Quantum Grav., 25, 114013, (2008). [External LinkDOI].
316 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [External LinkGoogle Books].
317 Willke, B., Uehara, N., Gustafson, E.K., Byer, R.L., King, P.J., Steel, S.U. and Savage Jr, R.L., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner”, Opt. Lett., 23(21), 1704–1706, (1998). [External LinkDOI].
318 Willke, B. et al., “Status of GEO 600”, Class. Quantum Grav., 21, S417–S423, (2004). [External LinkDOI].
319 Willke, B. et al., “The GEO-HF project”, Class. Quantum Grav., 23, S207–S214, (2006). [External LinkDOI].
320 Willke, B. et al., “Stabilized lasers for advanced gravitational wave detectors”, Class. Quantum Grav., 25, 114040, (2008). [External LinkDOI].
321 Willke, B. et al. (LIGO Scientific Collaboration), “GEO600: status and plans”, Class. Quantum Grav., 24, S389–S397, (2007). [External LinkDOI].
322 Winterflood, J. and Blair, D. G., “Ultra-Low Frequency Pre-Isolation in Three Dimensons”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,  4, pp. 485–489, (World Scientific, Singapore; River Edge, NJ, 1998).
323 Yagi, K. and Seto, N., “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries”, Phys. Rev. D, 83, 044011, (2011). [External LinkDOI].
324 Yamamoto, K. et al., “Current status of the CLIO project”, J. Phys.: Conf. Ser., 122, 012002, (2008). [External LinkDOI], [External LinkarXiv:0805.2384].
325 Yardley, D.R.B. et al., “The sensitivity of the Parkes Pulsar Timing Array to individual sources of gravitational waves”, Mon. Not. R. Astron. Soc., 407, 669–680, (2010). [External LinkDOI].