References

1 Aichelburg, P.C. and Bizoń, P., “Magnetically Charged Black Holes and their Stability”, Phys. Rev. D, 48, 607–615, (1993). [External LinkDOI], [External Linkgr-qc/9212009].
2 Alexakis, S., Ionescu, A.D. and Klainerman, S., “Hawking’s local rigidity theorem without analyticity”, Geom. Funct. Anal., 20, 845–869, (2010). [External LinkDOI], [External LinkarXiv:0902.1173 [gr-qc]].
3 Alexakis, S., Ionescu, A.D. and Klainerman, S., “Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces”, Commun. Math. Phys., 299, 89–127, (2010). [External LinkDOI], [External LinkarXiv:0904.0982 [gr-qc]].
4 Anderson, M.T., “On Stationary Vacuum Solutions to the Einstein Equations”, Ann. Henri Poincare, 1, 977–994, (2000). [External LinkDOI], [External Linkgr-qc/0001091].
5 Anderson, M.T., “On the Structure of Solutions to the Static Vacuum Einstein Equations”, Ann. Henri Poincare, 1, 995–1042, (2000). [External LinkDOI], [External Linkgr-qc/0001018].
6 Andersson, L. and Metzger, J., “The area of horizons and the trapped region”, Commun. Math. Phys., 290, 941–972, (2009). [External LinkDOI], [External Link0708.4252 [gr-qc]].
7 Ansorg, M. and Pfister, H., “A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter”, Class. Quantum Grav., 25, 035009, (2008). [External LinkDOI], [External Link0708.4196 [gr-qc]].
8 Baade, W. and Zwicky, F., “Cosmic Rays from Super-Novae”, Proc. Natl. Acad. Sci. USA, 20, 254–263, (1934). [External LinkDOI].
9 Bardeen, J.M., Carter, B. and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [External LinkDOI]. Online version (accessed 23 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103858973.
10 Bartnik, R., “The existence of maximal hypersurfaces in asymptotically flat space-times”, Commun. Math. Phys., 94, 155–175, (1984). [External LinkDOI].
11 Bartnik, R., “The spherically symmetric Einstein Yang-Mills equations”, in Perjés, Z., ed., Relativity Today, Proceedings of the Third Hungarian Relativity Workshop 1989, Relativity Today, pp. 221–240, (Nova Science, Commack, NY, 1991).
12 Bartnik, R. and Chruściel, P.T., “Boundary value problems for Dirac-type equations”, J. reine angew. Math., 579, 13–73, (2005). [External LinkDOI], [External Linkmath.DG/0307278].
13 Bartnik, R.A., Fisher, M. and Oliynyk, T.A., “Static Spherically Symmetric Solutions of the SO(5) Einstein Yang–Mills Equations”, J. Math. Phys., 51, 032504, (2010). [External LinkDOI], [External LinkarXiv:0907.3975 [gr-qc]].
14 Bartnik, R. and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988). [External LinkDOI].
15 Baxter, J.E. and Winstanley, E., “On the existence of soliton and hairy black hole solutions of su(N) Einstein–Yang–Mills theory with a negative cosmological constant”, Class. Quantum Grav., 25, 245014, (2008). [External LinkDOI], [External LinkarXiv:0808.2977 [gr-qc]].
16 Beem, J.K., Ehrlich, P.E. and Easley, K.L., Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, (Marcel Dekker, New York, 1996), 2nd edition. [External LinkGoogle Books].
17 Beig, R. and Chruściel, P.T., “Killing vectors in asymptotically flat space-times. I. Asymptotically translational Killing vectors and the rigid positive energy theorem”, J. Math. Phys., 37, 1939–1961, (1996). [External LinkDOI], [External Linkgr-qc/9510015].
18 Beig, R. and Chruściel, P.T., “The Isometry Groups of Asymptotically Flat, Asymptotically Empty Space-Times with Timelike ADM Four-Momentum”, Commun. Math. Phys., 188, 585–597, (1997). [External LinkDOI], [External Linkgr-qc/9610034].
19 Beig, R. and Chruściel, P.T., “The asymptotics of stationary electro-vacuum metrics in odd spacetime dimensions”, Class. Quantum Grav., 24, 867–874, (2007). [External LinkDOI], [External Linkgr-qc/0612012].
20 Beig, R., Gibbons, G.W. and Schoen, R.M., “Gravitating opposites attract”, Class. Quantum Grav., 26, 225013, (2009). [External LinkDOI], [External Link0907.1193 [gr-qc]].
21 Beig, R. and Schoen, R.M., “On static n-body configurations in relativity”, Class. Quantum Grav., 26, 075014, (2009). [External LinkDOI], [External Link0811.1727 [gr-qc]].
22 Belinskii, V.A. and Zakharov, V.E., “Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions”, Sov. Phys. JETP, 48, 985, (1978).
23 Belinskii, V.A. and Zakharov, V.E., “Stationary gravitational solitons with axial symmetry”, Sov. Phys. JETP, 50, 1, (1979).
24 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990). [External LinkDOI].
25 Booth, I. and Fairhurst, S., “Extremality conditions for isolated and dynamical horizons”, Phys. Rev. D, 77, 084005, (2008). [External LinkDOI], [External LinkarXiv:0708.2209].
26 Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Pure and Applied Mathematics, 63, (Academic Press, New York, 1975). [External LinkGoogle Books].
27 Boschung, P., Brodbeck, O., Moser, F., Straumann, N. and Volkov, M.S., “Instability of Gravitating Sphalerons”, Phys. Rev. D, 50, 3842–3846, (1994). [External LinkDOI], [External Linkgr-qc/9402045].
28 Breitenlohner, P., Forgács, P. and Maison, D., “Gravitating monopole solutions”, Nucl. Phys. B, 383, 357–376, (1992). [External LinkDOI].
29 Breitenlohner, P., Forgács, P. and Maison, D., “Static Spherically Symmetric Solutions of the Einstein–Yang–Mills Equations”, Commun. Math. Phys., 163, 141–172, (1994). [External LinkDOI], [External LinkADS].
30 Breitenlohner, P., Forgács, P. and Maison, D., “Gravitating monopole solutions II”, Nucl. Phys. B, 442, 126–156, (1995). [External LinkDOI], [External Linkgr-qc/9412039].
31 Breitenlohner, P., Maison, D. and Gibbons, G.W., “Four-Dimensional Black Holes from Kaluza–Klein Theories”, Commun. Math. Phys., 120, 295–334, (1988). [External LinkDOI].
32 Brill, D.R., “Electromagnetic Fields in a Homogeneous, Nonisotropic Universe”, Phys. Rev. B, 133, 845–848, (1964). [External LinkDOI], [External LinkADS].
33 Brodbeck, O., Gravitierende Eichsolitonen und Schwarze Löcher mit Yang–Mills-Haar für beliebige Eichgruppen, Ph.D. thesis, (Universität Zürich, Zürich, 1995).
34 Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”, Helv. Phys. Acta, 69, 321–324, (1996). [External Linkgr-qc/9610024].
35 Brodbeck, O. and Heusler, M., “Stationary perturbations and infinitesimal rotations of static Einstein–Yang–Mills configurations with bosonic matter”, Phys. Rev. D, 56, 6278–6283, (1997). [External LinkDOI], [External Linkgr-qc/9706064].
36 Brodbeck, O., Heusler, M., Lavrelashvili, G., Straumann, N. and Volkov, M.S., “Stability Analysis of New Solutions of the EYM System with Cosmological Constant”, Phys. Rev. D, 54, 7338–7352, (1996). [External LinkDOI], [External Linkhep-th/9605166].
37 Brodbeck, O., Heusler, M. and Straumann, N., “Pulsation of Spherically Symmetric Systems in General Relativity”, Phys. Rev. D, 53, 754–761, (1996). [External LinkDOI], [External Linkgr-qc/9506027].
38 Brodbeck, O., Heusler, M., Straumann, N. and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79, 4310–4313, (1997). [External LinkDOI], [External Linkgr-qc/9707057].
39 Brodbeck, O. and Straumann, N., “A generalized Birkhoff theorem for the Einstein–Yang–Mills system”, J. Math. Phys., 34, 2412–2423, (1993). [External LinkDOI], [External LinkADS].
40 Brodbeck, O. and Straumann, N., “Instability of Einstein-Yang-Mills solitons for arbitrary gauge groups”, Phys. Lett. B, 324, 309–314, (1994). [External LinkDOI], [External Linkgr-qc/9401019].
41 Bunting, G.L., Proof of the uniqueness conjecture for black holes, Ph.D. thesis, (University of New England, Armidale, NSW, 1983).
42 Bunting, G.L. and Masood-ul Alam, A.K.M., “Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time”, Gen. Relativ. Gravit., 19, 147–154, (1987). [External LinkDOI], [External LinkADS].
43 Carter, B., “Killing Horizons and Orthogonally Transitive Groups in Space-Time”, J. Math. Phys., 10, 70–81, (1969). [External LinkDOI].
44 Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233–238, (1970). [External LinkDOI].
45 Carter, B., “Axisymmetric Black Hole has only Two Degrees of Freedom”, Phys. Rev. Lett., 26, 331–332, (1971). [External LinkDOI].
46 Carter, B., “Black Hole Equilibrium States”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, 1973).
47 Carter, B., “The General Theory of the Mechanical, Electromagnetic and Thermodynamic Properties of Black Holes”, in Hawking, S.W. and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 294–369, (Cambridge University Press, Cambridge; New York, 1979).
48 Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including the Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563–591, (1985). [External LinkDOI].
49 Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including the Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563–591, (1985). [External LinkDOI], [External LinkADS].
50 Carter, B., “Mathematical Foundations of the Theory of Relativistic Stellar and Black Hole Configurations”, in Carter, B. and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, held July 15 – 31, 1986 in Cargèse, France, NATO ASI Series B, pp. 63–122, (Plenum Press, New York, 1987).
51 Carter, B., “Has the black hole equilibrium problem been solved?”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, (World Scientific, Singapore, 1999). [External Linkgr-qc/9712038].
52 Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black holes”, Class. Quantum Grav., 16, A3–A21, (1999). [External LinkDOI], [External Linkastro-ph/9912186].
53 Chandrasekhar, S., “Highly Collapsed Configurations of Stellar Mass”, Mon. Not. R. Astron. Soc., 91, 456–466, (1931). [External LinkADS].
54 Chandrasekhar, S., “The Maximum Mass of Ideal White Dwarfs”, Astrophys. J., 74, 81–82, (1931). [External LinkDOI].
55 Chandrasekhar, S., “How One May Explore the Physical Content of the General Theory of Relativity”, in Caldi, D.G. and Mostow, G.D., eds., Proceedings of the Gibbs Symposium, Yale University, May 15 – 17, 1989, pp. 227–251, (AMS / AIP, Providence, 1990). [External LinkGoogle Books].
56 Chandrasekhar, S., The Mathematical Theory of Black Holes and of Colliding Plane Waves, Selected Papers, 6, (University of Chicago Press, Chicago; London, 1991). [External LinkGoogle Books].
57 Chruściel, P.T., “On completeness of orbits of Killing vector fields”, Class. Quantum Grav., 10, 2091–2101, (1993). [External LinkDOI], [External Linkgr-qc/9304029].
58 Chruściel, P.T., “‘No-Hair’ Theorems: Folklore, Conjectures, Results”, in Beem, J.K. and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, 170, pp. 23–49, (AMS, Providence, 1994). [External Linkgr-qc/9402032].
59 Chruściel, P.T., “Uniqueness of Stationary, Electro-Vacuum Black Holes Revisited”, Helv. Phys. Acta, 69, 529–552, (1996). [External Linkgr-qc/9610010].
60 Chruściel, P.T., “On rigidity of analytic black holes”, Commun. Math. Phys., 189, 1–7, (1997). [External Linkgr-qc/9610011].
61 Chruściel, P.T., “The classification of static vacuum spacetimes containing an asymptotically flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16, 661–687, (1999). [External LinkDOI], [External Linkgr-qc/9809088].
62 Chruściel, P.T., “Towards the classification of static electrovacuum spacetimes containing an asymptotically flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16, 689–704, (1999). [External LinkDOI], [External Linkgr-qc/9810022].
63 Chruściel, P.T., “Black Holes”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, 604, pp. 61–102, (Springer, Berlin; New York, 2002). [External Linkgr-qc/0201053], [External LinkGoogle Books].
64 Chruściel, P.T., “Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass”, Ann. Phys. (N.Y.), 323, 2566–2590, (2008). [External LinkDOI], [External Link0710.3680 [gr-qc]].
65 Chruściel, P.T., “On higher dimensional black holes with Abelian isometry group”, J. Math. Phys., 50, 052501, (2009). [External LinkDOI], [External Link0812.3424 [gr-qc]].
66 Chruściel, P.T., “Elements of causality theory”, arXiv, e-print, (2011). [External LinkarXiv:1110.6706 [gr-qc]].
67 Chruściel, P.T. and Cortier, J., “Maximal analytic extensions of the Emparan-Reall black ring”, J. Differ. Geom., 85, 425–459, (2010). [External LinkarXiv:0807.2309 [gr-qc]].
68 Chruściel, P.T., Cortier, J. and García-Parrado Gómez-Lobo, A., “On the global structure of the Pomeransky–Senkov black holes”, Adv. Theor. Math. Phys., 14, 1779–1856, (2011). [External LinkarXiv:0911.0802 [gr-qc]].
69 Chruściel, P.T., Delay, E., Galloway, G.J. and Howard, R., “Regularity of Horizons and the Area Theorem”, Ann. Henri Poincare, 2, 109–178, (2001). [External LinkDOI], [External Linkgr-qc/0001003]. Online version (accessed 03 November 2011):
External Linkhttp://www.phys.univ-tours.fr/~piotr/papers/area.
70 Chruściel, P.T., Eckstein, M., Nguyen, L. and Szybka, S., “Existence of singularities in two-Kerr black holes”, Class. Quantum Grav., 28, 245017, (2011). [External LinkDOI], [External LinkarXiv:1111.1448 [gr-qc]].
71 Chruściel, P.T., Eckstein, M. and Szybka, S., “On smoothness of Black Saturns”, J. High Energy Phys., 2011(11), 048, (2011). [External LinkDOI], [External LinkarXiv:1007.3668 [hep-th]].
72 Chruściel, P.T. and Galloway, G.J., “Uniqueness of static black holes without analyticity”, Class. Quantum Grav., 27, 152001, (2010). [External LinkDOI], [External Link1004.0513 [gr-qc]].
73 Chruściel, P.T., Galloway, G. and Solis, D., “Topological censorship for Kaluza-Klein space-times”, Ann. Henri Poincare, 10, 893–912, (2009). [External LinkDOI], [External Link0808.3233 [gr-qc]].
74 Chruściel, P.T. and Kondracki, W., “Some Global Charges in Classical Yang–Mills Theory”, Phys. Rev. D, 36, 1874–1881, (1987). [External LinkDOI], [External LinkADS].
75 Chruściel, P.T., Li, Y. and Weinstein, G., “Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum”, Ann. Phys. (N.Y.), 323, 2591–2613, (2008). [External LinkDOI], [External Link0712.4064v2 [gr-qc]].
76 Chruściel, P.T. and Lopes Costa, J., “On uniqueness of stationary vacuum black holes”, Asterisque, 321, 195–265, (2008). [External Link0806.0016 [gr-qc]].
77 Chruściel, P.T. and Maerten, D., “Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions”, J. Math. Phys., 47, 022502, (2006). [External LinkDOI], [External Linkgr-qc/0512042].
78 Chruściel, P.T. and Nadirashvili, N.S., “All Electrovac Majumdar–Papapetrou Space-times with Non-Singular Black Holes”, Class. Quantum Grav., 12, L17–L23, (1995). [External LinkDOI], [External Linkgr-qc/9412044].
79 Chruściel, P.T. and Nguyen, L., “A Uniqueness Theorem for Degenerate Kerr–Newman Black Holes”, Ann. Henri Poincare, 11, 585–609, (2010). [External LinkDOI], [External LinkarXiv:1002.1737 [gr-qc]].
80 Chruściel, P.T., Reall, H.S. and Tod, K.P., “On Israel–Wilson–Perjés black holes”, Class. Quantum Grav., 23, 2519–2540, (2006). [External LinkDOI], [External Linkgr-qc/0512116].
81 Chruściel, P.T., Reall, H.S. and Tod, P., “On non-existence of static vacuum black holes with degenerate components of the event horizon”, Class. Quantum Grav., 23, 549–554, (2006). [External LinkDOI], [External Linkgr-qc/0512041].
82 Chruściel, P.T. and Szybka, S.J., “Stable causality of the Pomeransky–Senkov black holes”, Adv. Theor. Math. Phys., 15, 175–178, (2010). [External LinkarXiv:1010.0213 [hep-th]].
83 Chruściel, P.T. and Tod, P., “The Classification of Static Electro-Vacuum Space-Times Containing an Asymptotically Flat Spacelike Hypersurface with Compact Interior”, Commun. Math. Phys., 271, 577–589, (2007). [External LinkDOI], [External Linkgr-qc/0512043].
84 Chruściel, P.T. and Wald, R.M., “Maximal Hypersurfaces in Stationary Asymptotically Flat Spacetimes”, Commun. Math. Phys., 163, 561–604, (1994). [External Linkgr-qc/9304009].
85 Chruściel, P.T. and Wald, R.M., “On the Topology of Stationary Black Holes”, Class. Quantum Grav., 11, L147–L152, (1994). [External LinkDOI], [External Linkgr-qc/9410004].
86 Clément, G. and Gal’tsov, D.V., “Stationary BPS Solutions to Dilaton-Axion Gravity”, Phys. Rev. D, 54, 6136–6152, (1996). [External LinkDOI], [External Linkhep-th/9607043].
87 Coleman, S., “The Uses of Instantons”, in Zichichi, A., ed., The Whys of SubNuclear Physics, Proceedings of the International School of Subnuclear Physics, Erice, Trapani, Sicily, July 23 – August 10, 1977, The Subnuclear Series, 15, pp. 805–916, (Plenum Press, New York, 1979).
88 Dain, S. and Reiris, M., “Area–Angular momentum inequality for axisymmetric black holes”, Phys. Rev. Lett., 107, 051101, (2011). [External LinkDOI], [External LinkarXiv:1102.5215 [gr-qc]].
89 de Felice, F. and Clarke, C.J.S., Relativity on Curved Manifolds, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1990).
90 Deser, S., “Absence of Static Solutions in Source-free Yang-Mills Theory”, Phys. Lett. B, 64, 463–465, (1976). [External LinkDOI], [External LinkADS].
91 Deser, S., “Absence of Static Einstein–Yang–Mills Excitations in Three Dimensions”, Class. Quantum Grav., 1, L1–L2, (1984). [External LinkDOI].
92 Dias, O.J.C., Figueras, P., Monteiro, R., Reall, H.S. and Santos, J.E., “An instability of higher-dimensional rotating black holes”, J. High Energy Phys., 2010(05), 076, (2010). [External LinkDOI], [External LinkarXiv:1001.4527 [hep-th]].
93 Dias, O.J.C., Horowitz, G.T. and Santos, J.E., “Black holes with only one Killing field”, J. High Energy Phys., 2011(7), 115, (2011). [External LinkDOI], [External LinkarXiv:1105.4167 [hep-th]].
94 Droz, S., Heusler, M. and Straumann, N., “New Black Hole Solutions with Hair”, Phys. Lett. B, 268, 371–376, (1991). [External LinkDOI].
95 Eichenherr, H. and Forger, M., “More about Non-Linear Sigma Models on Symmetric Spaces”, Nucl. Phys. B, 164, 528–535, (1980). [External LinkDOI], [External LinkADS].
96 Eichmair, M., “The Plateau problem for marginally outer trapped surfaces”, J. Differ. Geom., 83, 551–583, (2009). [External Link0711.4139 [math.DG]].
97 Elvang, H. and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050, (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701035].
98 Emparan, R., Harmark, T., Niarchos, V. and Obers, N.A., “New Horizons for Black Holes and Branes”, J. High Energy Phys., 2010(04), 046, (2010). [External LinkDOI], [External LinkarXiv:0912.2352 [hep-th]].
99 Emparan, R. and Reall, H.S., “A rotating black ring in five dimensions”, Phys. Rev. Lett., 88, 101101, (2002). [External LinkDOI], [External Linkhep-th/0110260].
100 Emparan, R. and Reall, H.S., “Black rings”, Class. Quantum Grav., 23, R169–R197, (2006). [External LinkDOI], [External Linkhep-th/0608012].
101 Emparan, R. and Reall, H.S., “Black Holes in Higher Dimensions”, Living Rev. Relativity, 11, lrr-2008-6, (2008). [External LinkarXiv:0801.3471 [hep-th]]. URL (accessed 03 November 2011):
http://www.livingreviews.org/lrr-2008-6.
102 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175–1178, (1968). [External LinkDOI], [External LinkADS].
103 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem. II”, Phys. Rev., 168, 1415–1417, (1968). [External LinkDOI], [External LinkADS].
104 Fisher, M. and Oliynyk, T.A., “There are no Magnetically Charged Particle-like Solutions of the Einstein Yang-Mills Equations for Models with an Abelian Residual Group”, Commun. Math. Phys., 312, 137–177, (2012). [External LinkDOI], [External LinkarXiv:1104.0449 [gr-qc]].
105 Forgács, P. and Manton, N.S., “Space-Time Symmetries in Gauge Theories”, Commun. Math. Phys., 72, 15–35, (1980). [External LinkDOI], [External LinkADS].
106 Friedman, J.L., Schleich, K. and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489, (1993). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9305017].
107 Friedrich, H., Rácz, I. and Wald, R.M., “On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon”, Commun. Math. Phys., 204, 691–707, (1999). [External LinkDOI], [External Linkgr-qc/9811021].
108 Galloway, G.J., “On the Topology of Black Holes”, Commun. Math. Phys., 151, 53–66, (1993). [External LinkDOI], [External LinkADS].
109 Galloway, G.J., “On the topology of the domain of outer communication”, Class. Quantum Grav., 12, L99–L101, (1995). [External LinkDOI].
110 Galloway, G.J., “A ‘Finite Infinity’ Version of the FSW Topological Censorship”, Class. Quantum Grav., 13, 1471–1478, (1996). [External LinkDOI].
111 Galloway, G.J. and Schoen, R., “A Generalization of Hawking’s Black Hole Topology Theorem to Higher Dimensions”, Commun. Math. Phys., 266, 571–576, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509107].
112 Galloway, G.J. and Woolgar, E., “The Cosmic Censor forbids Naked Topology”, Class. Quantum Grav., 14, L1–L7, (1997). [External LinkDOI], [External Linkgr-qc/9609007].
113 Gal’tsov, D.V., “Integrable Systems in String Gravity”, Phys. Rev. Lett., 74, 2863–2866, (1995). [External LinkDOI], [External Linkhep-th/9410217].
114 Gal’tsov, D.V., “Geroch–Kinnersley–Chitre Group for Dilaton-Axion Gravity”, in Bordag, M., ed., Quantum Field Theory under the Influence of External Conditions, Proceedings of the International Workshop, Leipzig, Germany, 18 – 22 September 1995, Teubner-Texte zur Physik, 30, (Teubner, Stuttgart and Leipzig, 1996). [External Linkhep-th/9606041].
115 Gal’tsov, D.V., “Square of general relativity”, in Wiltshire, D.L., ed., Australasian Conference on General Relativity and Gravitation, Proceedings ACGRG1, University of Adelaide, Australia, 12 – 17 February, 1996, (University of Adelaide, Adelaide, 1996). [External LinkADS], [External Linkgr-qc/9608021].
116 Gal’tsov, D.V. and Kechkin, O.V., “Ehlers–Harrison-Type Transformations in Dilaton-Axion Gravity”, Phys. Rev. D, 50, 7394–7399, (1994). [External LinkDOI], [External Linkhep-th/9407155].
117 Gal’tsov, D.V. and Kechkin, O.V., “Matrix Dilaton-Axion for the Heterotic String in three Dimensions”, Phys. Lett. B, 361, 52–58, (1995). [External LinkDOI], [External Linkhep-th/9507164].
118 Gal’tsov, D.V. and Kechkin, O.V., “U-Duality and Simplectic Formulation of Dilaton-Axion Gravity”, Phys. Rev. D, 54, 1656–1666, (1996). [External LinkDOI], [External Linkhep-th/9507005].
119 Gal’tsov, D.V. and Letelier, P.S., “Ehlers–Harrison Transformations and Black Holes in Dilaton-Axion Gravity with Multiple Vector Fields”, Phys. Rev. D, 55, 3580–3592, (1997). [External LinkDOI], [External Linkgr-qc/9612007].
120 Gal’tsov, D.V. and Letelier, P.S., “Interpolating Black Holes in Dilaton-Axion Gravity”, Class. Quantum Grav., 14, L9–L14, (1997). [External LinkDOI], [External Linkgr-qc/9608023].
121 Gal’tsov, D.V. and Sharakin, S.A., “Matrix Ernst Potentials for Einstein–Maxwell-Dilaton-Axion with Multiple Vector Fields”, Phys. Lett. B, 399, 250–257, (1997). [External LinkDOI], [External Linkhep-th/9702039].
122 Garfinkle, D., Horowitz, G.T. and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D, 43, 3140–3143, (1991). [External LinkDOI], [External LinkADS].
123 Genzel, R., Eisenhauer, F. and Gillessen, S., “The Galactic Center Massive Black Hole and Nuclear Star Cluster”, Rev. Mod. Phys., 82, 3121–3195, (2010). [External LinkDOI], [External LinkarXiv:1006.0064 [astro-ph.GA]].
124 Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918–924, (1971). [External LinkDOI].
125 Geroch, R., “A Method for Generating New Solutions of Einstein’s Equation. II”, J. Math. Phys., 13, 394–404, (1972). [External LinkDOI].
126 Gibbons, G.W., “Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity”, Nucl. Phys. B, 207, 337–349, (1982). [External LinkDOI].
127 Gibbons, G.W., “Self-gravitating Magnetic Monopoles, Global Monopoles and Black Holes”, in Barrow, J.D., Henriques, A.B., Lago, M.T.V.T. and Longair, M.S., eds., The Physical Universe: The Interface Between Cosmology, Astrophysics and Particle Physics, Proceedings of the XII Autumn School of Physics, Lisbon, 1 – 5 October 1990, Lecture Notes in Physics, 383, pp. 110–133, (Springer, Berlin; New York, 1990). [External LinkDOI].
128 Gibbons, G.W. and Hull, C.M., “A Bogomolny Bound for General Relativity and Solitons in N = 2 Supergravity”, Phys. Lett. B, 109, 190–194, (1982). [External LinkDOI].
129 Gibbons, G.W., Ida, D. and Shiromizu, T., “Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions”, Phys. Rev. D, 66, 044010, (2002). [External LinkDOI], [External LinkarXiv:hep-th/0206136].
130 Gibbons, G.W., Kallosh, R.E. and Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–4995, (1996). [External LinkDOI], [External Linkhep-th/9607108].
131 Gibbons, G.W. and Maeda, K., “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298, 741–775, (1988). [External LinkDOI].
132 Greene, B.R., Mathur, S.D. and O’Neill, C.M., “Eluding the No-Hair Conjecture: Black Holes in Spontaneously Broken Gauge Theories”, Phys. Rev. D, 47, 2242–2259, (1993). [External LinkDOI], [External Linkhep-th/9211007].
133 Gubser, S.S., “On non-uniform black branes”, Class. Quantum Grav., 19, 4825–4844, (2002). [External LinkDOI], [External Linkhep-th/0110193].
134 Hájíček, P., “General Theory of Vacuum Ergospheres”, Phys. Rev. D, 7, 2311–2316, (1973).
135 Hájíček, P., “Three remarks on axisymmetric stationary horizons”, Commun. Math. Phys., 36, 305–320, (1974). [External LinkDOI], [External LinkADS].
136 Hájíček, P., “Stationary Electrovac Space-times with Bifurcate Horizon”, J. Math. Phys., 16, 518–527, (1975).
137 Harmark, T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys. Rev. D, 70, 124002, (2004). [External LinkDOI], [External LinkarXiv:hep-th/0408141].
138 Harnad, J., Shnider, S. and Vinet, L., “Group Actions on Principal Bundles and Invariance Conditions for Gauge Fields”, J. Math. Phys., 21, 2719–2724, (1980). [External LinkDOI], [External LinkADS].
139 Hartle, J.B. and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black holes”, Commun. Math. Phys., 26, 87–101, (1972). [External LinkDOI].
140 Hartmann, B., Kleihaus, B. and Kunz, J., “Axially symmetric monopoles and black holes in Einstein–Yang–Mills–Higgs theory”, Phys. Rev. D, 65, 024027, (2001). [External LinkDOI], [External LinkarXiv:hep-th/0108129].
141 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972). [External LinkDOI].
142 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [External LinkDOI].
143 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
144 Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34, (American Mathematical Society, Providence, RI, 2001). [External LinkGoogle Books].
145 Hennig, J., Ansorg, M. and Cederbaum, C., “A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter”, Class. Quantum Grav., 25, 162002, (2008). [External LinkDOI], [External LinkarXiv:0805.4320].
146 Hennig, J., Cederbaum, C. and Ansorg, M., “A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory”, Commun. Math. Phys., 293, 449–467, (2010). [External LinkDOI].
147 Hennig, J. and Neugebauer, G., “Non-existence of stationary two-black-hole configurations: The degenerate case”, Gen. Relativ. Gravit., 43, 3139–3162, (2011). [External LinkDOI], [External LinkarXiv:1103.5248 [gr-qc]].
148 Herdeiro, C.A.R. and Rebelo, C., “On the interaction between two Kerr black holes”, J. High Energy Phys., 2008(10), 017, (2008). [External LinkDOI], [External Link0808.3941 [gr-qc]].
149 Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions of σ-Models”, Class. Quantum Grav., 10, 791–799, (1993). [External LinkDOI].
150 Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solutions of Self-gravitating Harmonic Mappings”, Class. Quantum Grav., 12, 2021–2036, (1995). [External LinkDOI], [External Linkgr-qc/9503053].
151 Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New York, 1996). [External LinkGoogle Books].
152 Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys. Acta, 69, 501–528, (1996). [External Linkgr-qc/9610019].
153 Heusler, M., “Bogomol’nyi-type Mass Formulas for a Class of Nonrotating Black Holes”, Phys. Rev. D, 56, 961–973, (1997). [External LinkDOI], [External Linkgr-qc/9703015].
154 Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”, Class. Quantum Grav., 14, L129–L134, (1997). [External LinkDOI], [External Linkgr-qc/9607001].
155 Heusler, M., “Uniqueness Theorems for Black Hole Space-Times”, in Hehl, F.W., Metzler, R.J.K. and Kiefer, C., eds., Black Holes: Theory and Observations, Proceedings of the 179th W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18 – 22 August 1997, Lecture Notes in Physics, 514, pp. 157–186, (Springer, Berlin; New York, 1998). [External LinkDOI].
156 Heusler, M., Droz, S. and Straumann, N., “Stability Analysis of Self-Gravitating Skyrmions”, Phys. Lett. B, 271, 61–67, (1991). [External LinkDOI], [External LinkADS].
157 Heusler, M., Droz, S. and Straumann, N., “Linear Stability of Einstein–Skyrme Black Holes”, Phys. Lett. B, 285, 21–26, (1992). [External LinkDOI], [External LinkADS].
158 Heusler, M. and Straumann, N., “The First Law of Black Hole Physics for a Class of Nonlinear Matter Models”, Class. Quantum Grav., 10, 1299–1322, (1993). [External LinkDOI].
159 Heusler, M. and Straumann, N., “Mass Variation Formulae for Einstein–Yang–Mills–Higgs and Einstein-dilaton Black Holes”, Phys. Lett. B, 315, 55–66, (1993). [External LinkDOI], [External LinkADS].
160 Heusler, M. and Straumann, N., “Staticity, Circularity, and the First Law of Black Hole Physics”, Int. J. Mod. Phys. D, 3, 199–202, (1994). [External LinkDOI], [External LinkADS].
161 Heusler, M., Straumann, N. and Zhou, Z.-H., “Self-Gravitating Solutions of the Skyrme Model and their Stability”, Helv. Phys. Acta, 66, 614–632, (1993).
162 Hollands, S., Holland, J. and Ishibashi, A., “Further Restrictions on the Topology of Stationary Black Holes in Five Dimensions”, Ann. Henri Poincare, 12, 279–301, (2011). [External LinkDOI], [External LinkarXiv:1002.0490 [gr-qc]].
163 Hollands, S. and Ishibashi, A., “On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions”, Commun. Math. Phys., 291, 403–441, (2009). [External LinkDOI], [External LinkarXiv:0809.2659 [gr-qc]].
164 Hollands, S. and Ishibashi, A., “All Vacuum Near Horizon Geometries in D-dimensions with (D 3) Commuting Rotational Symmetries”, Ann. Henri Poincare, 10, 1537–1557, (2010). [External LinkDOI], [External LinkarXiv:0909.3462 [gr-qc]].
165 Hollands, S., Ishibashi, A. and Wald, R.M., “A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric”, Commun. Math. Phys., 271, 699–722, (2007). [External LinkDOI], [External Linkgr-qc/0605106].
166 Hollands, S. and Wald, R.M., “Stability of Black Holes and Black Branes”, arXiv, e-print, (2012). [External LinkarXiv:1201.0463 [gr-qc]].
167 Hollands, S. and Yazadjiev, S., “Uniqueness Theorem for 5-Dimensional Black Holes with Two Axial Killing Fields”, Commun. Math. Phys., 283, 749–768, (2008). [External LinkDOI], [External Link0707.2775 [gr-qc]].
168 Hollands, S. and Yazadjiev, S., “A uniqueness theorem for five-dimensional Einstein–Maxwell black holes”, Class. Quantum Grav., 25, 095010, (2008). [External LinkDOI], [External LinkarXiv:0711.1722 [gr-qc]].
169 Hollands, S. and Yazadjiev, S., “A Uniqueness Theorem for Stationary Kaluza-Klein Black Holes”, Commun. Math. Phys., 302, 631–674, (2011). [External LinkDOI], [External LinkarXiv:0812.3036 [gr-qc]].
170 Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference held at Oregon State University Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 1–21, (Springer, Berlin; New York, 1984). [External LinkDOI].
171 Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 241–266, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9704072].
172 Horowitz, G.T. and Wiseman, T., “General black holes in Kaluza–Klein theory”, in Horowitz, G.T., ed., Black Holes in Higher Dimensions, pp. 69–98, (Cambridge University Press, Cambridge; New York, 2012). [External LinkarXiv:1107.5563 [gr-qc]].
173 Ida, D., Ishibashi, A. and Shiromizu, T., “Topology and Uniqueness of Higher Dimensional Black Holes”, Prog. Theor. Phys. Suppl., 189, 52–92, (2011). [External LinkDOI], [External LinkarXiv:1105.3491 [hep-th]].
174 Ionescu, A.D. and Klainerman, S., “On the uniqueness of smooth, stationary black holes in vacuum”, Invent. Math., 175, 35–102, (2009). [External LinkDOI], [External Link0711.0040 [gr-qc]].
175 Ionescu, A.D. and Klainerman, S., “Uniqueness Results for Ill-Posed Characteristic Problems in Curved Space-Times”, Commun. Math. Phys., 285, 873–900, (2009). [External LinkDOI], [External LinkarXiv:0711.0042 [gr-qc]].
176 Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779, (1967). [External LinkDOI], [External LinkADS].
177 Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8, 245–260, (1968). [External LinkDOI], [External LinkADS].
178 Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987).
179 Israel, W. and Wilson, G.A., “A Class of Stationary Electromagnetic Vacuum Fields”, J. Math. Phys., 13, 865–867, (1972). [External LinkDOI].
180 Jacobson, T. and Venkatarami, S., “Topology of Event Horizons and Topological Censorship”, Class. Quantum Grav., 12, 1055–1061, (1995). [External LinkDOI], [External Linkgr-qc/9410023].
181 Jadczyk, A., “Symmetry of Einstein–Yang–Mills Systems and Dimensional Reduction”, J. Geom. Phys., 1, 97–126, (1984). [External LinkDOI], [External LinkADS].
182 Jost, J., Riemannian geometry and geometric analysis, (Springer, Berlin, 1998), 2nd edition.
183 Kaluza, T., “Zum Unitätsproblem der Physik”, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 1921, 966–972, (1921).
184 Kay, B.S. and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon”, Phys. Rep., 207, 49–136, (1991). [External LinkDOI], [External LinkADS].
185 Kinnersley, W., “Generation of Stationary Einstein–Maxwell Fields”, J. Math. Phys., 14, 651–653, (1973). [External LinkDOI].
186 Kinnersley, W., “Symmetries of the Stationary Einstein–Maxwell Field Equations. I”, J. Math. Phys., 18, 1529–1537, (1977). [External LinkDOI], [External LinkADS].
187 Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field Equations. II”, J. Math. Phys., 18, 1538–1542, (1977). [External LinkDOI], [External LinkADS].
188 Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Equations. IV. Transformations which preserve asymptotic flatness”, J. Math. Phys., 19, 2037–2042, (1978). [External LinkDOI], [External LinkADS].
189 Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field Equations. III”, J. Math. Phys., 19, 1926–1931, (1978). [External LinkDOI], [External LinkADS].
190 Kleihaus, B. and Kunz, J., “Axially Symmetric Multisphalerons in Yang–Mills-Dilaton Theory”, Phys. Lett. B, 392, 135–140, (1997). [External LinkDOI], [External Linkhep-th/9609180].
191 Kleihaus, B. and Kunz, J., “Static Axially Symmetric Solutions of Einstein–Yang-Mills-Dilaton Theory”, Phys. Rev. Lett., 78, 2527–2530, (1997). [External LinkDOI], [External Linkhep-th/9612101].
192 Kleihaus, B. and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595–1598, (1997). [External LinkDOI], [External Linkgr-qc/9704060].
193 Kleihaus, B. and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-Dilaton solutions: Regular solutions”, Phys. Rev. D, 57, 834–856, (1998). [External LinkDOI], [External Linkgr-qc/9707045].
194 Kleihaus, B. and Kunz, J., “Static Regular and Black Hole Solutions with Axial Symmetry in EYM and EYMD Theory”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, pp. 545–547, (World Scientific, Singapore, 1999). [External LinkarXiv:gr-qc/9710047].
195 Klein, O., “Quantentheorie und fünfdimensionale Relativitätstheorie”, Z. Phys., 37, 895–906, (1926). [External LinkDOI].
196 Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 2, (John Wiley, New York, 1969).
197 Kormendy, J. and Gebhardt, K., “Supermassive black holes in Galactic Nuclei”, in Wheeler, J.C. and Martel, H., eds., Relativistic Astrophysics, 20th Texas Symposium, Austin, Texas, 10 – 15 December 2000, AIP Conference Proceedings, 586, pp. 363–381, (American Institute of Physics, Melville, NY, 2001). [External LinkDOI], [External Linkastro-ph/0105230].
198 Kramer, D. and Neugebauer, G., “The superposition of two Kerr solutions”, Phys. Lett. A, 75, 259–261, (1980).
199 Kramer, D., Stephani, H., MacCallum, M.A.H. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1980).
200 Kudoh, H. and Wiseman, T., “Properties of Kaluza-Klein black holes”, Prog. Theor. Phys., 111, 475–507, (2004). [External LinkDOI], [External LinkarXiv:hep-th/0310104].
201 Kundt, W. and Trümper, M., “Orthogonal Decomposition of Axi-symmetric Stationary Space-times”, Z. Phys., 192, 419–422, (1966). [External LinkDOI].
202 Kunduri, H.K. and Lucietti, J., “A classification of near-horizon geometries of extremal vacuum black holes”, J. Math. Phys., 50, 082502, (2009). [External LinkDOI], [External LinkarXiv:0806.2051 [hep-th]].
203 Kunduri, H.K. and Lucietti, J., “Static near-horizon geometries in five dimensions”, Class. Quantum Grav., 26, 245010, (2009). [External LinkDOI], [External LinkarXiv:0907.0410 [hep-th]].
204 Kunduri, H.K., Lucietti, J. and Reall, H.S., “Near-horizon symmetries of extremal black holes”, Class. Quantum Grav., 24, 4169–4190, (2007). [External LinkDOI], [External LinkarXiv:0705.4214 [hep-th]].
205 Künzle, H.P., “SU(n) Einstein–Yang–Mills fields with spherical symmetry”, Class. Quantum Grav., 8, 2283–2297, (1991). [External LinkDOI].
206 Künzle, H.P., “Analysis of the Static Spherically Symmetric SU(n) Einstein-Yang-Mills Equations”, Commun. Math. Phys., 162, 371–397, (1994). [External LinkDOI], [External LinkADS].
207 Künzle, H.P., “Einstein–Yang–Mills Fields with Spherical Symmetry”, in Beem, J.K. and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, 170, pp. 167–184, (AMS, Providence, 1994).
208 Künzle, H.P. and Masood-ul Alam, A.K.M., “Spherically Symmetric Static SU(2) Einstein–Yang–Mills Fields”, J. Math. Phys., 31, 928–935, (1990). [External LinkDOI].
209 Künzle, H.P. and Oliynyk, T.A., “Spherical symmetry of generalized EYMH fields”, J. Geom. Phys., 56, 1856–1874, (2006). [External LinkDOI], [External LinkarXiv:0810.3741 [gr-qc]].
210 Laplace, P.-S., Exposition du Système du Monde, (Imprimerie du Cercle-Social, Paris, 1796). [External LinkDOI]. Online version (accessed 10 February 2005):
External Linkhttp://visualiseur.bnf.fr/CadresFenetre?Y=Texte&M=notice&O=NUMM-88763.
211 Larsen, F., “Rotating Kaluza-Klein black holes”, Nucl. Phys. B, 575, 211–230, (2000). [External LinkDOI], [External LinkarXiv:hep-th/9909102].
212 Lavrelashvili, G. and Maison, D., “Regular and Black Hole Solutions of Einstein–Yang–Mills Dilaton Theory”, Nucl. Phys. B, 410, 407–422, (1993). [External LinkDOI].
213 Lee, K., Nair, V.P. and Weinberg, E.J., “A Classical Instability of Reissner-Nordström Solutions and the Fate of Magnetically Charged Black Holes”, Phys. Rev. Lett., 68, 1100–1103, (1992). [External LinkDOI], [External Linkhep-th/9111045].
214 Lee, K. and Weinberg, E.J., “Nontopological Magnetic Monopoles and New Magnetically Charged Black Holes”, Phys. Rev. Lett., 73, 1203–1206, (1994). [External LinkDOI], [External Linkhep-th/9406021].
215 Lewandowski, J. and Pawlowski, T., “Extremal Isolated Horizons: A Local Uniqueness Theorem”, Class. Quantum Grav., 20, 587–606, (2003). [External LinkDOI], [External Linkgr-qc/0208032].
216 Li, Y.Y. and Tian, G., “Regularity of harmonic maps with prescribed singularities”, Commun. Math. Phys., 149, 1–30, (1992). [External LinkDOI].
217 Lopes Costa, J., “On the classification of stationary electro-vacuum black holes”, Class. Quantum Grav., 27, 035010, (2010). [External LinkDOI], [External Link0912.0834 [gr-qc]].
218 Maison, D., “Ehlers–Harrison-type transformations for Jordan’s extended theory of gravitation”, Gen. Relativ. Gravit., 10, 717–723, (1979). [External LinkDOI].
219 Maison, D., “On the Complete Integrability of the Stationary, Axially Symmetric Einstein Equations”, J. Math. Phys., 20, 871–877, (1979). [External LinkDOI].
220 Majumdar, S.D., “A Class of Exact Solutions of Einstein’s Field Equations”, Phys. Rev., 72, 390–398, (1947). [External LinkDOI].
221 Malec, E., “The Absence of Static, Smooth Solutions in Einstein-Yang-Mills-Klein-Gordon Theory”, Acta Phys. Pol. B, 15, 1101–1109, (1984). Online version (accessed 03 November 2011):
External Linkhttp://www.actaphys.uj.edu.pl/vol15/t12.htm.
222 Manko, V.S., Ruiz, E. and Sanabria-Gómez, J.D., “Extended multi-soliton solutions of the Einstein field equations. II. Two comments on the existence of equilibrium states”, Class. Quantum Grav., 17, 3881–3898, (2000). [External LinkDOI].
223 Mars, M., “A spacetime characterization of the Kerr metric”, Class. Quantum Grav., 16, 2507–2523, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9904070].
224 Mars, M. and Simon, W., “On uniqueness of static Einstein–Maxwell-dilaton black holes”, Adv. Theor. Math. Phys., 6, 279–305, (2002). [External LinkarXiv:gr-qc/0105023].
225 Masood-ul Alam, A.K.M., “Uniqueness proof of static black holes revisited”, Class. Quantum Grav., 9, L53–L55, (1992). [External LinkDOI].
226 Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum Grav., 10, 2649–2656, (1993). [External LinkDOI].
227 Mavromatos, N.E. and Winstanley, E., “Existence theorems for hairy black holes in SU(N) Einstein–Yang–Mills theories”, J. Math. Phys., 39, 4849–4873, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9712049].
228 Mazur, P.O., “Proof of Uniqueness of the Kerr-Newman Black Hole Solution”, J. Math. Phys., 15, 3173– 3180, (1982).
229 Mazur, P.O., “Black Hole Uniqueness from a Hidden Symmetry of Einstein’s Gravity”, Gen. Relativ. Gravit., 16, 211–215, (1984). [External LinkDOI].
230 Mazur, P.O., “A Global Identity for Nonlinear Sigma-Models”, Phys. Lett. A, 100, 341–344, (1984). [External LinkDOI].
231 McClintock, J.E., Narayan, R. and Rybicki, G.B., “On the lack of thermal emission from the quiescent black hole XTE J1118+480: Evidence for the event horizon”, Astrophys. J., 615, 402–415, (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0403251].
232 McClintock, J.E. and Remillard, R.A., “Black hole binaries”, in Lewin, W.H.G. and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, 39, pp. 157–214, (Cambridge University Press, Cambridge; New York, 2006). [External LinkDOI], [External LinkarXiv:astro-ph/0306213], [External LinkGoogle Books].
233 Menou, K., Quataert, E. and Narayan, R., “Astrophysical evidence for black hole event horizons”, in Dahdich, N. and Narlikar, J., eds., Gravitation and Relativity: At the Turn of the Millennium, Proceedings of the GR-15 Conference, Pune, India, December 16 – 21, 1997, pp. 43–65, (IUCAA, Pune, 1998). [External Linkgr-qc/9803057].
234 Merritt, D. and Ferrarese, L., “Relationship of black holes to bulges”, in Knapen, J.H., Beckman, J.E., Shlosman, I. and Mahoney, T.J., eds., The Central Kiloparsec of Starbursts and AGN: the La Palma Connection, Proceedings of a conference held in Los Cancajos, La Palma, Spain, 7 – 11 May 2001, ASP Conference Series, 249, pp. 335–362, (Astronomical Society of the Pacific, San Francisco, 2001). [External LinkADS], [External Linkastro-ph/0107134].
235 Michell, J., “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars...”, Philos. Trans. R. Soc. London, 74, 35–57, (1784). [External LinkDOI].
236 Minguzzi, E. and Sánchez, M., “The causal hierarchy of spacetimes”, in Alekseevsky, D.V. and Baum, H., eds., Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, pp. 299–358, (EMS Publishing House, Zürich, 2008). [External LinkDOI], [External LinkGoogle Books].
237 Misner, C.W., “The Flatter Regions of Newman, Unti, and Tamburino’s Generalized Schwarzschild Space”, J. Math. Phys., 4, 924–937, (1963). [External LinkDOI].
238 Moncrief, V. and Isenberg, J., “Symmetries of cosmological Cauchy horizons”, Commun. Math. Phys., 89, 387–413, (1983). [External LinkDOI], [External LinkADS].
239 Moncrief, V. and Isenberg, J., “Symmetries of Higher Dimensional Black Holes”, Class. Quantum Grav., 25, 195015, (2008). [External LinkDOI], [External LinkarXiv:0805.1451 [gr-qc]].
240 Morisawa, Y. and Ida, D., “A boundary value problem for the five-dimensional stationary rotating black holes”, Phys. Rev. D, 69, 124005, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0401100].
241 Moss, I.G., Shiiki, N. and Winstanley, E., “Monopole black hole skyrmions”, Class. Quantum Grav., 17, 4161–4174, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0005007].
242 Müller, A., “Experimental evidence of black holes”, in Bonora, L., Iengo, R., Klabucar, D., Pallua, S. and Picek, I., eds., School on Particle Physics, Gravity and Cosmology, Dubrovnik, August 21 – September 2, 2006, Proceedings of Science, PoS(P2GC)017, (SISSA, Trieste, 2006). [External LinkarXiv:astro-ph/0701228]. URL (accessed 03 November 2011):
External Linkhttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=34.
243 Müller zum Hagen, H., “On the analyticity of stationary vacuum solutions of Einstein’s equation”, Proc. Cambridge Philos. Soc., 68, 199–201, (1970). [External LinkDOI].
244 Müller zum Hagen, H., Robinson, D.C. and Seifert, H.J., “Black Holes in Static Vacuum Space-Times”, Gen. Relativ. Gravit., 4, 53–78, (1973). [External LinkDOI], [External LinkADS].
245 Müller zum Hagen, H., Robinson, D.C. and Seifert, H.J., “Black Holes in Static Electrovac Space-Times”, Gen. Relativ. Gravit., 5, 61–72, (1974). [External LinkDOI].
246 Myers, R.C. and Perry, M.J., “Black Holes in Higher Dimensional Space-Times”, Ann. Phys. (N.Y.), 172, 304–347, (1986). [External LinkDOI].
247 Narayan, R., Garcia, M.R. and McClintock, J.E., “X-ray Novae and the Evidence for Black Hole Event Horizons”, in Gurzadyan, V.G., Jantzen, R.T. and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Part A, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 405–425, (World Scientific, Singapore; River Edge, NJ, 2002). [External LinkDOI], [External Linkastro-ph/0107387].
248 Narayan, R., Yi, I. and Mahadevan, R., “Explaining the spectrum of Sagittarius A* with a model of an accreting black hole”, Nature, 374, 623–625, (1995). [External LinkDOI].
249 Neugebauer, G. and Hennig, J., “Stationary two-black-hole configurations: A non-existence proof”, J. Geom. Phys., 62, 613–630, (2012). [External LinkDOI], [External LinkarXiv:1105.5830 [gr-qc]].
250 Neugebauer, G. and Kramer, D., “Eine Methode zur Konstruktion stationärer Einstein-Maxwell-Felder”, Ann. Phys. (Leipzig), 479, 62–71, (1969). [External LinkDOI].
251 Neugebauer, G. and Meinel, R., “Progress in relativistic gravitational theory using the inverse scattering method”, J. Math. Phys., 44, 3407–3429, (2003). [External LinkDOI], [External Linkgr-qc/0304086].
252 Newman, E.T., Tamburino, L.A. and Unti, T., “Empty-Space Generalization of the Schwarzschild Metric”, J. Math. Phys., 4, 915–923, (1963). [External LinkDOI].
253 Nomizu, K., “On local and global existence of Killing vector fields”, Ann. Math., 72, 105–120, (1960). [External LinkDOI].
254 Oliynyk, T.A., “An existence proof for the gravitating BPS monopole”, Ann. Henri Poincare, 7, 199–232, (2006). [External LinkDOI], [External LinkarXiv:0810.3735 [gr-qc]].
255 Oliynyk, T.A. and Künzle, H.P., “On all possible static spherically symmetric EYM solitons and black holes”, Class. Quantum Grav., 19, 457–482, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0109075].
256 O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103, (Academic Press, San Diego; London, 1983). [External LinkGoogle Books].
257 Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459, (1939). [External LinkDOI], [External LinkADS].
258 Oppenheimer, J.R. and Volkoff, G.M., “On Massive Neutron Cores”, Phys. Rev., 55, 374–381, (1939). [External LinkDOI].
259 Orlik, P., Seifert Manifolds, Lecture Notes in Mathematics, 291, (Springer, Berlin; New York, 1972). [External LinkDOI].
260 Orlik, P. and Raymond, F., “Actions of the Torus on 4-Manifolds. I”, Trans. Amer. Math. Soc., 152, 531–559, (1970).
261 Orlik, P. and Raymond, F., “Actions of the torus on 4-manifolds – II”, Topology, 13, 89–112, (1974). [External LinkDOI].
262 Papapetrou, A., “A Static Solution of the Gravitational Field for an Arbitrary Charge-Distribution”, Proc. R. Irish Acad. A, 51, 191–204, (1945).
263 Papapetrou, A., “Eine Rotationssymmetrische Lösung in der Allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 447, 309–315, (1953). [External LinkDOI], [External LinkADS].
264 Papapetrou, A., “Champs gravitationnels stationnaires à symétrie axiale”, Ann. Inst. Henri Poincare A, 4, 83–105, (1966). Online version (accessed 14 May 2012):
External Linkhttp://www.numdam.org/item?id=AIHPA_1966__4_2_83_0.
265 Parker, T. and Taubes, C.H., “On Witten’s Proof of the Positive Energy Theorem”, Commun. Math. Phys., 84, 223–238, (1982). [External LinkDOI], [External LinkADS].
266 Penrose, R., Techniques of Differential Topology in Relativity, Regional Conference Series in Applied Mathematics, 7, (SIAM, Philadelphia, 1972). [External LinkGoogle Books].
267 Perjés, Z., “Solutions of the Coupled Einstein–Maxwell Equations Representing the Fields of Spinning Sources”, Phys. Rev. Lett., 27, 1668–1670, (1971). [External LinkDOI].
268 Pomeransky, A.A., “Complete integrability of higher-dimensional Einstein equations with additional symmetry, and rotating black holes”, Phys. Rev. D, 73, 044004, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0507250].
269 Pomeransky, A.A. and Sen’kov, R.A., “Black ring with two angular momenta”, arXiv, e-print, (2006). [External LinkarXiv:hep-th/0612005].
270 Rácz, I. and Wald, R.M., “Global Extensions of Spacetimes Describing Asymptotic Final States of Black Holes”, Class. Quantum Grav., 13, 539–552, (1995). [External LinkDOI], [External Linkgr-qc/9507055].
271 Radu, E. and Winstanley, E., “Static axially symmetric solutions of Einstein–Yang–Mills equations with a negative cosmological constant: Black hole solutions”, Phys. Rev. D, 70, 084023, (2004). [External LinkDOI], [External LinkarXiv:hep-th/0407248].
272 Rasheed, D., “The rotating dyonic black holes of Kaluza-Klein theory”, Nucl. Phys. B, 454, 379–401, (1995). [External LinkDOI], [External LinkarXiv:hep-th/9505038].
273 Raymond, F., “Classification of the actions of the circle on 3-manifolds”, Trans. Amer. Math. Soc., 131, 51–78, (1968). [External LinkDOI].
274 Reall, H.S., “Higher dimensional black holes and supersymmetry”, Phys. Rev. D, 68, 024024, (2003). [External LinkDOI], [External Linkhep-th/0211290].
275 Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 79–101, (University of Chicago Press, Chicago; London, 1998). [External LinkADS], [External Linkastro-phys/9701161].
276 Rees, M.J., “Supermassive Black Holes: Their Formation, and Their Prospects as Probes of Relativistic Gravity”, in Kaper, L., van den Heuvel, E.P.J. and Woudt, P.A., eds., Black Holes in Binaries and Galactic Nuclei: Diagnostics, Demography and Formation, Proceedings of the ESO Workshop Held at Garching, Germany, in Honour of Riccardo Giacconi, 6 – 8 September 1999, ESO Astrophysics Symposia, pp. 351–363, (Springer, Berlin; New York, 2001). [External LinkDOI], [External Linkastro-ph/9912346].
277 Ridgway, S.A. and Weinberg, E.J., “Are All Static Black Hole Solutions Spherically Symmetric?”, Gen. Relativ. Gravit., 27, 1017–1021, (1995). [External LinkDOI], [External Linkgr-qc/9504003].
278 Ridgway, S.A. and Weinberg, E.J., “Static Black Hole Solutions without Rotational Symmetry”, Phys. Rev. D, 52, 3440–3456, (1995). [External LinkDOI], [External Linkgr-qc/9503035].
279 Robinson, D.C., “Classification of Black Holes with Electromagnetic Fields”, Phys. Rev., 10, 458–460, (1974). [External LinkDOI], [External LinkADS].
280 Robinson, D.C., “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905–906, (1975). [External LinkDOI].
281 Robinson, D.C., “A Simple Proof of the Generalization of Israel’s Theorem”, Gen. Relativ. Gravit., 8, 695–698, (1977). [External LinkDOI], [External LinkADS].
282 Rogatko, M., “Uniqueness theorem of static degenerate and nondegenerate charged black holes in higher dimensions”, Phys. Rev. D, 67, 084025, (2003). [External LinkDOI], [External Linkhep-th/0302091].
283 Rogatko, M., “Classification of static charged black holes in higher dimensions”, Phys. Rev. D, 73, 124027, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0606116].
284 Ruback, P., “A new uniqueness theorem for charged black holes”, Class. Quantum Grav., 5, L155–L159, (1988). [External LinkDOI], [External LinkADS].
285 Sadeghian, L. and Will, C.M., “Testing the black hole no-hair theorem at the galactic center: perturbing effects of stars in the surrounding cluster”, Class. Quantum Grav., 28, (2011). [External LinkDOI], [External LinkarXiv:1106.5056 [gr-qc]].
286 Sarbach, O. and Winstanley, E., “On the linear stability of solitons and hairy black holes with a negative cosmological constant: The Odd parity sector”, Class. Quantum Grav., 18, 2125–2146, (2001). [External LinkDOI].
287 Schoen, R. and Yau, S.T., “Compact Group Actions and the Topology of Manifolds with Non-Positive Curvature”, Topology, 18, 361–380, (1979). [External LinkDOI].
288 Schoen, R. and Yau, S.-T., “On the Proof of the Positive Mass Conjecture in General Relativity”, Commun. Math. Phys., 65, 45–76, (1979). [External LinkDOI], [External LinkADS].
289 Schoen, R. and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys., 79, 231–260, (1981). [External LinkDOI], [External LinkADS].
290 Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(III), 424–434, (1916). [External Linkphysics/9912033]. Online version (accessed 03 November 2011):
External Linkhttp://www.archive.org/details/sitzungsberichte1916deutsch.
291 Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(VII), 189–196, (1916). [External Linkphysics/9905030]. Online version (accessed 03 November 2011):
External Linkhttp://www.archive.org/details/sitzungsberichte1916deutsch.
292 Shaposhnikov, M.E., “Sphalerons and Baryogenesis”, Class. Quantum Grav. Suppl., 10, 147–154, (1993). [External LinkDOI].
293 Simon, W., “Characterizations of the Kerr metric”, Gen. Relativ. Gravit., 16, 465–476, (1984). [External LinkDOI].
294 Simon, W., “A Simple Proof of the Generalized Electrostatic Israel Theorem”, Gen. Relativ. Gravit., 17, 761–768, (1985). [External LinkDOI], [External LinkADS].
295 Simon, W., “Radiative Einstein–Maxwell spacetimes and ‘no-hair’ theorems”, Class. Quantum Grav., 9, 241–256, (1992). [External LinkDOI].
296 Smarr, L.L., “Mass Formula for Kerr Black Holes”, Phys. Rev. Lett., 30, 71–73, (1973). [External LinkDOI], [External LinkADS].
297 Smoller, J.A. and Wasserman, A.G., “Existence of Infinitely-Many Smooth, Static, Global Solutions of the Einstein/Yang-Mills Equations”, Commun. Math. Phys., 151, 303–325, (1993). [External LinkDOI], [External LinkADS]. Online version (accessed 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104252139.
298 Smoller, J.A., Wasserman, A.G. and Yau, S.-T., “Existence of Black Hole Solutions for the Einstein-Yang/Mills Equations”, Commun. Math. Phys., 154, 377–401, (1993). [External LinkDOI]. Online version (accessed 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104252975.
299 Smoller, J.A., Wasserman, A.G., Yau, S.-T. and McLeod, J.B., “Smooth static solutions of the Einstein/Yang-Mills equations”, Commun. Math. Phys., 143, 115–147, (1991). [External LinkDOI], [External LinkADS]. Online version (accessed 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104248845.
300 Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York, 1984). [External LinkADS].
301 Straumann, N. and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990). [External LinkDOI], [External LinkADS].
302 Sudarsky, D. and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992). [External LinkDOI].
303 Sudarsky, D. and Wald, R.M., “Mass formulas for stationary Einstein–Yang–Mills black holes and a simple proof of two staticity theorems”, Phys. Rev. D, 47, R5209–R5213, (1993). [External LinkDOI], [External Linkgr-qc/9305023].
304 Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math. Phys., 28, 2688–2691, (1987). [External LinkDOI].
305 Szybka, S., “Stable causality of Black Saturns”, J. High Energy Phys., 2011(05), 052, (2011). [External LinkDOI], [External LinkarXiv:1102.3942 [hep-th]].
306 Varzugin, G.G., “Equilibrium configuration of black holes and the method of the inverse scattering problem”, Theor. Math. Phys., 111, 345–355, (1997). [External LinkDOI].
307 Varzugin, G.G., “The interaction force between rotating black holes at equilibrium”, Theor. Math. Phys., 116, 367–378, (1998). [External LinkDOI].
308 Vishveshwara, C.V., “Generalization of the ‘Schwarzschild Surface’ to Arbitrary Static and Stationary Metrics”, J. Math. Phys., 9, 1319–1322, (1968). [External LinkDOI].
309 Volkov, M.S., Brodbeck, O., Lavrelashvili, G. and Straumann, N., “The number of sphaleron instabilities of the Bartnik-McKinnon solitons and non-Abelian black holes”, Phys. Lett. B, 349, 438–442, (1995). [External LinkDOI], [External Linkhep-th/9502045].
310 Volkov, M.S. and Gal’tsov, D.V., “Non-Abelian Einstein–Yang–Mills Black Holes”, JETP Lett., 50, 346–350, (1989).
311 Volkov, M.S. and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319, 1–83, (1999). [External LinkDOI], [External LinkarXiv:hep-th/9810070].
312 Volkov, M.S. and Straumann, N., “Slowly Rotating Non-Abelian Black Holes”, Phys. Rev. Lett., 79, 1428–1431, (1997). [External LinkDOI], [External Linkhep-th/9704026].
313 Volkov, M.S., Straumann, N., Lavrelashvili, G., Heusler, M. and Brodbeck, O., “Cosmological analogues of the Bartnik-McKinnon solutions”, Phys. Rev. D, 54, 7243–7251, (1996). [External LinkDOI], [External Linkhep-th/9605089].
314 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkADS], [External LinkGoogle Books].
315 Wald, R.M., “On the instability of the n = 1 Einstein–Yang–Mills black holes and mathematically related systems”, J. Math. Phys., 33, 248–255, (1992). [External LinkDOI], [External LinkADS].
316 Wald, R.M., “Black Holes and Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 155–176, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9702022].
317 Weinberg, E.J., “Magnetically charged black holes with hair”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9503032].
318 Weinstein, G., “On Rotating Black Holes in Equilibrium in General Relativity”, Commun. Pure Appl. Math., 43, 903–948, (1990). [External LinkDOI].
319 Weinstein, G., “On the force between rotating coaxial black holes”, Trans. Amer. Math. Soc., 343, 899–906, (1994). [External LinkDOI].
320 Weinstein, G., “On the Dirichlet problem for harmonic maps with prescribed singularities”, Duke Math. J., 77, 135–165, (1995). [External LinkDOI].
321 Weinstein, G., “Harmonic maps with prescribed singularities into Hadamard manifolds”, Math. Res. Lett., 3, 835–844, (1996).
322 Weinstein, G., “N-black hole stationary and axially symmetric solutions of the Einstein/Maxwell equations”, Commun. Part. Diff. Eq., 21, 1389–1430, (1996). [External LinkDOI].
323 Winstanley, E., “Existence of stable hairy black holes in su(2) Einstein–Yang–Mills theory with a negative cosmological constant”, Class. Quantum Grav., 16, 1963–1978, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9812064].
324 Winstanley, E. and Mavromatos, N.E., “Instability of hairy black holes in spontaneously broken Einstein–Yang–Mills–Higgs systems”, Phys. Lett. B, 352, 242–246, (1995). [External LinkDOI], [External Linkhep-th/9503034].
325 Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402, (1981). [External LinkDOI]. Online version (accessed 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103919981.
326 Wong, W.W.-Y., “A space-time characterization of the Kerr-Newman metric”, Ann. Inst. Henri Poincare, 10, 453–484, (2009). [External LinkDOI], [External LinkarXiv:0807.1904 [gr-qc]].
327 Yu, P., “On Hawking’s Local Rigidity Theorems for Charged Black Holes”, Ann. Henri Poincare, 11, 1–21, (2010). [External LinkDOI], [External LinkarXiv:0903.4723 [gr-qc]].
328 Zhou, Z.-H., “Instability of SU(2) Einstein–Yang–Mills Solitons and Non-Abelian Black Holes”, Helv. Phys. Acta, 65, 767–819, (1992). [External LinkADS].
329 Zhou, Z.-H. and Straumann, N., “Nonlinear Perturbations of Einstein–Yang–Mills Solitons and Non-Abelian Black Holes”, Nucl. Phys. B, 360, 180–196, (1991). [External LinkDOI], [External LinkADS].