References

1 Abadie, J. et al. (LIGO Scientific Collaboration), “A gravitational wave observatory operating beyond the quantum shot-noise limit”, Nature Phys., 7, 962-965, (2011). [External LinkDOI].
2 Abbott, B. et al. (LIGO Scientific Collaboration), “Observation of a kilogram-scale oscillator near its quantum ground state”, New J. Phys., 11, 073032, (2009). [External LinkDOI].
3 Abramovici, A. et al., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333, (1992). [External LinkDOI].
4 Acernese, F. et al., “Virgo upgrade investigations”, J. Phys.: Conf. Ser., 32, 223, (2006). [External LinkDOI].
5 Adhikari, R., Evans, M., Fricke, T., Frolov, V., Kawabe, K., Smith, N. and Waldman, S.J., DC readout Normalization for Enhanced LIGO, LIGO-TT0900023, (LIGO, Pasadena, CA, 2009). URL (accessed 7 July 2011):
External Linkhttps://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=363.
6 “Advanced LIGO”, project homepage, Massachusetts Institute of Technology. URL (accessed 1 July 2011):
External Linkhttps://www.advancedligo.mit.edu/.
7 “AEI 10m Prototype Home Page”, project homepage, Leibniz Universität Hannover. URL (accessed 18 June 2011):
External Linkhttp://10m-prototype.aei.uni-hannover.de/.
8 Ando, M. et al. (TAMA Collaboration), “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950–3954, (2001). [External LinkDOI], [External Linkastro-ph/0105473].
9 Arcizet, O., Briant, T., Heidmann, A. and Pinard, M., “Beating quantum limits in an optomechanical sensor by cavity detuning”, Phys. Rev. A, 73, 033819, (2006). [External LinkDOI], [External LinkarXiv:quant-ph/0602040].
10 Aspelmeyer, M., Gröblacher, S., Hammerer, K. and Kiesel, N., “Quantum optomechanics–throwing a glance [Invited]”, J. Opt. Soc. Am. B, 27, A189–A197, (2010). [External LinkDOI].
11 Beyersdorf, P.T, Fejer, M.M. and Byer, R.L., “Polarization Sagnac interferometer with postmodulation for gravitational-wave detection”, Opt. Lett., 24, 1112–1114, (1999). [External LinkDOI].
12 Blair, D.G., ed., The Detection of Gravitational Waves, (Cambridge University Press, Cambridge; New York, 1991). [External LinkGoogle Books].
13 Blandford, R.D. and Thorne, K.S., “Applications of Classical Physics”, lecture notes, California Institute of Technology, (2008). URL (accessed 15 June 2011):
External Linkhttp://www.pma.caltech.edu/Courses/ph136/yr2008/.
14 Blow, K.J., Loudon, R., Phoenix, S.J.D. and Shepherd, T.J., “Continuum fields in quantum optics”, Phys. Rev. A, 42, 4102–4114, (1990). [External LinkDOI].
15 Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, Cambridge; New York, 2002), 7th exp. edition. [External LinkGoogle Books].
16 Braginsky, V.B., “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator”, Sov. Phys. JETP, 26, 831–834, (1968). [External LinkADS]. Online version (accessed 15 June 2011):
External Linkhttp://hbar.phys.msu.ru/articles/67a1eBr.pdf.
17 Braginsky, V.B., Gorodetsky, M.L. and Khalili, F.Y., “Optical bars in gravitational wave antenna”, Phys. Lett. A, 232, 340–348, (1997). [External LinkDOI].
18 Braginsky, V.B., Gorodetsky, M.L. and Khalili, F.Y., “Quantum limits and symphotonic states in free-mass gravitational-wave antennae”, Phys. Lett. A, 246, 485–497, (1998). [External LinkDOI], [External LinkarXiv:quant-ph/9806081].
19 Braginsky, V.B., Gorodetsky, M.L., Khalili, F.Y., Matsko, A.B., Thorne, K.S. and Vyatchanin, S.P., “The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization”, Phys. Rev. D, 67, 082001, (2003). [External LinkDOI].
20 Braginsky, V.B., Gorodetsky, M.L., Khalili, F.Y. and Thorne, K.S., “Dual-resonator speed meter for a free test mass”, Phys. Rev. D, 61, 044002, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9906108].
21 Braginsky, V.B. and Khalili, F.Y., “Gravitational wave antenna with QND speed meter”, Phys. Lett. A, 147, 251–256, (1990). [External LinkDOI].
22 Braginsky, V.B. and Khalili, F.Y., Quantum Measurement, (Cambridge University Press, Cambridge; New York, 1992). [External LinkGoogle Books].
23 Braginsky, V.B. and Khalili, F.Y., “Low-noise rigidity in quantum measurements”, Phys. Lett. A, 257, 241–246, (1999). [External LinkDOI].
24 Braginsky, V.B., Khalili, F.Y. and Volikov, S.P., “The analysis of table-top quantum measurement with macroscopic masses”, Phys. Lett. A, 287, 31–38, (2001).
25 Braginsky, V.B. and Manukin, A.B., “On pondermotive effects of electromagnetic radiation”, Sov. Phys. JETP, 25, 653, (1967). [External LinkADS].
26 Braginsky, V.B. and Minakova, I.I., “Influence of the small displacement measurements on the dynamical properties of mechanical oscillating systems”, Moscow Univ. Phys. Bull., 1964(1), 83–85, (1964). Online version (accessed 24 January 2012):
External Linkhttp://hbar.phys.msu.ru/cgi-bin/readbib.cgi?cite=64a1BrMi.
27 Braginsky, V.B. and Vorontsov, Y.I., “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique”, Sov. Phys. Usp., 17, 644–650, (1975). [External LinkDOI].
28 Braginsky, V.B., Vorontsov, Y.I. and Khalili, F.Y., “Quantum singularities of a ponderomotive meter of electromagnetic energy”, Sov. Phys. JETP, 46, 705–706, (1977). Online version (accessed 15 June 2011):
External Linkhttp://www.jetp.ac.ru/cgi-bin/e/index/e/46/4/p705?a=list.
29 Braginsky, V.B., Vorontsov, Y.I. and Khalili, F.Y., “Optimal quantum measurements in detectors of gravitation radiation”, JETP Lett., 27, 276–280, (1978). [External LinkADS]. Online version (accessed 15 June 2011):
External Linkhttp://www.jetpletters.ac.ru/ps/1548/article_23699.shtml.
30 Braginsky, V.B., Vorontsov, Y.I. and Thorne, K.S., “Quantum Nondemolition Measurements”, Science, 209(4456), 547–557, (1980). [External LinkDOI], [External LinkADS].
31 Braunstein, S.L. and van Loock, P., “Quantum information with continuous variables”, Rev. Mod. Phys., 77, 513–577, (2005). [External LinkDOI], [External LinkarXiv:quant-ph/0410100].
32 Buonanno, A. and Chen, Y., “Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors”, Phys. Rev. D, 64, 042006, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0102012].
33 Buonanno, A. and Chen, Y., “Signal recycled laser-interferometer gravitational-wave detectors as optical springs”, Phys. Rev. D, 65, 042001, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0107021].
34 Buonanno, A. and Chen, Y., “Scaling law in signal recycled laser-interferometer gravitational-wave detectors”, Phys. Rev. D, 67, 062002, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0208048].
35 Buonanno, A. and Chen, Y., “Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers”, Phys. Rev. D, 69, 102004, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0310026].
36 Buonanno, A., Chen, Y. and Mavalvala, N., “Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme”, Phys. Rev. D, 67, 122005, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0302041].
37 Callen, H.B. and Welton, T.A., “Irreversibility and Generalized Noise”, Phys. Rev., 83, 34–40, (1951). [External LinkDOI].
38 Caves, C.M., “Quantum-mechanical noise in an interferometer”, Phys. Rev. D, 23, 1693–1708, (1981). [External LinkDOI].
39 Caves, C.M. and Schumaker, B.L., “New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states”, Phys. Rev. A, 31, 3068–3092, (1985). [External LinkDOI].
40 Caves, C.M. and Schumaker, B.L., “New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation”, Phys. Rev. A, 31, 3093–3111, (1985). [External LinkDOI].
41 Caves, C.M., Thorne, K.S., Drever, R.W.P., Sandberg, V.D. and Zimmermann, M., “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle”, Rev. Mod. Phys., 52, 341–392, (1980). [External LinkDOI].
42 Chen, Y., “Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector”, Phys. Rev. D, 67, 122004, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0208051].
43 Chen, Y., Topics of LIGO Physics: Quantum Noise in Advanced Interferometers and Template Banks for Compact-Binary Inspirals, Ph.D. thesis, (California Institute of Technology, Pasadena, CA, 2003). URL (accessed 4 July 2011):
External Linkhttp://resolver.caltech.edu/CaltechETD:etd-05302003-044325.
44 Chen, Y., Danilishin, S.L., Khalili, F.Y. and Müller-Ebhardt, H., “QND measurements for future gravitational-wave detectors”, Gen. Relativ. Gravit., 43, 671–694, (2011). [External LinkDOI], [External LinkarXiv:0910.0319].
45 Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J., “Introduction to quantum noise, measurement, and amplification”, Rev. Mod. Phys., 82, 1155–1208, (2010). [External LinkDOI], [External LinkarXiv:0810.4729 [cond-mat.mes-hall]].
46 Clerk, A.A., Marquardt, F. and Jacobs, K., “Back-action evasion and squeezing of a mechanical resonator using a cavity detector”, New J. Phys., 10, 095010, (2008). [External LinkDOI], [External LinkarXiv:0802.1842 [cond-mat.mes-hall]].
47 Corbitt, T., Chen, Y., Khalili, F.Y., Ottaway, D., Vyatchanin, S.P., Whitcomb, S. and Mavalvala, N., “Squeezed-state source using radiation-pressure-induced rigidity”, Phys. Rev. A, 73, 023801, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511001].
48 Corbitt, T. et al., “An All-Optical Trap for a Gram-Scale Mirror”, Phys. Rev. Lett., 98, 150802, (2007). [External LinkDOI], [External LinkarXiv:quant-ph/0612188].
49 Crooks, D.R.M. et al., “Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors”, Class. Quantum Grav., 19, 883–896, (2002). [External LinkDOI].
50 Danilishin, S.L., “Sensitivity limitations in optical speed meter topology of gravitational-wave antennas”, Phys. Rev. D, 69, 102003, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0312016].
51 Danilishin, S.L. and Khalili, F.Y., “Stroboscopic variation measurement”, Phys. Lett. A, 300, 547–558, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0202100].
52 Danilishin, S.L. and Khalili, F.Y., “Practical design of the optical lever intracavity topology of gravitational-wave detectors”, Phys. Rev. D, 73, 022002, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0508022].
53 Danilishin, S.L., Khalili, F.Y. and Vyatchanin, S.P., “The discrete sampling variation measurement”, Phys. Lett. A, 278, 123–128, (2000). [External LinkDOI], [External LinkADS].
54 Danilishin, S.L. et al., “Creation of a quantum oscillator by classical control”, arXiv, e-print, (2008). [External LinkarXiv:0809.2024 [quant-ph]].
55 Degallaix, J. et al., “Commissioning of the tuned DC readout at GEO 600”, J. Phys.: Conf. Ser., 228, 012013, (2010). [External LinkDOI].
56 Einstein, A., Podolsky, B. and Rosen, N., “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev., 47, 777–780, (1935). [External LinkDOI].
57 Evans, M., Ballmer, S., Fejer, M., Fritschel, P., Harry, G. and Ogin, G., “Thermo-optic noise in coated mirrors for high-precision optical measurements”, Phys. Rev. D, 78, 102003, (2008). [External LinkDOI].
58 Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9701039].
59 Freise, A. and Strain, K., “Interferometer Techniques for Gravitational-Wave Detection”, Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 4 July 2011):
http://www.livingreviews.org/lrr-2010-1.
60 Freise, A. et al., “Demonstration of detuned dual recycling at the Garching 30 m laser interferometer”, Phys. Lett. A, 277, 135–142, (2000). [External LinkDOI].
61 Fricke, T.T. et al., “DC readout experiment in Enhanced LIGO”, Class. Quantum Grav., 29, 065005, (2011). [External LinkDOI], [External LinkarXiv:1110.2815 [gr-qc]].
62 Friedrich, D. et al., “Laser interferometry with translucent and absorbing mechanical oscillators”, New J. Phys., 13, 093017, (2011). [External LinkDOI], [External LinkarXiv:1104.3251 [physics.optics]].
63 Fritschel, P., “DC Readout for Advanced LIGO”, LSC meeting, Hannover, 21 August 2003, conference paper, (2003). URL (accessed 15 June 2011):
External Linkhttp://www.ligo.caltech.edu/docs/G/G030460-00/.
64 Fritschel, P., “Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO)”, in Cruise, M. and Saulson, P., eds., Gravitational-Wave Detection, Waikoloa, HI, USA, 23 August 2002, Proc. SPIE, 4856, pp. 282–291, (SPIE, Bellingham, WA, 2003). [External LinkDOI], [External Linkgr-qc/0308090].
65 Gea-Banacloche, J. and Leuchs, G., “Squeezed States for Interferometric Gravitational-wave Detectors”, J. Mod. Opt., 34, 793–811, (1987). [External LinkDOI].
66 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 7 July 2011):
External Linkhttp://www.geo600.org/.
67 Gol’tsman, G.N. et al., “Picosecond superconducting single-photon optical detector”, Appl. Phys. Lett., 79, 705–707, (2001). [External LinkDOI].
68 Harb, C.C., Ralph, T.C., Huntington, E.H., McClelland, D.E., Bachor, H.-A. and Freitag, I., “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source”, J. Opt. Soc. Am. B, 14, 2936–2945, (1997). [External LinkDOI].
69 Harms, J., The Detection of Gravitational Waves: Data Analysis and Interferometry, Ph.D. thesis, (Leibniz Universität, Hannover, 2006). Online version (accessed 24 January 2012):
External Linkhttp://pubman.mpdl.mpg.de/pubman/item/escidoc:150885:1.
70 Harms, J., Chen, Y., Chelkowski, S., Franzen, A., Vahlbruch, H., Danzmann, K. and Schnabel, R., “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors”, Phys. Rev. D, 68, 042001, (2003). [External LinkDOI], [External Linkgr-qc/0303066].
71 Harry, G., Bodiya, T.P. and DeSalvo, R., eds., Optical Coatings and Thermal Noise in Precision Measurement, (Cambridge University Press, Cambridge; New York, 2012). [External LinkGoogle Books].
72 Harry, G.M. et al., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav., 19, 897–917, (2002). [External LinkDOI], [External Linkgr-qc/0109073].
73 Harry, G.M. et al., “Titania-doped tantala/silica coatings for gravitational-wave detection”, Class. Quantum Grav., 24, 405–416, (2007). [External LinkDOI], [External Linkgr-qc/0610004].
74 Heinzel, G., Advanced optical techniques for laser-interferometric gravitational-wave detectors, Ph.D. thesis, (Universität Hannover, Hannover, 1999). Online version (accessed 21 January 2012):
External Linkhttp://www.lisa.aei-hannover.de/?redirect=126.pdf.
75 Heinzel, G. et al., “Experimental Demonstration of a Suspended Dual Recycling Interferometer for Gravitational Wave Detection”, Phys. Rev. Lett., 81, 5493–5496, (1998). [External LinkDOI].
76 Heurs, M., Meier, T., Quetschke, V.M., Willke, B., Freitag, I. and Danzmann, K., “Intensity and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation”, Appl. Phys. B, 85, 79–84, (2006). [External LinkDOI].
77 Hild, S., Beyond the First Generation: Extending the Science Range of the Gravitational Wave Detector GEO600, Ph.D. thesis, (Leibniz Universität, Hannover, 2007). Online version (accessed 24 January 2012):
External Linkhttp://pubman.mpdl.mpg.de/pubman/item/escidoc:150368:3.
78 Hild, S., Chelkowski, S., Freise, A., Franc, J., Morgado, N., Flaminio, R. and DeSalvo, R., “A xylophone configuration for a third-generation gravitational wave detector”, Class. Quantum Grav., 27, 015003, (2010). [External LinkDOI], [External LinkarXiv:0906.2655 [gr-qc]].
79 Hild, S. et al., “DC-readout of a signal-recycled gravitational wave detector”, Class. Quantum Grav., 26, 055012, (2009). [External LinkDOI], [External LinkarXiv:0811.3242 [gr-qc]].
80 Hild, S. et al., “Sensitivity studies for third-generation gravitational wave observatories”, Class. Quantum Grav., 28, 094013, (2011). [External LinkDOI], [External LinkarXiv:1012.0908 [gr-qc]].
81 Jaekel, M.T. and Reynaud, S., “Quantum Limits in Interferometric Measurements”, Europhys. Lett., 13, 301–306, (1990). [External LinkDOI], [External Linkquant-ph/0101104].
82 Khalili, F.Y., “Sensitivity limit in continous measurement of a quantum test object position”, Dokl. Akad. Nauk. SSSR, 294, 602–604, (1987).
83 Khalili, F.Y., “Frequency-dependent rigidity in large-scale interferometric gravitational-wave detectors”, Phys. Lett. A, 288, 251–256, (2001). [External LinkDOI], [External Linkgr-qc/0107084].
84 Khalili, F.Y., “The ‘optical lever’ intracavity readout scheme for gravitational-wave antennae”, Phys. Lett. A, 298, 308–314, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0203002].
85 Khalili, F.Y., “Quantum speedmeter and laser interferometric gravitational-wave antennae”, arXiv, e-print, (2002). [External LinkarXiv:gr-qc/0211088].
86 Khalili, F.Y., “Low pumping energy mode of the ‘optical bars’/‘optical lever’ topologies of gravitational-wave antennae”, Phys. Lett. A, 317, 169–180, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0304060].
87 Khalili, F.Y., “Optimal configurations of filter cavity in future gravitational-wave detectors”, Phys. Rev. D, 81, 122002, (2010). [External LinkDOI], [External LinkarXiv:1003.2859 [physics.ins-det]].
88 Khalili, F.Y., Danilishin, S.L., Miao, H., Müller-Ebhardt, H., Yang, H. and Chen, Y., “Preparing a Mechanical Oscillator in Non-Gaussian Quantum States”, Phys. Rev. Lett., 105, 070403, (2010). [External LinkDOI], [External LinkarXiv:1001.3738 [quant-ph]].
89 Khalili, F.Y., Danilishin, S.L., Müller-Ebhardt, H., Miao, H., Chen, Y. and Zhao, C., “Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors”, Phys. Rev. D, 83, 062003, (2011). [External LinkDOI], [External LinkarXiv:1010.1124].
90 Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S. and Vyatchanin, S.P., “Conversion of conventional gravitational-wave interferometers into QND interferometers by modifying their input and/or output optics”, Phys. Rev. D, 65, 022002, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0008026].
91 Kippenberg, T.J. and Vahala, K.J., “Cavity Optomechanics: Back-Action at the Mesoscale”, Science, 321, 1172–1176, (2008). [External LinkDOI].
92 Klyshko, D.N., “Coherent Photon Decay in a Nonlinear Medium”, JETP Lett., 6, 23–25, (1967). Online version (accessed 4 July 2011):
External Linkhttp://www.jetpletters.ac.ru/ps/1655/article_25244.shtml.
93 Kondrashov, I.S., Simakov, D.A., Khalili, F.Y. and Danilishin, S.L., “Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types”, Phys. Rev. D, 78, 062004, (2008). [External LinkDOI], [External LinkarXiv:0806.1505 [gr-qc]].
94 Kubo, R., “A general expression for the conductivity tensor”, Can. J. Phys., 34, 1274–1277, (1956). [External LinkDOI].
95 Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 1, Course of Theoretical Physics,  5, (Pergamon Press, Oxford; New York, 1980). [External LinkGoogle Books].
96 “LCGT Home Page”, project homepage, The University of Tokyo. URL (accessed 18 June 2011):
External Linkhttp://www.icrr.u-tokyo.ac.jp/gr/LCGT.html.
97 Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D, 57, 659–663, (1998). [External LinkDOI], [External Linkgr-qc/9707013].
98 “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California Institute of Technology. URL (accessed 25 April 2012):
External Linkhttp://www.ligo.caltech.edu.
99 Mandel, L. and Wolf, E., Optical coherence and quantum optics, (Cambridge University Press, Cambridge; New York, 1995). [External LinkGoogle Books].
100 Martin, I.W. et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav., 26, 155012, (2009). [External LinkDOI].
101 McClelland, D.E., Mavalvala, N., Chen, Y. and Schnabel, R., “Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors”, Laser Photonics Rev., 5, 677–696, (2011). [External LinkDOI].
102 McKenzie, K., Grosse, N., Bowen, W.P., Whitcomb, S.E., Gray, M.B., McClelland, D.E. and Lam, P.K., “Squeezing in the Audio Gravitational-Wave Detection Band”, Phys. Rev. Lett., 93, 161105, (2004). [External LinkDOI], [External LinkarXiv:quant-ph/0405137].
103 Meers, B.J., “Recycling in laser-interferometric gravitational-wave detectors”, Phys. Rev. D, 38, 2317–2326, (1988). [External LinkDOI].
104 Meers, B.J. and Strain, K.A., “Modulation, signal, and quantum noise in interferometers”, Phys. Rev. A, 44, 4693–4703, (1991). [External LinkDOI].
105 Miao, H., Danilishin, S. and Chen, Y., “Universal quantum entanglement between an oscillator and continuous fields”, Phys. Rev. A, 81, 052307, (2010). [External LinkDOI], [External LinkarXiv:0908.1053 [quant-ph]].
106 Miao, H., Danilishin, S.L., Corbitt, T. and Chen, Y., “Standard Quantum Limit for Probing Mechanical Energy Quantization”, Phys. Rev. Lett., 103, 100402, (2009). [External LinkDOI], [External LinkarXiv:0904.2737 [quant-ph]].
107 Miao, H., Danilishin, S., Müller-Ebhardt, H. and Chen, Y., “Achieving ground state and enhancing optomechanical entanglement by recovering information”, New J. Phys., 12, 083032, (2010). [External LinkDOI], [External LinkarXiv:1003.4048 [quant-ph]].
108 Miao, H., Danilishin, S., Müller-Ebhardt, H., Rehbein, H., Somiya, K. and Chen, Y., “Probing macroscopic quantum states with a sub-Heisenberg accuracy”, Phys. Rev. A, 81, 012114, (2010). [External LinkDOI], [External LinkarXiv:0905.3729 [quant-ph]].
109 Michelson, A.A. and Morley, E.W., “On the Relative Motion of the Earth and the Luminiferous Ether”, Am. J. Sci., 34, 333–345, (1887).
110 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
111 Miyakawa, O. et al., “Measurement of optical response of a detuned resonant sideband extraction gravitational wave detector”, Phys. Rev. D, 74, 022001, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0604078].
112 Mizuno, J., Comparison of optical configurations for laser-interferometer gravitational-wave detectors, Ph.D. thesis, (Max-Planck-Institut für Quantenoptik, Garching, 1995).
113 Müller-Ebhardt, H., On Quantum Effects in the Dynamics of Macroscopic Test Masses, Ph.D. thesis, (Leibniz Universität, Hannover, 2009). URL (accessed 24 January 2012):
External Linkhttp://pubman.mpdl.mpg.de/pubman/item/escidoc:446262:2.
114 Müller-Ebhardt, H., Rehbein, H., Li, C., Mino, Y., Somiya, K., Schnabel, R., Danzmann, K. and Chen, Y., “Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors”, Phys. Rev. A, 80, 043802, (2009). [External LinkDOI].
115 Müller-Ebhardt, H., Rehbein, H., Schnabel, R., Danzmann, K. and Chen, Y., “Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry”, Phys. Rev. Lett., 100, 013601, (2008). [External LinkDOI].
116 Niebauer, T.M., Schilling, R., Danzmann, K., Rüdiger, A. and Winkler, W., “Nonstationary shot noise and its effect on the sensitivity of interferometers”, Phys. Rev. A, 43, 5022–5029, (1991). [External LinkDOI].
117 Numata, K., Kemery, A. and Camp, J., “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities”, Phys. Rev. Lett., 93, 250602, (2004). [External LinkDOI].
118 Pace, A.F., Collett, M.J. and Walls, D.F., “Quantum limits in interferometric detection of gravitational radiation”, Phys. Rev. A, 47, 3173–3189, (1993). [External LinkDOI].
119 Paschotta, R., “Noise of mode-locked lasers (Part I): numerical model”, Appl. Phys. B, 79, 153–162, (2004). [External LinkDOI].
120 Paschotta, R., “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations”, Appl. Phys. B, 79, 163–173, (2004). [External LinkDOI].
121 Paschotta, R., Schlatter, A., Zeller, S.C., Telle, H.R. and Keller, U., “Optical phase noise and carrier-envelope offset noise of mode-locked lasers”, Appl. Phys. B, 82, 265–273, (2006). [External LinkDOI].
122 Penn, S.D. et al., “Mechanical loss in tantala/silica dielectric mirror coatings”, Class. Quantum Grav., 20, 2917–2928, (2003). [External LinkDOI].
123 Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5, (2011). URL (accessed 24 January 2012):
http://www.livingreviews.org/lrr-2011-5.
124 Postnov, K.A. and Yungelson, L.R., “The Evolution of Compact Binary Star Systems”, Living Rev. Relativity, 9, lrr-2006-6, (2006). URL (accessed 4 July 2011):
http://www.livingreviews.org/lrr-2006-6.
125 Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave observatory”, Class. Quantum Grav., 27, 194002, (2010). [External LinkDOI].
126 Purdue, P., “Analysis of a quantum nondemolition speed-meter interferometer”, Phys. Rev. D, 66, 022001, (2002). [External LinkDOI].
127 Purdue, P. and Chen, Y., “Practical speed meter designs for quantum nondemolition gravitational-wave interferometers”, Phys. Rev. D, 66, 122004, (2002). [External LinkDOI].
128 Rakhmanov, M., Dynamics of laser interferometric gravitational wave detectors, Ph.D. thesis, (California Institute of Technology, Pasadena, CA, 2000). URL (accessed 4 July 2011):
External Linkhttp://www.ligo.caltech.edu/docs/P/P000002-00.pdf.
129 Rehbein, H., Müller-Ebhardt, H., Somiya, K., Danilishin, S.L., Schnabel, R., Danzmann, K. and Chen, Y., “Double optical spring enhancement for gravitational-wave detectors”, Phys. Rev. D, 78, 062003, (2008). [External LinkDOI], [External LinkarXiv:quant-ph/0612188].
130 Rehbein, H., Müller-Ebhardt, H., Somiya, K., Li, C., Schnabel, R., Danzmann, K. and Chen, Y., “Local readout enhancement for detuned signal-recycling interferometers”, Phys. Rev. D, 76, 062002, (2007). [External LinkDOI].
131 Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [External LinkarXiv:0903.0338]. URL (accessed 4 July 2011):
http://www.livingreviews.org/lrr-2009-2.
132 Schleich, W.P., Quantum Optics in Phase Space, (Wiley-VCH, Berlin, 2001). [External LinkGoogle Books].
133 Schnabel, R., Mavalvala, N., McClelland, D.E. and Lam, P.K., “Quantum metrology for gravitational wave astronomy”, Nature Commun., 1, 121, (2010). [External LinkDOI].
134 Schnupp, L., “Talk at European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy”, conference paper, (1988).
135 Schrödinger, E., “Die gegenwärtige Situation in der Quantenmechanik”, Die Naturwissenschaften, 23, 807–812, (1935). [External LinkDOI].
136 Scully, M.O. and Zubairy, M.S., Quantum Optics, (Cambridge University Press, Cambridge; New York, 1997). [External LinkGoogle Books].
137 Smith, J.R. et al. (LIGO Scientific Collaboration), “The path to the enhanced and advanced LIGO gravitational-wave detectors”, Class. Quantum Grav., 26, 114013, (2009). [External LinkDOI], [External LinkarXiv:0902.0381].
138 Somiya, K., Chen, Y., Kawamura, S. and Mio, N., “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes”, Phys. Rev. D, 73, 122005, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0701162].
139 Stokes, G.G., “On the perfect blackness of the central spot in Newton’s rings, and on the verification of Fresnel’s formulae for the intensities of reflected and refracted rays”, Cambridge Dublin Math. J., IV, 1–14, (1849).
140 Sun, K.-X., Fejer, M.M., Gustafson, E. and Byer, R.L., “Sagnac Interferometer for Gravitational-Wave Detection”, Phys. Rev. Lett., 76, 3053–3056, (1996). [External LinkDOI].
141 Takeno, Y., Yukawa, M., Yonezawa, H. and Furusawa, A., “Observation of -9 dB quadrature squeezing with improvement of phasestability in homodyne measurement”, Opt. Express, 15, 4321–4327, (2007). [External LinkDOI].
142 “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage, National Astronomical Observatory of Japan. URL (accessed 18 June 2011):
External Linkhttp://tamago.mtk.nao.ac.jp/.
143 Thorne, K.S., The Scientific Case for Advanced LIGO Interferometers, P000024-A-R, (LIGO, Pasadena, CA, 2001). URL (accessed 18 June 2011):
External Linkhttp://www.ligo.caltech.edu/docs/P/P000024-A.pdf.
144 Thorne, K.S., Drever, R.W.P., Caves, C.M., Zimmermann, M. and Sandberg, V.D., “Quantum Nondemolition Measurements of Harmonic Oscillators”, Phys. Rev. Lett., 40, 667–671, (1978). [External LinkDOI].
145 Traeger, S., Beyersdorf, P., Goddard, L., Gustafson, E., Fejer, M.M. and Byer, R.L., “Polarisation Sagnac interferomer with a reflective grating beam splitter”, Opt. Lett., 25, 722–724, (2000). [External LinkDOI].
146 Tsang, M. and Caves, C.M., “Coherent Quantum-Noise Cancellation for Optomechanical Sensors”, Phys. Rev. Lett., 105, 123601, (2010). [External LinkDOI], [External LinkarXiv:1006.1005].
147 Unruh, W.G., “Quantum nondemolition and gravity-wave detection”, Phys. Rev. D, 19, 2888–2896, (1979). [External LinkDOI].
148 Unruh, W.G., “Quantum Noise in the Interferometer Detector”, in Meystre, P. and Scully, M.O., eds., Quantum Optics, Experimental Gravitation, and Measurement Theory, Proceedings of the NATO Advanced Study Institute on Quantum Optics and Experimental General Relativity, August 1981, Bad Windsheim, Germany, NATO ASI Series B,  94, pp. 647–660, (Plenum Press, New York, 1983).
149 Vahlbruch, H., Chelkowski, S., Hage, B., Franzen, A., Danzmann, K. and Schnabel, R., “Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer”, Phys. Rev. Lett., 95, 211102, (2005). [External LinkDOI].
150 Vahlbruch, H., Chelkowski, S., Hage, B., Franzen, A., Danzmann, K. and Schnabel, R., “Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band”, Phys. Rev. Lett., 97, 011101, (2006). [External LinkDOI], [External LinkarXiv:0707.0164].
151 Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K. and Schnabel, R., “The GEO 600 squeezed light source”, Class. Quantum Grav., 27, 084027, (2010). [External LinkDOI], [External LinkarXiv:1004.4975].
152 Vahlbruch, H. et al., “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction”, Phys. Rev. Lett., 100, 033602, (2008). [External LinkDOI], [External LinkarXiv:0706.1431].
153 Vinante, A. et al., “Feedback Cooling of the Normal Modes of a Massive Electromechanical System to Submillikelvin Temperature”, Phys. Rev. Lett., 101, 033601, (2008). [External LinkDOI].
154 Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 4 July 2011):
http://www.livingreviews.org/lrr-2009-5.
155 Vinet, J.-Y., Meers, B., Man, C.N. and Brillet, A., “Optimization of long-baseline optical interferometers for gravitational-wave detection”, Phys. Rev. D, 38, 433–447, (1988). [External LinkDOI].
156 “Virgo”, project homepage, INFN. URL (accessed 18 June 2011):
External Linkhttp://www.virgo.infn.it.
157 von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton Landmarks in Mathematics and Physics, (Princeton University Press, Princeton, 1996). [External LinkGoogle Books].
158 Vyatchanin, S.P. and Matsko, A.B., “Quantum variation measurement of force and compensation of nonlinear back action”, Sov. Phys. JETP, 109, 1873–1879, (1996).
159 Vyatchanin, S.P. and Matsko, A.B., “Quantum variation scheme of measurement of force and compensation of back action in intereferometric meter of position”, Sov. Phys. JETP, 83, 690–697, (1996).
160 Vyatchanin, S.P. and Zubova, E.A., “On the quantum limit for resolution in force measurement in intereferometric optical displacement transducer”, Opt. Commun., 111, 303–309, (1994).
161 Vyatchanin, S.P. and Zubova, E.A., “Quantum variation measurement of force”, Phys. Lett. A, 201, 269–274, (1995). [External LinkDOI].
162 Vyatchanin, S.P., Zubova, E.A. and Matsko, A.B., “On the quantum limit for resolution in force measurement using an optical displacement transducer”, Opt. Commun., 109, 492–498, (1994). [External LinkDOI].
163 Walls, D.F. and Milburn, G.J., Quantum Optics, (Springer, Berlin, 2008), 2nd edition. [External LinkGoogle Books].
164 Ward, R.L. et al., “DC readout experiment at the Caltech 40m prototype interferometer”, Class. Quantum Grav., 25, 114030, (2008). [External LinkDOI].
165 Weber, J., General Relativity and Gravitational Waves, Interscience Tracts on Physics and Astronomy,  10, (Interscience Publishers, New York, 1961).
166 Weber, J., “Gravitational radiation”, Phys. Rev. Lett., 18, 498–501, (1967). [External LinkDOI].
167 Willke, B., “Stabilized lasers for advanced gravitational wave detectors”, Laser Photonics Rev., 4, 780–794, (2010). [External LinkDOI].
168 Willke, B. et al., “The GEO 600 gravitational wave detector”, Class. Quantum Grav., 19, 1377–1387, (2002). [External LinkDOI].
169 Willke, B. et al., “The GEO-HF project”, Class. Quantum Grav., 23, S207–S214, (2006). [External LinkDOI].
170 Yamamoto, K., Friedrich, D., Westphal, T., Goßler, S., Danzmann, K., Somiya, K., Danilishin, S.L. and Schnabel, R., “Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator”, Phys. Rev. A, 81, 033849, (2010). [External LinkDOI].
171 Yariv, A., Optical Electronics, The Oxford Series in Electrical and Computer Engineering, (Oxford University Press, Oxford, 1990). [External LinkGoogle Books].
172 Zel’dovich, B.Y. and Klyshko, D.N., “Statistics of Field in Parametric Luminescence”, JETP Lett., 9, 40–43, (1969). Online version (accessed 24 January 2012):
External Linkhttp://www.jetpletters.ac.ru/ps/1639/article_25275.shtml.