1 Adamo, T.M., Bullimore, M., Mason, L. and Skinner, D., “Scattering amplitues and Wilson loops in twistor space”, J. Phys. A: Math. Theor., 44, 454008, (2011). [External LinkDOI], [External LinkarXiv:1104.2890].
2 Adamo, T.M. and Newman, E.T., “The gravitational field of a radiating electromagnetic dipole”, Class. Quantum Grav., 25, 245005, (2008). [External LinkDOI], [External LinkarXiv:0807.3537].
3 Adamo, T.M. and Newman, E.T., “Asymptotically stationary and static spacetimes and shear free null geodesic congruences”, Class. Quantum Grav., 26, 155003, (2009). [External LinkDOI], [External LinkarXiv:0906.2409].
4 Adamo, T.M. and Newman, E.T., “Electromagnetically induced gravitational perturbations”, Class. Quantum Grav., 26, 015004, (2009). [External LinkDOI], [External LinkarXiv:0807.3671].
5 Adamo, T.M. and Newman, E.T., “Vacuum non-expanding horizons and shear-free null geodesic congruences”, Class. Quantum Grav., 26, 235012, (2009). [External LinkDOI], [External LinkarXiv:0908.0751].
6 Adamo, T.M. and Newman, E.T., “The Generalized Good Cut Equation”, Class. Quantum Grav., 27, 245004, (2010). [External LinkDOI], [External LinkarXiv:1007.4215].
7 Adamo, T.M. and Newman, E.T., “The real meaning of complex Minkowski-space world-lines”, Class. Quantum Grav., 27, 075009, (2010). [External LinkDOI], [External LinkarXiv:0911.4205].
8 Adamo, T.M. and Newman, E.T., “Light cones in relativity: Real, complex and virtual, with applications”, Phys. Rev. D, 83, 044023, (2011). [External LinkDOI], [External LinkarXiv:1101.1052].
9 Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H. and Oz, Y., “Large N field theories, string theory and gravity”, Phys. Rep., 323, 183–386, (2000). [External LinkDOI], [External Linkhep-th/9905111].
10 Arcioni, G. and Dappiaggi, C., “Exploring the holographic principle in asymptotically flat spacetimes via the BMS group”, Nucl. Phys. B, 674, 553–592, (2003). [External LinkDOI], [External Linkhep-th/0306142].
11 Arnowitt, R., Deser, S. and Misner, C.W., “Energy and the Criteria for Radiation in General Relativity”, Phys. Rev., 118, 1100–1104, (1960). [External LinkDOI], [External LinkADS].
12 Aronson, B. and Newman, E.T., “Coordinate systems associated with asymptotically shear-free null congruences”, J. Math. Phys., 13, 1847–1851, (1972). [External LinkDOI].
13 Ashtekar, A., Beetle, C. and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195–1225, (2002). [External LinkDOI], [External Linkgr-qc/0111067].
14 Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 28 April 2011):
15 Bergmann, P.G., “Non-Linear Field Theories”, Phys. Rev., 75, 680–685, (1949). [External LinkDOI], [External LinkADS].
16 Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). [External LinkDOI], [External LinkADS].
17 Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825–874, (2002). [External LinkDOI], [External Linkhep-th/0203101].
18 Bramson, B.D., “Relativistic Angular Momentum for Asymptotically Flat Einstein-Maxwell Manifolds”, Proc. R. Soc. London, Ser. A, 341, 463–490, (1975). [External LinkDOI].
19 Bramson, B., “Do electromagnetic waves harbour gravitational waves?”, Proc. R. Soc. London, Ser. A, 462, 1987–2000, (2006). [External LinkDOI].
20 Chruściel, P.T. and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, (Birkhäuser, Basel; Boston, 2004). [External LinkGoogle Books].
21 Corvino, J. and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint equations”, J. Differ. Geom., 73, 185–217, (2006). [External Linkgr-qc/0301071].
22 Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds, (Birkhäuser, Boston; Basel; Berlin, 2006). [External LinkGoogle Books].
23 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL (accessed 31 July 2009):
24 Friedrich, H., “On the Existence of n-Geodesically Complete or Future Complete Solutions of Einstein’s Field Equations with Smooth Asymptotic Structure”, Commun. Math. Phys., 107, 587–609, (1986). [External LinkDOI].
25 Frittelli, S., Kozameh, C.N., Newman, E.T., Rovelli, C. and Tate, R.S., “Fuzzy spacetime from a null-surface version of general relativity”, Class. Quantum Grav., 14, A143–A154, (1997). [External LinkDOI], [External Linkgr-qc/9603061].
26 Frittelli, S. and Newman, E.T., “Pseudo-Minkowskian coordinates in asymptotically flat space-times”, Phys. Rev. D, 55, 1971–1976, (1997). [External LinkDOI], [External LinkADS].
27 Gel’fand, I.M., Graev, M.I. and Vilenkin, N.Y., Generalized Functions, Vol. 5: Integral geometry and representation theory, (Academic Press, New York; London, 1966).
28 Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F. and Sudarshan, E.C.G., “Spin-s Spherical Harmonics and ”, J. Math. Phys., 8, 2155–2161, (1967). [External LinkDOI].
29 Goldberg, J.N. and Sachs, R.K., “A Theorem on Petrov Types”, Acta Phys. Pol., 22, 13–23, (1962). Republished as DOI:10.1007/s10714-008-0722-5.
30 Hallidy, W. and Ludvigsen, M., “Momentum and Angular Momentum in the H-Space of Asymptotically Flat, Einstein-Maxwell Space-Times”, Gen. Relativ. Gravit., 10, 7–30, (1979). [External LinkDOI].
31 Hansen, R.O. and Newman, E.T., “A complex Minkowski space approach to twistors”, Gen. Relativ. Gravit., 6, 361–385, (1975). [External LinkDOI].
32 Hansen, R.O., Newman, E.T., Penrose, R. and Tod, K.P., “The Metric and Curvature Properties of -Space”, Proc. R. Soc. London, Ser. A, 363, 445–468, (1978). [External LinkDOI], [External LinkADS].
33 Held, A., Newman, E.T. and Posadas, R., “The Lorentz Group and the Sphere”, J. Math. Phys., 11, 3145–3154, (1970). [External LinkDOI].
34 Hill, C. D., Lewandowski, J. and Nurowski, P, “Einstein’s equations and the embedding of 3-dimensional CR manifolds”, Indiana Univ. Math. J., 57, 3131–3176, (2008). [External LinkDOI], [External LinkarXiv:0709.3660].
35 Hugget, S.A. and Tod, K.P., An Introduction to Twistor Theory, London Mathematical Society Student Texts,  4, (Cambridge University Press, Cambridge; New York, 1994), 2nd edition. [External LinkGoogle Books].
36 Ivancovich, J., Kozameh, C.N. and Newman, E.T., “Green’s functions of the edh operators”, J. Math. Phys., 30, 45–52, (1989). [External LinkDOI].
37 Ko, M., Newman, E.T. and Tod, K.P., “-Space and Null Infinity”, in Esposito, F.P. and Witten, L., eds., Asymptotic Structure of Space-Time, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 227–271, (Plenum Press, New York, 1977).
38 Kozameh, C.N. and Newman, E.T., “Electromagnetic dipole radiation fields, shear-free congruences and complex centre of charge world lines”, Class. Quantum Grav., 22, 4667–4678, (2005). [External LinkDOI], [External Linkgr-qc/0504093].
39 Kozameh, C.N. and Newman, E.T., “The large footprints of H-space on asymptotically flat spacetimes”, Class. Quantum Grav., 22, 4659–4665, (2005). [External LinkDOI], [External Linkgr-qc/0504022].
40 Kozameh, C.N., Newman, E.T., Santiago-Santiago, J.G. and Silva-Ortigoza, G., “The universal cut function and type II metrics”, Class. Quantum Grav., 24, 1955–1979, (2007). [External LinkDOI], [External Linkgr-qc/0612004].
41 Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On the physical meaning of the Robinson–Trautman–Maxwell fields”, Class. Quantum Grav., 23, 6599–6620, (2006). [External LinkDOI], [External Linkgr-qc/0607074].
42 Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On extracting physical content from asymptotically flat spacetime metrics”, Class. Quantum Grav., 25, 145001, (2008). [External LinkDOI], [External LinkarXiv:0802.3314].
43 Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press; Addison-Wesley, Oxford; Reading, MA, 1962), 2nd edition.
44 Lewandowski, J. and Nurowski, P., “Algebraically special twisting gravitational fields and CR structures”, Class. Quantum Grav., 7, 309–328, (1990). [External LinkDOI].
45 Lewandowski, J., Nurowski, P. and Tafel, J., “Einstein’s equations and realizability of CR manifolds”, Class. Quantum Grav., 7, L241–L246, (1990). [External LinkDOI].
46 Lind, R.W., “Shear-free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism”, Gen. Relativ. Gravit., 5, 25–47, (1974). [External LinkDOI].
47 Maldacena, J.M., “The Large-N Limit of Superconformal Field Theories and Supergravity”, Adv. Theor. Math. Phys., 2, 231–252, (1998). [External LinkDOI], [External Linkhep-th/9711200].
48 Mason, L. J. and Skinner, D., “Gravity, Twistors and the MHV Formalism”, Commun. Math. Phys., 294, 827–862, (2010). [External LinkDOI], [External LinkarXiv:0808.3907].
49 Newman, E.T., “Heaven and Its Properties”, Gen. Relativ. Gravit., 7, 107–111, (1976). [External LinkDOI].
50 Newman, E.T., “Maxwell fields and shear-free null geodesic congruences”, Class. Quantum Grav., 21, 3197–3221, (2004). [External LinkDOI].
51 Newman, E.T., “Asymptotic twistor theory and the Kerr theorem”, Class. Quantum Grav., 23, 3385–3392, (2006). [External LinkDOI], [External Linkgr-qc/0512079].
52 Newman, E.T., “Newton’s second law, radiation reaction and type II Einstein–Maxwell fields”, Class. Quantum Grav., 28, 245003, (2011). [External LinkDOI], [External LinkarXiv:1109.4106].
53 Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R., “Metric of a Rotating, Charged Mass”, J. Math. Phys., 6, 918–919, (1965). [External LinkDOI].
54 Newman, E.T. and Nurowski, P., “CR structures and asymptotically flat spacetimes”, Class. Quantum Grav., 23, 3123–3127, (2006). [External LinkDOI], [External Linkgr-qc/0511119].
55 Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [External LinkDOI], [External LinkADS].
56 Newman, E.T. and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys., 7, 863–870, (1966). [External LinkDOI], [External LinkADS].
57 Newman, E.T. and Penrose, R., “Spin-coefficient formalism”, Scholarpedia, 4(6), 7445, (2009). URL (accessed 30 July 2009):
External Link
58 Newman, E.T. and Posadas, R., “Motion and Structure of Singularities in General Relativity”, Phys. Rev., 187, 1784–1791, (1969). [External LinkDOI], [External LinkADS].
59 Newman, E.T. and Silva-Ortigoza, G., “Tensorial spin-s harmonics”, Class. Quantum Grav., 23, 497–509, (2006). [External LinkDOI], [External Linkgr-qc/0508028].
60 Newman, E.T. and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein,  2, pp. 1–36, (Plenum Press, New York, 1980).
61 Newman, E.T. and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math. Phys., 3, 891–901, (1962). [External LinkDOI], [External LinkADS].
62 Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68, (1963). [External LinkDOI], [External LinkADS].
63 Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R. Soc. London, Ser. A, 284, 159–203, (1965). [External LinkDOI], [External LinkADS].
64 Penrose, R., “Twistor Algebra”, J. Math. Phys., 8, 345–366, (1967). [External LinkDOI].
65 Penrose, R., “Relativistic symmetry groups”, in Barut, A.O., ed., Group Theory in Non-Linear Problems, Proceedings of the NATO Advanced Study Institute, held in Istanbul, Turkey, August 7 – 18, 1972, NATO ASI Series C,  7, pp. 1–58, (Reidel, Dordrecht; Boston, 1974).
66 Penrose, R. and Rindler, W., Spinors and space-time, Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1984). [External LinkGoogle Books].
67 Penrose, R. and Rindler, W., Spinors and space-time, Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1986). [External LinkGoogle Books].
68 Petrov, A.Z., “The Classification of Spaces Defining Gravitational Fields”, Gen. Relativ. Gravit., 32, 1665–1685, (2000). [External LinkDOI].
69 Pirani, F.A.E., “Invariant Formulation of Gravitational Radiation Theory”, Phys. Rev., 105(3), 1089–1099, (1957). [External LinkDOI].
70 Robinson, I., “Null Electromagnetic Fields”, J. Math. Phys., 2, 290–291, (1961). [External LinkDOI].
71 Robinson, I. and Trautman, A., “Some spherical gravitational waves in general relativity”, Proc. R. Soc. London, Ser. A, 265, 463–473, (1962). [External LinkDOI].
72 Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [External LinkDOI], [External LinkADS].
73 Sachs, R.K., “Gravitational radiation”, in DeWitt, C.M. and DeWitt, B., eds., Relativity, Groups and Topology, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 523–562, (Gordon and Breach, New York, 1964).
74 Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19, 549–554, (1978). [External LinkDOI], [External LinkADS].
75 Szabados, L.B., “Quasi-Local Energy-Momentum and Angular Momentum in General Relativity”, Living Rev. Relativity, 12, lrr-2009-4, (2009). URL (accessed 31 July 2009):
76 ’t Hooft, G., “A Planar Diagram Theory for Strong Interactions”, Nucl. Phys. B, 72, 461, (1974). [External LinkDOI].
77 ’t Hooft, G., “Dimensional reduction in quantum gravity”, in Ali, A., Ellis, J. and Randjbar-Daemi, S., eds., Salamfestschrift, A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics, ICTP, Trieste, Italy, 8 – 12 March 1993, World Scientific Series in 20th Century Physics,  4, (World Scientific, Singapore; River Edge, NJ, 1994). [External LinkarXiv:gr-qc/9310026].
78 Witten, E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253–291, (1998). [External Linkhep-th/9802150].