"Foundations of Black Hole Accretion Disk Theory"
Marek A. Abramowicz and P. Chris Fragile 
1 Introduction
2 Three Destinations in Kerr’s Strong Gravity
2.1 The event horizon
2.2 The ergosphere
2.3 ISCO: the orbit of marginal stability
2.4 The Paczyński–Wiita potential
2.5 Summary: characteristic radii and frequencies
3 Matter Description: General Principles
3.1 The fluid part
3.2 The stress part
3.3 The Maxwell part
3.4 The radiation part
4 Thick Disks, Polish Doughnuts, & Magnetized Tori
4.1 Polish doughnuts
4.2 Magnetized Tori
5 Thin Disks
5.1 Equations in the Kerr geometry
5.2 The eigenvalue problem
5.3 Solutions: Shakura–Sunyaev & Novikov–Thorne
6 Slim Disks
7 Advection-Dominated Accretion Flows (ADAFs)
8 Stability
8.1 Hydrodynamic stability
8.2 Magneto-rotational instability (MRI)
8.3 Thermal and viscous instability
9 Oscillations
9.1 Dynamical oscillations of thick disks
9.2 Diskoseismology: oscillations of thin disks
10 Relativistic Jets
11 Numerical Simulations
11.1 Numerical techniques
11.2 Matter description in simulations
11.3 Polish doughnuts (thick) disks in simulations
11.4 Novikov–Thorne (thin) disks in simulations
11.5 ADAFs in simulations
11.6 Oscillations in simulations
11.7 Jets in simulations
11.8 Highly magnetized accretion in simulations
12 Selected Astrophysical Applications
12.1 Measurements of black-hole mass and spin
12.2 Black hole vs. neutron star accretion disks
12.3 Black-hole accretion disk spectral states
12.4 Quasi-Periodic Oscillations (QPOs)
12.5 The case of Sgr A*
13 Concluding Remarks


1 Abramowicz, M.A., “The Relativistic von Zeipel’s Theorem”, Acta Astron., 21, 81 (1971). [External LinkADS].
2 Abramowicz, M.A., “QPO as the Rosetta Stone for understanding black hole accretion”, Astron. Nachr., 326, 782–786 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0511382].
3 Abramowicz, M.A., Björnsson, G. and Pringle, J.E., eds., Theory of Black Hole Accretion Disks, Cambridge Contemporary Astrophysics, (Cambridge University Press, Cambridge; New York, 1998). [External LinkGoogle Books].
4 Abramowicz, M.A., Blaes, O.M., Horák, J., Kluźniak, W. and Rebusco, P., “Epicyclic oscillations of fluid bodies: II. Strong gravity”, Class. Quantum Grav., 23, 1689–1696 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0511375].
5 Abramowicz, M.A., Calvani, M. and Nobili, L., “Runaway instability in accretion disks orbiting black holes”, Nature, 302, 597–599 (1983). [External LinkDOI], [External LinkADS].
6 Abramowicz, M.A., Chen, X., Kato, S., Lasota, J.-P. and Regev, O., “Thermal equilibria of accretion disks”, Astrophys. J. Lett., 438, L37–L39 (1995). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9409018].
7 Abramowicz, M.A., Chen, X.-M., Granath, M. and Lasota, J.-P., “Advection-dominated Accretion Flows around Kerr Black Holes”, Astrophys. J., 471, 762–773 (1996). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9607021].
8 Abramowicz, M.A., Czerny, B., Lasota, J.-P. and Szuszkiewicz, E., “Slim accretion disks”, Astrophys. J., 332, 646–658 (1988). [External LinkDOI], [External LinkADS].
9 Abramowicz, M.A., Jaroszyński, M., Kato, S., Lasota, J.-P., Różańska, A. and Sadowski, A., “Leaving the innermost stable circular orbit: the inner edge of a black-hole accretion disk at various luminosities”, Astron. Astrophys., 521, A15 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.3887 [astro-ph.HE]].
10 Abramowicz, M.A. and Kato, S., “Constraints for transonic black hole accretion”, Astrophys. J., 336, 304–312 (1989). [External LinkDOI], [External LinkADS].
11 Abramowicz, M.A. and Kluźniak, W., “A precise determination of black hole spin in GRO J1655-40”, Astron. Astrophys., 374, L19–L20 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0105077].
12 Abramowicz, M.A., Kluźniak, W. and Lasota, J.-P., “No observational proof of the black-hole event-horizon”, Astron. Astrophys., 396, L31–L34 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0207270].
13 Abramowicz, M.A., Lanza, A. and Percival, M.J., “Accretion Disks around Kerr Black Holes: Vertical Equilibrium Revisited”, Astrophys. J., 479, 179 (1997). [External LinkDOI], [External LinkADS].
14 Abramowicz, M.A., Lasota, J.-P. and Igumenshchev, I.V., “On the absence of winds in advection-dominated accretion flows”, Mon. Not. R. Astron. Soc., 314, 775–781 (2000). [External LinkDOI], [External LinkADS].
15 Amsterdamski, P., Bulik, T., Gondek-Rosińska, D. and Kluźniak, W., “Marginally stable orbits around Maclaurin spheroids and low-mass quark stars”, Astron. Astrophys., 381, L21–L24 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0012547].
16 Anderson, M., Hirschmann, E.W., Liebling, S.L. and Neilsen, D., “Relativistic MHD with adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0605102].
17 Anninos, P. and Fragile, P.C., “Nonoscillatory Central Difference and Artificial Viscosity Schemes for Relativistic Hydrodynamics”, Astrophys. J. Suppl. Ser., 144, 243–257 (2003). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0206265].
18 Anninos, P., Fragile, P.C. and Salmonson, J.D., “Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement”, Astrophys. J., 635, 723–740 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0509254].
19 Antón, L., Zanotti, O., Miralles, J.A., Martí, J.M., Ibáñez, J.M., Font, J.A. and Pons, J.A., “Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach”, Astrophys. J., 637, 296–312 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0506063].
20 Araya-Góchez, R.A., “Hydromagnetic stability of a slim disc in a stationary geometry”, Mon. Not. R. Astron. Soc., 337, 795–807 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0204003].
21 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”, Phys. Rev. D, 59, 086004 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/9807344].
22 Arras, P., Blaes, O.M. and Turner, N.J., “Quasi-periodic Oscillations from Magnetorotational Turbulence”, Astrophys. J. Lett., 645, L65–L68 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0602275].
23 Artemova, I.V., Bjoernsson, G. and Novikov, I.D., “Modified Newtonian Potentials for the Description of Relativistic Effects in Accretion Disks around Black Holes”, Astrophys. J., 461, 565 (1996). [External LinkDOI], [External LinkADS].
24 Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A. and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole”, Phys. Rev. D, 71, 024035 (2005). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0403029].
25 Balbus, S.A., “On the behaviour of the magnetorotational instability when the Rayleigh criterion is violated”, Mon. Not. R. Astron. Soc., 423, L50–L54 (2012). [External LinkDOI], [External LinkADS].
26 Balbus, S.A. and Hawley, J.F., “A powerful local shear instability in weakly magnetized disks. I. Linear analysis. II. Nonlinear evolution”, Astrophys. J., 376, 214–233 (1991). [External LinkDOI], [External LinkADS].
27 Balbus, S.A. and Hawley, J.F., “Instability, turbulence, and enhanced transport in accretion disks”, Rev. Mod. Phys., 70, 1–53 (1998). [External LinkDOI], [External LinkADS].
28 Bañados, M., Silk, J. and West, S.M., “Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy”, Phys. Rev. Lett., 103, 111102 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.0169 [hep-ph]].
29 Bardeen, J.M., “A Variational Principle for Rotating Stars in General Relativity”, Astrophys. J., 162, 71–95 (1970). [External LinkDOI], [External LinkADS].
30 Bardeen, J.M. and Petterson, J.A., “The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes”, Astrophys. J. Lett., 195, L65–L67 (1975). [External LinkDOI], [External LinkADS].
31 Bardeen, J.M., Press, W.H. and Teukolsky, S.A., “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J., 178, 347–369 (1972). [External LinkDOI], [External LinkADS].
32 Barret, D., Kluźniak, W., Olive, J.F., Paltani, S. and Skinner, G.K., “On the high coherence of kHz quasi-periodic oscillations”, Mon. Not. R. Astron. Soc., 357, 1288–1294 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0412420].
33 Barret, D., Olive, J.-F. and Miller, M.C., “An abrupt drop in the coherence of the lower kHz quasi-periodic oscillations in 4U 1636-536”, Mon. Not. R. Astron. Soc., 361, 855–860 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0505402].
34 Barret, D., Olive, J.-F. and Miller, M.C., “Supporting evidence for the signature of the innermost stable circular orbit in Rossi X-ray data from 4U 1636-536”, Mon. Not. R. Astron. Soc., 376, 1139–1144 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0701312].
35 Barrio, F.E., Done, C. and Nayakshin, S., “On the accretion geometry of Cyg X-1 in the low/hard state”, Mon. Not. R. Astron. Soc., 342, 557–563 (2003). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0209102].
36 Begelman, M.C., “Super-Eddington Fluxes from Thin Accretion Disks?”, Astrophys. J. Lett., 568, L97–L100 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0203030].
37 Begelman, M.C., “Radiatively inefficient accretion: breezes, winds and hyperaccretion”, Mon. Not. R. Astron. Soc., 420, 2912–2923 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5356 [astro-ph.HE]].
38 Begelman, M.C. and Chiueh, T., “Thermal coupling of ions and electrons by collective effects in two-temperature accretion flows”, Astrophys. J., 332, 872–890 (1988). [External LinkDOI], [External LinkADS].
39 Bejger, M., Piran, T., Abramowicz, M.A. and Håkanson, F., “Collisional Penrose Process near the Horizon of Extreme Kerr Black Holes”, Phys. Rev. Lett., 109, 121101 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.4350 [astro-ph.HE]].
40 Beloborodov, A.M., “Super-Eddington accretion discs around Kerr black holes”, Mon. Not. R. Astron. Soc., 297, 739–746 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9802129].
41 Beloborodov, A.M., Abramowicz, M.A. and Novikov, I.D., “Inertia of Heat in Advective Accretion Disks around Kerr Black Holes”, Astrophys. J., 491, 267 (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9705084].
42 Bisnovatyi-Kogan, G.S. and Ruzmaikin, A.A., “The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field”, Astrophys. Space Sci., 28, 45–59 (1974). [External LinkDOI], [External LinkADS].
43 Blaes, O.M., “Oscillations of slender tori”, Mon. Not. R. Astron. Soc., 216, 553–563 (1985). [External LinkADS].
44 Blaes, O.M., “Stabilization of non-axisymmetric instabilities in a rotating flow by accretion on to a central black hole”, Mon. Not. R. Astron. Soc., 227, 975–992 (1987). [External LinkADS].
45 Blaes, O.M., Arras, P. and Fragile, P.C., “Oscillation modes of relativistic slender tori”, Mon. Not. R. Astron. Soc., 369, 1235–1252 (2006). [External LinkDOI], [External Linkastro-ph/0601379].
46 Blaes, O.M., Krolik, J.H., Hirose, S. and Shabaltas, N., “Dissipation and Vertical Energy Transport in Radiation-dominated Accretion Disks”, Astrophys. J., 733, 110 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.5052 [astro-ph.HE]].
47 Blandford, R.D. and Begelman, M.C., “On the fate of gas accreting at a low rate on to a black hole”, Mon. Not. R. Astron. Soc., 303, L1–L5 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9809083].
48 Blandford, R.D. and Payne, D.G., “Hydromagnetic flows from accretion discs and the production of radio jets”, Mon. Not. R. Astron. Soc., 199, 883–903 (1982). [External LinkADS].
49 Blandford, R.D. and Znajek, R.L., “Electromagnetic extraction of energy from Kerr black holes”, Mon. Not. R. Astron. Soc., 179, 433–456 (1977). [External LinkADS].
50 Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195–204 (1952). [External LinkADS].
51 Boyer, R.H., “Rotating fluid masses in general relativity”, Math. Proc. Camb. Phil. Soc., 61, 572–530 (1965). [External LinkDOI].
52 Brandenburg, A., Nordlund, Å., Stein, R.F. and Torkelsson, U., “Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow”, Astrophys. J., 446, 741 (1995). [External LinkDOI], [External LinkADS].
53 Broderick, A.E., Loeb, A. and Narayan, R., “The Event Horizon of Sagittarius A*”, Astrophys. J., 701, 1357–1366 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.1105 [astro-ph.HE]].
54 Broderick, A.E. and Narayan, R., “On the Nature of the Compact Dark Mass at the Galactic Center”, Astrophys. J. Lett., 638, L21–L24 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0512211].
55 Bursa, M., Abramowicz, M.A., Karas, V. and Kluźniak, W., “The Upper Kilohertz Quasi-periodic Oscillation: A Gravitationally Lensed Vertical Oscillation”, Astrophys. J. Lett., 617, L45–L48 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0406586].
56 Carr, B.J. and Hawking, S.W., “Black holes in the early Universe”, Mon. Not. R. Astron. Soc., 168, 399–416 (1974). [External LinkADS].
57 Chakrabarti, S.K., “The natural angular momentum distribution in the study of thick disks around black holes”, Astrophys. J., 288, 1–6 (1985). [External LinkDOI], [External LinkADS].
58 Chandrasekhar, S., “The Stability of Non-Dissipative Couette Flow in Hydromagnetics”, Proc. Natl. Acad. Sci. USA, 46, 253–257 (1960). [External LinkDOI], [External LinkADS].
59 Chen, X., Abramowicz, M.A., Lasota, J.-P., Narayan, R. and Yi, I., “Unified description of accretion flows around black holes”, Astrophys. J. Lett., 443, L61–L64 (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9502015].
60 Ciesielski, A., Wielgus, M., Kluźniak, W., Sadowski, A., Abramowicz, M.A., Lasota, J.-P. and Rebusco, P., “Stability of radiation-pressure dominated disks. I. The dispersion relation for a delayed heating α-viscosity prescription”, Astron. Astrophys., 538, A148 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.2335 [astro-ph.HE]].
61 Colbert, E.J.M. and Mushotzky, R.F., “The Nature of Accreting Black Holes in Nearby Galaxy Nuclei”, Astrophys. J., 519, 89–107 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9901023].
62 Cui, W., Zhang, S.N. and Chen, W., “Evidence for Frame Dragging around Spinning Black Holes in X-Ray Binaries”, Astrophys. J. Lett., 492, L53 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9710352].
63 Daigne, F. and Font, J.A., “The runaway instability of thick discs around black holes – II. Non-constant angular momentum discs”, Mon. Not. R. Astron. Soc., 349, 841–868 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0311618].
64 Damour, T. and Lilley, M., “String theory, gravity and experiment”, in Bachas, C., Baulieu, L., Douglas, M., Kiritsis, E., Rabinovici, E., Vanhove, P., Windey, P. and Cugliandolo, L.F., eds., String Theory and the Real World: From Particle Physics to Astrophysics, Les Houches Summer School, Session LXXXVII, 2 July – 27 July 2007, Les Houches Summer School Proceedings, 87, pp. 371–448, (Elsevier, Amsterdam, 2008). [External LinkDOI], [External LinkarXiv:0802.4169 [hep-th]], [External LinkGoogle Books].
65 Davis, S.W., Done, C. and Blaes, O.M., “Testing Accretion Disk Theory in Black Hole X-Ray Binaries”, Astrophys. J., 647, 525–538 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0602245].
66 Davis, S.W. and Hubeny, I., “A Grid of Relativistic, Non-LTE Accretion Disk Models for Spectral Fitting of Black Hole Binaries”, Astrophys. J. Suppl. Ser., 164, 530–535 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0602499].
67 Davis, S.W., Narayan, R., Zhu, Y., Barret, D., Farrell, S.A., Godet, O., Servillat, M. and Webb, N.A., “The Cool Accretion Disk in ESO 243-49 HLX-1: Further Evidence of an Intermediate-mass Black Hole”, Astrophys. J., 734, 111 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.2614 [astro-ph.HE]].
68 De Villiers, J.-P., “Home Page”, personal homepage, University of Virginia. URL (accessed 13 April 2011):
External Link
69 De Villiers, J.-P. and Hawley, J.F., “Three-dimensional Hydrodynamic Simulations of Accretion Tori in Kerr Spacetimes”, Astrophys. J., 577, 866–879 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0204163]. Online version (accessed 13 April 2011):
External Link
70 De Villiers, J.-P. and Hawley, J.F., “Global General Relativistic Magnetohydrodynamic Simulations of Accretion Tori”, Astrophys. J., 592, 1060–1077 (2003). [External LinkDOI], [External Linkastro-ph/0303241]. Online version (accessed 13 April 2011):
External Link
71 De Villiers, J.-P. and Hawley, J.F., “A Numerical Method for General Relativistic Magnetohydrodynamics”, Astrophys. J., 589, 458–480 (2003). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0210518]. Online version (accessed 13 April 2011):
External Link
72 De Villiers, J.-P., Hawley, J.F. and Krolik, J.H., “Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure”, Astrophys. J., 599, 1238–1253 (2003). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0307260]. Online version (accessed 13 April 2011):
External Link
73 De Villiers, J.-P., Hawley, J.F., Krolik, J.H. and Hirose, S., “Magnetically Driven Accretion in the Kerr Metric. III. Unbound Outflows”, Astrophys. J., 620, 878–888 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0407092].
74 Del Zanna, L., Zanotti, O., Bucciantini, N. and Londrillo, P., “ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics”, Astron. Astrophys., 473, 11–30 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.3206].
75 Dexter, J., Agol, E., Fragile, P.C. and McKinney, J.C., “The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations”, Astrophys. J., 717, 1092–1104 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.4062 [astro-ph.HE]].
76 Dibi, S., Drappeau, S., Fragile, P.C., Markoff, S. and Dexter, J., “GRMHD simulations of accretion onto Sgr A*: How important are radiative losses?”, Mon. Not. R. Astron. Soc., submitted, (2012). [External LinkADS], [External LinkarXiv:1206.3976 [astro-ph.HE]].
77 Doeleman, S.S. et al., “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre”, Nature, 455, 78–80 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.2442].
78 Dolence, J.C., Gammie, C.F., Shiokawa, H. and Noble, S.C., “Near-infrared and X-Ray Quasi-periodic Oscillations in Numerical Models of Sgr A*”, Astrophys. J. Lett., 746, L10 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.1917 [astro-ph.HE]].
79 Done, C., Gierliński, M. and Kubota, A., “Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask”, Astron. Astrophys. Rev., 15, 1–66 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.0148].
80 Done, C., Wardziński, G. and Gierliński, M., “GRS 1915+105: the brightest Galactic black hole”, Mon. Not. R. Astron. Soc., 349, 393–403 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0308536].
81 Duez, M.D., Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests”, Phys. Rev. D, 72, 024028 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0503420].
82 Eichler, D., Livio, M., Piran, T. and Schramm, D.N., “Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars”, Nature, 340, 126–128 (1989). [External LinkDOI], [External LinkADS].
83 Eisenhauer, F. et al., “GRAVITY: getting to the event horizon of Sgr A*”, in Schöller, M., Danchi, W.C. and Delplancke, F., eds., Optical and Infrared Interferometry, Marseille, France, June 23, 2008, Proc. SPIE, 7013, 70132A, (SPIE, Bellingham, WA, 2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.0063].
84 Esin, A.A., McClintock, J.E., Drake, J.J., Garcia, M.R., Haswell, C.A., Hynes, R.I. and Muno, M.P., “Modeling the Low-State Spectrum of the X-Ray Nova XTE J1118+480”, Astrophys. J., 555, 483–488 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0103044].
85 Esin, A.A., McClintock, J.E. and Narayan, R., “Advection-dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova MUSCAE 1991”, Astrophys. J., 489, 865 (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9705237].
86 Esin, A.A., Narayan, R., Cui, W., Grove, J.E. and Zhang, S.-N., “Spectral Transitions in Cygnus X-1 and Other Black Hole X-Ray Binaries”, Astrophys. J., 505, 854–868 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9711167].
87 Esin, A.A., Narayan, R., Ostriker, E. and Yi, I., “Hot One-Temperature Accretion Flows around Black Holes”, Astrophys. J., 465, 312 (1996). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9601074].
88 Etienne, Z.B., Liu, Y.T. and Shapiro, S.L., “Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation”, Phys. Rev. D, 82, 084031 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.2848 [astro-ph.HE]].
89 Fabian, A.C. et al., “On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra”, Mon. Not. R. Astron. Soc., 424, 217–223 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.5854 [astro-ph.HE]].
90 Farrell, S.A., Webb, N.A., Barret, D., Godet, O. and Rodrigues, J.M., “An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49”, Nature, 460, 73–75 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.0567 [astro-ph.HE]].
91 Farris, B.D., Li, T.K., Liu, Y.T. and Shapiro, S.L., “Relativistic radiation magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests”, Phys. Rev. D, 78, 024023 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.3210 [astro-ph]].
92 Fender, R.P., Belloni, T.M. and Gallo, E., “Towards a unified model for black hole X-ray binary jets”, Mon. Not. R. Astron. Soc., 355, 1105–1118 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0409360].
93 Fender, R.P., Gallo, E. and Russell, D., “No evidence for black hole spin powering of jets in X-ray binaries”, Mon. Not. R. Astron. Soc., 406, 1425–1434 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.5516 [astro-ph.HE]].
94 Fender, R.P., Homan, J. and Belloni, T.M., “Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays”, Mon. Not. R. Astron. Soc., 396, 1370–1382 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.5166 [astro-ph.HE]].
95 Ferreira, B.T. and Ogilvie, G.I., “On an excitation mechanism for trapped inertial waves in discs around black holes”, Mon. Not. R. Astron. Soc., 386, 2297–2310 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.1671].
96 Fishbone, L.G., “The Relativistic Roche Problem. I. Equilibrium Theory for a Body in Equatorial, Circular Orbit around a Kerr Black Hole”, Astrophys. J., 185, 43–68 (1973). [External LinkDOI], [External LinkADS].
97 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7 (2008). URL (accessed 13 April 2011):
98 Font, J.A. and Daigne, F., “The runaway instability of thick discs around black holes – I. The constant angular momentum case”, Mon. Not. R. Astron. Soc., 334, 383–400 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0203403].
99 Fragile, P.C., Blaes, O.M., Anninos, P. and Salmonson, J.D., “Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk”, Astrophys. J., 668, 417–429 (2007). [External LinkDOI], [External LinkADS], [External Link0706.4303].
100 Fragile, P.C., Gillespie, A., Monahan, T., Rodriguez, M. and Anninos, P., “Numerical Simulations of Optically Thick Accretion onto a Black Hole. I. Spherical Case”, Astrophys. J. Suppl. Ser., 201, 9 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.5538 [astro-ph.IM]].
101 Fragile, P.C. and Meier, D.L., “General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically Dominated Accretion Flow”, Astrophys. J., 693, 771–783 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.1082 [astro-ph]].
102 Fragile, P.C., Wilson, J. and Rodriguez, M., “No correlation between disc scale-height and jet power in GRMHD simulations”, Mon. Not. R. Astron. Soc., 424, 524–531 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.0257 [astro-ph.HE]].
103 Frank, J., King, A. and Raine, D.J., Accretion Power in Astrophysics, (Cambridge University Press, Cambridge; New York, 2002), 3rd edition. [External LinkGoogle Books].
104 Gammie, C.F., “Efficiency of Magnetized Thin Accretion Disks in the Kerr Metric”, Astrophys. J. Lett., 522, L57–L60 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9906223].
105 Gammie, C.F., McKinney, J.C. and Tóth, G., “HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics”, Astrophys. J., 589, 444–457 (2003). [External LinkDOI].
106 Gammie, C.F. and Popham, R., “Advection-dominated Accretion Flows in the Kerr Metric. I. Basic Equations”, Astrophys. J., 498, 313 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9705117].
107 Garcia, M.R., McClintock, J.E., Narayan, R., Callanan, P., Barret, D. and Murray, S.S., “New Evidence for Black Hole Event Horizons from Chandra”, Astrophys. J. Lett., 553, L47–L50 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0012452].
108 Georganopoulos, M., Aharonian, F.A. and Kirk, J.G., “External Compton emission from relativistic jets in Galactic black hole candidates and ultraluminous X-ray sources”, Astron. Astrophys., 388, L25–L28 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0110379].
109 Ghosh, P. and Abramowicz, M.A., “Electromagnetic extraction of rotational energy from disc-fed black holes: the strength of the Blandford–Znajek process”, Mon. Not. R. Astron. Soc., 292, 887 (1997). [External LinkADS].
110 Giacomazzo, B. and Rezzolla, L., “WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics”, Class. Quantum Grav., 24, S235–S258 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701109].
111 Gillessen, S., Eisenhauer, F., Fritz, T.K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T. and Genzel, R., “The Orbit of the Star S2 Around SGR A* from Very Large Telescope and Keck Data”, Astrophys. J. Lett., 707, L114–L117 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.3069 [astro-ph.GA]].
112 Goldston, J.E., Quataert, E. and Igumenshchev, I.V., “Synchrotron Radiation from Radiatively Inefficient Accretion Flow Simulations: Applications to Sagittarius A*”, Astrophys. J., 621, 785–792 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0411627].
113 Harding, A.K. and Lai, D., “Physics of strongly magnetized neutron stars”, Rep. Prog. Phys., 69, 2631–2708 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606674].
114 Harris, D.E. and Krawczynski, H., “X-Ray Emission from Extragalactic Jets”, Annu. Rev. Astron. Astrophys., 44, 463–506 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0607228].
115 Hawley, J.F., “Home Page”, personal homepage, University of Virginia. URL (accessed 13 April 2011):
External Link
116 Hawley, J.F., “Nonaxisymmetric instabilities in a slender torus: Two- and three-dimensional simulations”, Astrophys. J., 356, 580–590 (1990). [External LinkDOI], [External LinkADS].
117 Hawley, J.F., “Three-dimensional simulations of black hole tori”, Astrophys. J., 381, 496–507 (1991). [External LinkDOI], [External LinkADS].
118 Hawley, J.F. and Balbus, S.A., “A Powerful Local Shear Instability in Weakly Magnetized Disks. II. Nonlinear Evolution”, Astrophys. J., 376, 223 (1991). [External LinkDOI], [External LinkADS].
119 Hawley, J.F. and Balbus, S.A., “A powerful local shear instability in weakly magnetized disks. III. Long-term evolution in a shearing sheet”, Astrophys. J., 400, 595–609 (1992). [External LinkDOI], [External LinkADS].
120 Hawley, J.F. and Balbus, S.A., “The Dynamical Structure of Nonradiative Black Hole Accretion Flows”, Astrophys. J., 573, 738–748 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0203309].
121 Hawley, J.F., Gammie, C.F. and Balbus, S.A., “Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks”, Astrophys. J., 440, 742 (1995). [External LinkDOI], [External LinkADS].
122 Hawley, J.F., Guan, X. and Krolik, J.H., “Assessing Quantitative Results in Accretion Simulations: From Local to Global”, Astrophys. J., 738, 84 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.5987 [astro-ph.HE]].
123 Hawley, J.F. and Krolik, J.H., “High-Resolution Simulations of the Plunging Region in a Pseudo-Newtonian Potential: Dependence on Numerical Resolution and Field Topology”, Astrophys. J., 566, 164–180 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0110118].
124 Hawley, J.F. and Krolik, J.H., “Magnetically Driven Jets in the Kerr Metric”, Astrophys. J., 641, 103–116 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0512227].
125 Hawley, J.F., Smarr, L.L. and Wilson, J.R., “A numerical study of nonspherical black hole accretion. I. Equations and test problems”, Astrophys. J., 277, 296–311 (1984). [External LinkDOI], [External LinkADS].
126 Hawley, J.F., Smarr, L.L. and Wilson, J.R., “A numerical study of nonspherical black hole accretion. II. Finite differencing and code calibration”, Astrophys. J. Suppl. Ser., 55, 211–246 (1984). [External LinkDOI], [External LinkADS].
127 Henisey, K.B., Blaes, O.M., Fragile, P.C. and Ferreira, B.T., “Excitation of Trapped Waves in Simulations of Tilted Black Hole Accretion Disks with Magnetorotational Turbulence”, Astrophys. J., 706, 705–711 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.1882 [astro-ph.HE]].
128 Hirose, S., Krolik, J.H. and Blaes, O., “Radiation-Dominated Disks are Thermally Stable”, Astrophys. J., 691, 16–31 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.1708 [astro-ph]].
129 Hirose, S., Krolik, J.H. and Stone, J.M., “Vertical Structure of Gas Pressure-dominated Accretion Disks with Local Dissipation of Turbulence and Radiative Transport”, Astrophys. J., 640, 901–917 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0510741].
130 Horák, J., “Parametric resonance as a model for QPO sources – I. A general approach to multiple scales”, arXiv, e-print, (2004). [External LinkADS], [External LinkarXiv:astro-ph/0408092].
131 Horák, J., “Weak nonlinear coupling between epicyclic modes in slender tori”, Astron. Astrophys., 486, 1–8 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.2059].
132 Horák, J., Abramowicz, M.A., Kluźniak, W., Rebusco, P. and Török, G., “Internal resonance in nonlinear disk oscillations and the amplitude evolution of neutron-star kilohertz QPOs”, Astron. Astrophys., 499, 535–540 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.3076].
133 Hubeny, I., “Vertical structure of accretion disks: A simplified analytical model”, Astrophys. J., 351, 632–641 (1990). [External LinkDOI], [External LinkADS].
134 Ichimaru, S., “Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions”, Astrophys. J., 214, 840–855 (1977). [External LinkDOI], [External LinkADS].
135 Igumenshchev, I.V., “Magnetically Arrested Disks and the Origin of Poynting Jets: A Numerical Study”, Astrophys. J., 677, 317–326 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.4391 [astro-ph]].
136 Igumenshchev, I.V., “Magnetic Inversion as a Mechanism for the Spectral Transition of Black Hole Binaries”, Astrophys. J. Lett., 702, L72–L76 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.0431 [astro-ph.HE]].
137 Igumenshchev, I.V. and Beloborodov, A.M., “Numerical simulation of thick disc accretion on to a rotating black hole”, Mon. Not. R. Astron. Soc., 284, 767–772 (1997). [External LinkADS].
138 Igumenshchev, I.V., Narayan, R. and Abramowicz, M.A., “Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows”, Astrophys. J., 592, 1042–1059 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0301402].
139 Jaroszyński, M., Abramowicz, M.A. and Paczyński, B., “Supercritical Accretion Disks Around Black Holes”, Acta Astron., 30, 1–34 (1980). [External LinkADS].
140 Johannsen, T., Psaltis, D. and McClintock, J.E., “Constraints on the Size of Extra Dimensions from the Orbital Evolution of Black-Hole X-Ray Binaries”, Astrophys. J., 691, 997–1004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.1835].
141 Joss, P.C. and Rappaport, S.A., “Neutron Stars in Interacting Binary Systems”, Annu. Rev. Astron. Astrophys., 22, 537–592 (1984). [External LinkDOI], [External LinkADS].
142 Karas, V., Czerny, B., Abrassart, A. and Abramowicz, M.A., “A cloud model of active galactic nuclei: the iron Kα line diagnostics”, Mon. Not. R. Astron. Soc., 318, 547–560 (2000). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0006187].
143 Kato, S., “Resonant Excitation of Disk Oscillations by Warps: A Model of kHz QPOs”, Publ. Astron. Soc. Japan, 56, 905–922 (2004). [External LinkADS], [External LinkarXiv:astro-ph/0409051].
144 Kato, S., Fukue, J. and Mineshige, S., eds., Black-Hole Accretion Disks: Towards a New Paradigm, (Kyoto University Press, Kyoto, 1998).
145 Kato, Y., “2:3 Twin Quasi-Periodic Oscillations in Magnetohydrodynamic Accretion Flows”, Publ. Astron. Soc. Japan, 56, 931–937 (2004). [External LinkADS], [External Linkastro-ph/0408018].
146 Kato, Y., Mineshige, S. and Shibata, K., “Magnetohydrodynamic Accretion Flows: Formation of Magnetic Tower Jet and Subsequent Quasi-Steady State”, Astrophys. J., 605, 307–320 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0307306].
147 King, A.R., Davies, M.B., Ward, M.J., Fabbiano, G. and Elvis, M., “Ultraluminous X-Ray Sources in External Galaxies”, Astrophys. J. Lett., 552, L109–L112 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0104333].
148 King, A.R., Pringle, J.E. and Livio, M., “Accretion disc viscosity: how big is alpha?”, Mon. Not. R. Astron. Soc., 376, 1740–1746 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0701803].
149 Kiuchi, K., Shibata, M., Montero, P.J. and Font, J.A., “Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems”, Phys. Rev. Lett., 106, 251102 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.5035 [astro-ph.HE]].
150 Kluźniak, W. and Abramowicz, M.A., “The physics of kHz QPOs – strong gravity’s coupled anharmonic oscillators”, e-print, (2001). [External LinkADS], [External Linkastro-ph/0105057].
151 Kluźniak, W. and Kita, D., “Three-dimensional structure of an alpha accretion disk”, arXiv, e-print, (2000). [External LinkADS], [External LinkarXiv:astro-ph/0006266].
152 Koide, S., Shibata, K. and Kudoh, T., “General Relativistic Magnetohydrodynamic Simulations of Jets from Black Hole Accretions Disks: Two-Component Jets Driven by Nonsteady Accretion of Magnetized Disks”, Astrophys. J. Lett., 495, L63 (1998). [External LinkDOI], [External LinkADS].
153 Koide, S., Shibata, K. and Kudoh, T., “Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General Relativistic Magnetohydrodynamic Numerical Code”, Astrophys. J., 522, 727–752 (1999). [External LinkDOI].
154 Komissarov, S.S., “General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes”, Mon. Not. R. Astron. Soc., 350, 1431–1436 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0402430].
155 Komissarov, S.S., “Observations of the Blandford–Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres”, Mon. Not. R. Astron. Soc., 359, 801–808 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0501599].
156 Komissarov, S.S., “Magnetized tori around Kerr black holes: analytic solutions with a toroidal magnetic field”, Mon. Not. R. Astron. Soc., 368, 993–1000 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0601678].
157 Komissarov, S.S., “Blandford-Znajek Mechanism versus Penrose Process”, J. Korean Phys. Soc., 54, 2503–2512 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.1912].
158 Komissarov, S.S. and McKinney, J.C., “The ‘Meissner effect’ and the Blandford–Znajek mechanism in conductive black hole magnetospheres”, Mon. Not. R. Astron. Soc., 377, L49–L53 (2007). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0702269].
159 Kormendy, J. and Richstone, D., “Inward Bound – The Search For Supermassive Black Holes In Galactic Nuclei”, Annu. Rev. Astron. Astrophys., 33, 581 (1995). [External LinkDOI], [External LinkADS].
160 Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N. and Zink, B., “Stability of general-relativistic accretion disks”, Phys. Rev. D, 83, 043007 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.3010 [astro-ph.HE]].
161 Kovetz, A. and Piran, T., “The efficiency of the Penrose process”, Lett. Nuovo Cimento, 12, 39–42 (1975). [External LinkADS].
162 Kozłowski, M., Jaroszyński, M. and Abramowicz, M.A., “The analytic theory of fluid disks orbiting the Kerr black hole”, Astron. Astrophys., 63, 209–220 (1978). [External LinkADS].
163 Krolik, J.H., Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1999). [External LinkGoogle Books].
164 Krolik, J.H., “Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole”, Astrophys. J. Lett., 515, L73–L76 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9902267].
165 Krolik, J.H., “Are Ultraluminous X-Ray Sources Intermediate-Mass Black Holes Accreting from Molecular Clouds?”, Astrophys. J., 615, 383–388 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0407285].
166 Kulkarni, A.K. et al., “Measuring black hole spin by the continuum-fitting method: effect of deviations from the Novikov-Thorne disc model”, Mon. Not. R. Astron. Soc., 414, 1183–1194 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.0010 [astro-ph.HE]].
167 Kumar, S. and Pringle, J.E., “Twisted accretion discs: The Bardeen–Petterson effect”, Mon. Not. R. Astron. Soc., 213, 435–442 (1985). [External LinkADS].
168 Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Course of Theoretical Physics, 6, (Pergamon; Addison-Wesley, London; Reading, MA, 1959).
169 Lasota, J.-P., “Slim accretion disks”, in Duschl, W.J., Frank, J., Meyer, F., Meyer-Hofmeister, E. and Tscharnuter, W.M., eds., Theory of Accretion Disks – 2, Proceedings of the NATO Advanced Research Workshop, Garching, Germany, March 22 – 26, 1993, NATO Science Series C, 417, p. 341, (Kluwer, Dordrecht; Boston, 1994). [External LinkADS].
170 Lasota, J.-P., “Unmasking Black Holes”, Scientific American, 280, 40–47 (1999). [External LinkDOI], [External LinkADS].
171 Lasota, J.-P., “ADAFs, accretion discs and outbursts in compact binaries”, New Astron. Rev., 51, 752–758 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.0490 [astro-ph]].
172 Lasota, J.-P. and Pelat, D., “Variability of accretion discs around compact objects”, Astron. Astrophys., 249, 574–580 (1991). [External LinkADS].
173 Lesur, G. and Longaretti, P.-Y., “Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport”, Mon. Not. R. Astron. Soc., 378, 1471–1480 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2943].
174 Levermore, C.D. and Pomraning, G.C., “A flux-limited diffusion theory”, Astrophys. J., 248, 321–334 (1981). [External LinkDOI], [External LinkADS].
175 Li, L.-X., Narayan, R. and McClintock, J.E., “Inferring the Inclination of a Black Hole Accretion Disk from Observations of its Polarized Continuum Radiation”, Astrophys. J., 691, 847–865 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.0866].
176 Lightman, A.P. and Eardley, D.M., “Black Holes in Binary Systems: Instability of Disk Accretion”, Astrophys. J. Lett., 187, L1 (1974). [External LinkDOI], [External LinkADS].
177 Lubow, S.H., Ogilvie, G.I. and Pringle, J.E., “The evolution of a warped disc around a Kerr black hole”, Mon. Not. R. Astron. Soc., 337, 706–712 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0208206].
178 MacDonald, D. and Thorne, K.S., “Black-hole electrodynamics: an absolute-space/universal-time formulation”, Mon. Not. R. Astron. Soc., 198, 345–382 (1982). [External LinkADS].
179 Machida, M., Nakamura, K.E. and Matsumoto, R., “Formation of Magnetically Supported Disks during Hard-to-Soft Transitions in Black Hole Accretion Flows”, Publ. Astron. Soc. Japan, 58, 193–202 (2006). [External LinkADS], [External Linkastro-ph/0511299].
180 Madau, P. and Rees, M.J., “Massive Black Holes as Population III Remnants”, Astrophys. J. Lett., 551, L27–L30 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101223].
181 Makishima, K. et al., “The Nature of Ultraluminous Compact X-Ray Sources in Nearby Spiral Galaxies”, Astrophys. J., 535, 632–643 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0001009].
182 Martí, J.M. and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity, 6, lrr-2003-7 (2003). URL (accessed 13 April 2011):
183 Mashhoon, B., “Black Holes and Absorption Redshifts in Quasi-Stellar Objects”, Astrophys. J. Lett., 181, L65 (1973). [External LinkDOI], [External LinkADS].
184 McClintock, J.E. and Remillard, R.A., “Black hole binaries”, in Lewin, W. and van der Klis, M., eds., Compact Stellar X-Ray Sources, pp. 157–214, (Cambridge University Press, Cambridge; New York, 2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0306213], [External LinkGoogle Books].
185 McClintock, J.E., Shafee, R., Narayan, R., Remillard, R.A., Davis, S.W. and Li, L.-X., “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”, Astrophys. J., 652, 518–539 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606076].
186 McClintock, J.E. et al., “Measuring the spins of accreting black holes”, Class. Quantum Grav., 28, 114009 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.0811 [astro-ph.HE]].
187 McKinney, J.C., “Home Page”, personal homepage, Harvard-Smithsonian Center for Astrophysics. URL (accessed 13 April 2011):
External Link
188 McKinney, J.C., “Total and Jet Blandford-Znajek Power in the Presence of an Accretion Disk”, Astrophys. J. Lett., 630, L5–L8 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0506367].
189 McKinney, J.C., “General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems”, Mon. Not. R. Astron. Soc., 368, 1561–1582 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0603045].
190 McKinney, J.C. and Blandford, R.D., “Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations”, Mon. Not. R. Astron. Soc., 394, L126–L130 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.1060].
191 McKinney, J.C. and Gammie, C.F., “A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole”, Astrophys. J., 611, 977–995 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0404512].
192 McKinney, J.C., Tchekhovskoy, A. and Blandford, R.D., “General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes”, Mon. Not. R. Astron. Soc., 423, 3083–3117 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.4163 [astro-ph.HE]].
193 Meier, D.L., “The theory and simulation of relativistic jet formation: towards a unified model for micro- and macroquasars”, New Astron. Rev., 47, 667–672 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0312048].
194 Melia, F. and Falcke, H., “The Supermassive Black Hole at the Galactic Center”, Annu. Rev. Astron. Astrophys., 39, 309–352 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0106162].
195 Menou, K., Esin, A.A., Narayan, R., Garcia, M.R., Lasota, J.-P. and McClintock, J.E., “Black Hole and Neutron Star Transients in Quiescence”, Astrophys. J., 520, 276–291 (1999). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9810323].
196 Merritt, D. and Ferrarese, L., “The M-σ Relation for Supermassive Black Holes”, Astrophys. J., 547, 140–145 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0008310].
197 Middleton, M., Done, C., Gierliński, M. and Davis, S.W., “Black hole spin in GRS 1915+105”, Mon. Not. R. Astron. Soc., 373, 1004–1012 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0601540].
198 Miller, J.M., Fabian, A.C. and Miller, M.C., “A Comparison of Intermediate-Mass Black Hole Candidate Ultraluminous X-Ray Sources and Stellar-Mass Black Holes”, Astrophys. J. Lett., 614, L117–L120 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0406656].
199 Miller, J.M., Homan, J., Steeghs, D., Rupen, M., Hunstead, R.W., Wijnands, R., Charles, P.A. and Fabian, A.C., “A Long, Hard Look at the Low/Hard State in Accreting Black Holes”, Astrophys. J., 653, 525–535 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0602633].
200 Miller, J.M., Reynolds, C.S., Fabian, A.C., Miniutti, G. and Gallo, L.C., “Stellar-Mass Black Hole Spin Constraints from Disk Reflection and Continuum Modeling”, Astrophys. J., 697, 900–912 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.2840 [astro-ph.HE]].
201 Miller, J.M. et al., “Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-Newton/EPIC-pn Spectrum of XTE J1650-500”, Astrophys. J. Lett., 570, L69–L73 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0202375].
202 Miller, J.M. et al., “Evidence of Black Hole Spin in GX 339-4: XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State”, Astrophys. J. Lett., 606, L131–L134 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0312033].
203 Miller, M.C. and Hamilton, D.P., “Production of intermediate-mass black holes in globular clusters”, Mon. Not. R. Astron. Soc., 330, 232–240 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0106188].
204 Mirabel, I.F. and Rodríguez, L.F., “A superluminal source in the Galaxy”, Nature, 371, 46–48 (1994). [External LinkDOI], [External LinkADS].
205 Mirabel, I.F. and Rodríguez, L.F., “Sources of Relativistic Jets in the Galaxy”, Annu. Rev. Astron. Astrophys., 37, 409–443 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9902062].
206 Mirabel, I.F., Rodríguez, L.F., Cordier, B., Paul, J. and Lebrun, F., “A double-sided radio jet from the compact Galactic Centre annihilator 1E140.7–2942”, Nature, 358, 215–217 (1992). [External LinkDOI], [External LinkADS].
207 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). [External LinkADS].
208 Mizuno, Y., Nishikawa, K.-I., Koide, S., Hardee, P. and Fishman, G.J., “RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code”, arXiv, e-print, (2006). [External LinkADS], [External LinkarXiv:astro-ph/0609004].
209 Montero, P.J., Font, J.A. and Shibata, M., “Nada: A new code for studying self-gravitating tori around black holes”, Phys. Rev. D, 78, 064037 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.3099 [gr-qc]].
210 Montero, P.J., Font, J.A. and Shibata, M., “Influence of Self-Gravity on the Runaway Instability of Black-Hole-Torus Systems”, Phys. Rev. Lett., 104, 191101 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.3102 [gr-qc]].
211 Mościbrodzka, M., Gammie, C.F., Dolence, J.C., Shiokawa, H. and Leung, P.K., “Radiative Models of Sgr A* from GRMHD Simulations”, Astrophys. J., 706, 497–507 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.5431 [astro-ph.HE]].
212 Muchotrzeb, B., “Transonic accretion flow in a thin disk around a black hole. II”, Acta Astron., 33, 79–87 (1983). [External LinkADS].
213 Mukhopadhyay, B., “Description of Pseudo-Newtonian Potential for the Relativistic Accretion Disks around Kerr Black Holes”, Astrophys. J., 581, 427–430 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0205475].
214 Narayan, R., “Evidence for the black hole event horizon”, Astron. Geophys., 44, 6.22–6.26 (2003). [External LinkDOI], [External LinkADS].
215 Narayan, R., Garcia, M.R. and McClintock, J.E., “Advection-dominated Accretion and Black Hole Event Horizons”, Astrophys. J. Lett., 478, L79 (1997). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9701139].
216 Narayan, R. and Heyl, J.S., “On the Lack of Type I X-Ray Bursts in Black Hole X-Ray Binaries: Evidence for the Event Horizon?”, Astrophys. J. Lett., 574, L139–L142 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0203089].
217 Narayan, R., Igumenshchev, I.V. and Abramowicz, M.A., “Self-similar Accretion Flows with Convection”, Astrophys. J., 539, 798–808 (2000). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9912449].
218 Narayan, R., Igumenshchev, I.V. and Abramowicz, M.A., “Magnetically Arrested Disk: an Energetically Efficient Accretion Flow”, Publ. Astron. Soc. Japan, 55, L69–L72 (2003). [External LinkADS], [External LinkarXiv:astro-ph/0305029].
219 Narayan, R. and McClintock, J.E., “Advection-dominated accretion and the black hole event horizon”, New Astron. Rev., 51, 733–751 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.0322].
220 Narayan, R. and McClintock, J.E., “Observational evidence for a correlation between jet power and black hole spin”, Mon. Not. R. Astron. Soc., 419, L69–L73 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.0569 [astro-ph.HE]].
221 Narayan, R., Quataert, E., Igumenshchev, I.V. and Abramowicz, M.A., “The Magnetohydrodynamics of Convection-dominated Accretion Flows”, Astrophys. J., 577, 295–301 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0203026].
222 Narayan, R., Sadowski, A., Penna, R.F. and Kulkarni, A.K., “GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows”, Mon. Not. R. Astron. Soc., 426, 3241–3259 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.1213 [astro-ph.HE]].
223 Narayan, R. and Yi, I., “Advection-dominated accretion: A self-similar solution”, Astrophys. J. Lett., 428, L13–L16 (1994). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9403052].
224 Narayan, R. and Yi, I., “Advection-dominated accretion: Self-similarity and bipolar outflows”, Astrophys. J., 444, 231–243 (1995). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9411058].
225 Narayan, R. and Yi, I., “Advection-dominated Accretion: Underfed Black Holes and Neutron Stars”, Astrophys. J., 452, 710 (1995). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9411059].
226 Noble, S.C., Krolik, J.H. and Hawley, J.F., “Direct Calculation of the Radiative Efficiency of an Accretion Disk Around a Black Hole”, Astrophys. J., 692, 411–421 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.3140].
227 Noble, S.C., Leung, P.K., Gammie, C.F. and Book, L.G., “Simulating the emission and outflows from accretion discs”, Class. Quantum Grav., 24, 259 (2007). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0701778].
228 Nobuta, K. and Hanawa, T., “Jets from Time-dependent Accretion Flows onto a Black Hole”, Astrophys. J., 510, 614–630 (1999). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9808254].
229 Novikov, I.D. and Thorne, K.S., “Astrophysics of Black Holes”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 343–450, (Gordon and Breach, New York, 1973).
230 Ogilvie, G.I., “Accretion Discs”, lecture notes, University of Cambridge, (2005). URL (accessed 31 January 2012):
External Link
231 Ohsuga, K. and Mineshige, S., “Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations”, Astrophys. J., 736, 2 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.5474 [astro-ph.HE]].
232 Ohsuga, K., Mineshige, S., Mori, M. and Kato, Y., “Global Radiation-Magnetohydrodynamic Simulations of Black-Hole Accretion Flow and Outflow: Unified Model of Three States”, Publ. Astron. Soc. Japan, 61, L7 (2009). [External LinkADS], [External LinkarXiv:0903.5364 [astro-ph.HE]].
233 Ortega-Rodríguez, M., Silbergleit, A.S. and Wagoner, R.V., “Relativistic Diskoseismology. III. Low-Frequency Fundamental p-Modes”, Astrophys. J., 567, 1043–1056 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0611010].
234 Paczyński, B. and Abramowicz, M.A., “A model of a thick disk with equatorial accretion”, Astrophys. J., 253, 897–907 (1982). [External LinkDOI], [External LinkADS].
235 Paczyński, B. and Bisnovatyi-Kogan, G.S., “A Model of a Thin Accretion Disk around a Black Hole”, Acta Astron., 31, 283 (1981). [External LinkADS].
236 Paczyński, B. and Wiita, P.J., “Thick accretion disks and supercritical luminosities”, Astron. Astrophys., 88, 23–31 (1980). [External LinkADS].
237 Page, D.N. and Thorne, K.S., “Disk-Accretion onto a Black Hole. I. Time-Averaged Structure of Accretion Disk”, Astrophys. J., 191, 499–506 (1974). [External LinkDOI], [External LinkADS].
238 Papaloizou, J.C.B. and Pringle, J.E., “The dynamical stability of differentially rotating discs with constant specific angular momentum”, Mon. Not. R. Astron. Soc., 208, 721–750 (1984). [External LinkADS].
239 Penna, R.F., “GRMHD Disk Movies”, personal homepage, Harvard CfA. URL (accessed 27 January 2012):
External Link
240 Penna, R.F., McKinney, J.C., Narayan, R., Tchekhovskoy, A., Shafee, R. and McClintock, J.E., “Simulations of magnetized discs around black holes: effects of black hole spin, disc thickness and magnetic field geometry”, Mon. Not. R. Astron. Soc., 408, 752–782 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.0966 [astro-ph.HE]].
241 Penna, R.F., Sadowski, A. and McKinney, J.C., “Thin-disc theory with a non-zero-torque boundary condition and comparisons with simulations”, Mon. Not. R. Astron. Soc., 420, 684–698 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.6556 [astro-ph.HE]].
242 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276 (1969). [External LinkADS].
243 Penrose, R. and Floyd, G.R., “Black holes-Extraction of rotational energy”, Nature, 229, 177 (1971). [External LinkADS].
244 Perez, C.A., Silbergleit, A.S., Wagoner, R.V. and Lehr, D.E., “Relativistic Diskoseismology. I. Analytical Results for ‘Gravity Modes”’, Astrophys. J., 476, 589 (1997). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9601146].
245 Phinney, E.S., “Ion pressure-supported accretion tori and the origin of radio jets: a plea for specific advice on the plasma physics”, in Guyenne, T.D. and Lévy, G., eds., Plasma Astrophysics, Course and Workshop organised by the International School of Plasma Physics, 27 August – 7 September 1981, Varenna (Como), Italy, ESA Special Publications, 161, p. 337, (European Space Agency, Paris, 1981). [External LinkADS].
246 Piran, T., “The role of viscosity and cooling mechanisms in the stability of accretion disks”, Astrophys. J., 221, 652–660 (1978). [External LinkDOI], [External LinkADS].
247 Piran, T. and Shaham, J., “Upper bounds on collisional Penrose processes near rotating black-hole horizons”, Phys. Rev. D, 16, 1615–1635 (1977). [External LinkDOI], [External LinkADS].
248 Pringle, J.E., “Accretion discs in astrophysics”, Annu. Rev. Astron. Astrophys., 19, 137–162 (1981). [External LinkDOI], [External LinkADS].
249 Proga, D., “On Magnetohydrodynamic Jet Production in the Collapsing and Rotating Envelope”, Astrophys. J., 629, 397–402 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0502509].
250 Proga, D. and Begelman, M.C., “Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Magnetohydrodynamic Case”, Astrophys. J., 592, 767–781 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0303093].
251 Psaltis, D., “Constraints on Braneworld Gravity Models from a Kinematic Limit on the Age of the Black Hole XTE J1118+480”, Phys. Rev. Lett., 98, 181101 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0612611].
252 Punsly, B., Black Hole Gravitohydromagnetics, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 2001). [External LinkGoogle Books].
253 Qian, L., Abramowicz, M.A., Fragile, P.C., Horák, J., Machida, M. and Straub, O., “The Polish doughnuts revisited. I. The angular momentum distribution and equipressure surfaces”, Astron. Astrophys., 498, 471–477 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.2467 [astro-ph]].
254 Raimundo, S.I., Fabian, A.C., Vasudevan, R.V., Gandhi, P. and Wu, J., “Can we measure the accretion efficiency of active galactic nuclei?”, Mon. Not. R. Astron. Soc., 419, 2529–2544 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6225 [astro-ph.CO]].
255 Rawlings, S. and Saunders, R., “Evidence for a common central-engine mechanism in all extragalactic radio sources”, Nature, 349, 138–140 (1991). [External LinkDOI], [External LinkADS].
256 Rebusco, P., “Twin Peaks kHz QPOs: Mathematics of the 3:2 Orbital Resonance”, Publ. Astron. Soc. Japan, 56, 553–557 (2004). [External LinkADS], [External LinkarXiv:astro-ph/0403341].
257 Rees, M.J., Begelman, M.C., Blandford, R.D. and Phinney, E.S., “Ion-supported tori and the origin of radio jets”, Nature, 295, 17–21 (1982). [External LinkDOI], [External LinkADS].
258 Remillard, R.A. and McClintock, J.E., “X-Ray Properties of Black-Hole Binaries”, Annu. Rev. Astron. Astrophys., 44, 49–92 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606352].
259 Remillard, R.A., Muno, M.P., McClintock, J.E. and Orosz, J.A., “Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550-564 and GRO J1655-40”, Astrophys. J., 580, 1030–1042 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0202305].
260 Reynolds, C.S. and Fabian, A.C., “Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin”, Astrophys. J., 675, 1048–1056 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.4158].
261 Reynolds, C.S. and Miller, M.C., “The Time Variability of Geometrically Thin Black Hole Accretion Disks. I. The Search for Modes in Simulated Disks”, Astrophys. J., 692, 869–886 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.2950].
262 Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS, (2002). URL (accessed 13 April 2011):
External Link
263 Rezzolla, L., Yoshida, S., Maccarone, T.J. and Zanotti, O., “A new simple model for high-frequency quasi-periodic oscillations in black hole candidates”, Mon. Not. R. Astron. Soc., 344, L37–L41 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307487].
264 Rezzolla, L., Yoshida, S. and Zanotti, O., “Oscillations of vertically integrated relativistic tori – I. Axisymmetric modes in a Schwarzschild space–time”, Mon. Not. R. Astron. Soc., 344, 978–992 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307488].
265 Riffert, H. and Herold, H., “Relativistic Accretion Disk Structure Revisited”, Astrophys. J., 450, 508 (1995). [External LinkDOI], [External LinkADS].
266 Roedig, C., Zanotti, O. and Alic, D., “General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations”, Mon. Not. R. Astron. Soc., 426, 1613–1631 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.6662 [astro-ph.HE]].
267 Rothstein, D.M. and Lovelace, R.V.E., “Advection of Magnetic Fields in Accretion Disks: Not So Difficult After All”, Astrophys. J., 677, 1221–1232 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.2158].
268 Sadowski, A., “Slim Disks Around Kerr Black Holes Revisited”, Astrophys. J. Suppl. Ser., 183, 171–178 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.0355 [astro-ph.HE]].
269 Sadowski, A., Slim accretion disks around black holes, Ph.D. thesis, (Nicolaus Copernicus Astronomical Center, Warsaw, 2011). [External LinkADS], [External LinkarXiv:1108.0396 [astro-ph.HE]].
270 Sadowski, A., Bursa, M., Abramowicz, M.A., Kluźniak, W., Lasota, J.-P., Moderski, R. and Safarzadeh, M., “Spinning up black holes with super-critical accretion flows”, Astron. Astrophys., 532, A41 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.2456 [astro-ph.HE]].
271 Sano, T. and Inutsuka, S.-i., “Saturation and Thermalization of the Magnetorotational Instability: Recurrent Channel Flows and Reconnections”, Astrophys. J. Lett., 561, L179–L182 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0110125].
272 Sano, T., Inutsuka, S.-i., Turner, N.J. and Stone, J.M., “Angular Momentum Transport by Magnetohydrodynamic Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability”, Astrophys. J., 605, 321–339 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0312480].
273 Scheuer, P.A.G. and Feiler, R., “The realignment of a black hole misaligned with its accretion disc”, Mon. Not. R. Astron. Soc., 282, 291 (1996). [External LinkADS].
274 Schnittman, J.D., Krolik, J.H. and Hawley, J.F., “Light Curves from an MHD Simulation of a Black Hole Accretion Disk”, Astrophys. J., 651, 1031–1048 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0606615].
275 Seguin, F.H., “The stability of nonuniform rotation in relativistic stars”, Astrophys. J., 197, 745–765 (1975). [External LinkDOI], [External LinkADS].
276 Semerák, O. and Karas, V., “Pseudo-Newtonian models of a rotating black hole field”, Astron. Astrophys., 343, 325–332 (1999). [External LinkADS], [External LinkarXiv:astro-ph/9901289].
277 Shafee, R., McClintock, J.E., Narayan, R., Davis, S.W., Li, L.-X. and Remillard, R.A., “Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum”, Astrophys. J. Lett., 636, L113–L116 (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0508302].
278 Shafee, R., McKinney, J.C., Narayan, R., Tchekhovskoy, A., Gammie, C.F. and McClintock, J.E., “Three-Dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region”, Astrophys. J. Lett., 687, L25–L28 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.2860].
279 Shakura, N.I. and Sunyaev, R.A., “Black holes in binary systems. Observational appearance”, Astron. Astrophys., 24, 337–355 (1973). [External LinkADS].
280 Shakura, N.I. and Sunyaev, R.A., “A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars”, Mon. Not. R. Astron. Soc., 175, 613–632 (1976). [External LinkADS].
281 Shapiro, S.L., Lightman, A.P. and Eardley, D.M., “A two-temperature accretion disk model for Cygnus X-1: Structure and spectrum”, Astrophys. J., 204, 187–199 (1976). [External LinkDOI], [External LinkADS].
282 Sharma, P., Quataert, E., Hammett, G.W. and Stone, J.M., “Electron Heating in Hot Accretion Flows”, Astrophys. J., 667, 714–723 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0703572].
283 Shi, J., Krolik, J.H. and Hirose, S., “What is the Numerically Converged Amplitude of Magnetohydrodynamics Turbulence in Stratified Shearing Boxes?”, Astrophys. J., 708, 1716–1727 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.2003 [astro-ph.HE]].
284 Shibata, K. and Uchida, Y., “A magnetodynamic mechanism for the formation of astrophysical jets. I. Dynamical effects of the relaxation of nonlinear magnetic twists”, Publ. Astron. Soc. Japan, 37, 31–46 (1985). [External LinkADS].
285 Shibata, K. and Uchida, Y., “A magnetodynamic mechanism for the formation of astrophysical jets. II. Dynamical processes in the accretion of magnetized mass in rotation”, Publ. Astron. Soc. Japan, 38, 631–660 (1986). [External LinkADS].
286 Shibata, M. and Sekiguchi, Y.-I., “Magnetohydrodynamics in full general relativity: Formulation and tests”, Phys. Rev. D, 72, 044014 (2005). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0507383].
287 Shibazaki, N. and Hōshi, R., “Structure and Stability of Accretion-Disk around a Black-Hole”, Prog. Theor. Phys., 54, 706–718 (1975). [External LinkDOI], [External LinkADS].
288 Shimura, T., Mineshige, S. and Takahara, F., “A multizone model for composite disk-corona structure and spectral formation in active galactic nuclei”, Astrophys. J., 439, 74–79 (1995). [External LinkDOI], [External LinkADS].
289 Sikora, M., Stawarz, Ł. and Lasota, J.-P., “Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications”, Astrophys. J., 658, 815–828 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0604095].
290 Soltan, A., “Masses of quasars”, Mon. Not. R. Astron. Soc., 200, 115–122 (1982). [External LinkADS].
291 Spruit, H.C. and Uzdensky, D.A., “Magnetic Flux Captured by an Accretion Disk”, Astrophys. J., 629, 960–968 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0504429].
292 Steiner, J.F. and McClintock, J.E., “Modeling the Jet Kinematics of the Black Hole Microquasar XTE J1550-564: A Constraint on Spin-Orbit Alignment”, Astrophys. J., 745, 136 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.6849 [astro-ph.HE]].
293 Steiner, J.F., McClintock, J.E., Remillard, R.A., Gou, L., Yamada, S. and Narayan, R., “The Constant Inner-disk Radius of LMC X-3: A Basis for Measuring Black Hole Spin”, Astrophys. J. Lett., 718, L117–L121 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1006.5729 [astro-ph.HE]].
294 Stella, L. and Vietri, M., “Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries”, Astrophys. J. Lett., 492, L59 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9709085].
295 Stepney, S. and Guilbert, P.W., “Numerical FITS to important rates in high temperature astrophysical plasmas”, Mon. Not. R. Astron. Soc., 204, 1269–1277 (1983). [External LinkADS].
296 Stone, J.M., Hawley, J.F., Gammie, C.F. and Balbus, S.A., “Three-dimensional Magnetohydrodynamical Simulations of Vertically Stratified Accretion Disks”, Astrophys. J., 463, 656 (1996). [External LinkDOI], [External LinkADS].
297 Straub, O., Vincent, F.H., Abramowicz, M.A., Gourgoulhon, E. and Paumard, T., “Modelling the black hole silhouette in Sgr A* with ion tori”, Astron. Astrophys., 543, A83 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1203.2618 [astro-ph.GA]].
298 Straub, O. et al., “Testing slim-disk models on the thermal spectra of LMC X-3”, Astron. Astrophys., 533, A67 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.0009 [astro-ph.SR]].
299 Svensson, R., “Electron-Positron Pair Equilibria in Relativistic Plasmas”, Astrophys. J., 258, 335 (1982). [External LinkDOI], [External LinkADS].
300 Taam, R.E. and Lin, D.N.C., “The evolution of the inner regions of viscous accretion disks surrounding neutron stars”, Astrophys. J., 287, 761–768 (1984). [External LinkDOI], [External LinkADS].
301 Takahashi, R., “Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes”, Astrophys. J., 611, 996–1004 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0405099].
302 Tassoul, J.-L., Stellar Rotation, Cambridge Astrophysics Series, 36, (Cambridge University Press, Cambridge; New York, 2000). [External LinkADS], [External LinkGoogle Books].
303 Tchekhovskoy, A., Narayan, R. and McKinney, J.C., “Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei”, Astrophys. J., 711, 50–63 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.2228 [astro-ph.HE]].
304 Tchekhovskoy, A., Narayan, R. and McKinney, J.C., “Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole”, Mon. Not. R. Astron. Soc., 418, L79–L83 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.0412 [astro-ph.HE]].
305 Tollerud, E.J., “KerrOrbitProject”, online resource, University of California, Irvine. URL (accessed 14 March 2012):
External Link
306 Török, G., Abramowicz, M.A., Kluźniak, W. and Stuchlík, Z., “The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars”, Astron. Astrophys., 436, 1–8 (2005). [External LinkDOI], [External LinkADS].
307 Turner, N.J., “On the Vertical Structure of Radiation-dominated Accretion Disks”, Astrophys. J. Lett., 605, L45–L48 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0402539].
308 van der Klis, M., “Rapid X-ray variability”, in Lewin, W.H.G. and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, 39, pp. 39–112, (Cambridge University Press, Cambridge; New York, 2006). [External LinkADS], [External LinkGoogle Books].
309 Velikhov, E.P., “Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field”, Sov. Phys. JETP, 36, 995–998 (1959).
310 Wagh, S.M. and Dadhich, N., “The energetics of black holes in electromagnetic fields by the Penrose process”, Phys. Rep., 183, 137–192 (1989). [External LinkDOI], [External LinkADS].
311 Wagoner, R.V., “Relativistic diskoseismology”, Phys. Rep., 311, 259–269 (1999). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9805028].
312 Wagoner, R.V., “Relativistic and Newtonian diskoseismology”, New Astron. Rev., 51, 828–834 (2008). [External LinkDOI], [External LinkADS].
313 Wagoner, R.V., “Diskoseismology and QPOs Confront Black Hole Spin”, Astrophys. J. Lett., 752, L18 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1783 [astro-ph.HE]].
314 Wald, R.M., “Energy Limits on the Penrose Process”, Astrophys. J., 191, 231–234 (1974). [External LinkDOI], [External LinkADS].
315 Wilms, J., Reynolds, C.S., Begelman, M.C., Reeves, J.N., Molendi, S., Staubert, R. and Kendziorra, E., “XMM-EPIC observation of MCG–6-30-15: direct evidence for the extraction of energy from a spinning black hole?”, Mon. Not. R. Astron. Soc., 328, L27–L31 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0110520].
316 Wilson, J.R., “Numerical Study of Fluid Flow in a Kerr Space”, Astrophys. J., 173, 431–438 (1972). [External LinkDOI], [External LinkADS].