1 Abel, S. and Santiago, J., “Constraining the string scale: from Planck to weak and back again”, J. Phys. G: Nucl. Part. Phys., 30, R83–R111 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0404237].
2 Adler, R.J., Chen, P. and Santiago, D.I., “The Generalized Uncertainty Principle and Black Hole Remnants”, Gen. Relativ. Gravit., 33, 2101–2108 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0106080 [gr-qc]].
3 Adler, R.J. and Santiago, D.I., “On gravity and the uncertainty principle”, Mod. Phys. Lett. A, 14, 1371 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9904026].
4 Agostini, A., Amelino-Camelia, G., Arzano, M., Marcianò, A. and Altair Tacchi, R., “Generalizing the Noether theorem for Hopf-algebra spacetime symmetries”, Mod. Phys. Lett. A, 22, 1779–1786 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0607221 [hep-th]].
5 Ahluwalia-Khalilova, D.V., “Operational indistinguishability of doubly special relativities from special relativity”, arXiv, e-print, (2002). [External LinkarXiv:gr-qc/0212128 [gr-qc]].
6 Ali, A.F., “Minimal Length in Quantum Gravity, Equivalence Principle and Holographic Entropy Bound”, Class. Quantum Grav., 28, 065013 (2011). [External LinkDOI], [External LinkarXiv:1101.4181 [hep-th]].
7 Ali, A.F., Das, S. and Vagenas, E.C., “Discreteness of Space from the Generalized Uncertainty Principle”, Phys. Lett. B, 678, 497–499 (2009). [External LinkDOI], [External LinkarXiv:0906.5396 [hep-th]].
8 Ali, A.F., Das, S. and Vagenas, E.C., “A proposal for testing quantum gravity in the lab”, Phys. Rev. D, 84, 044013 (2011). [External LinkDOI], [External LinkarXiv:1107.3164 [hep-th]].
9 Amati, D., Ciafaloni, M. and Veneziano, G., “Superstring Collisions at Planckian Energies”, Phys. Lett. B, 197, 81–88 (1987). [External LinkDOI].
10 Amati, D., Ciafaloni, M. and Veneziano, G., “Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions”, Int. J. Mod. Phys. A, 3, 1615–1661 (1988). [External LinkDOI].
11 Amati, D., Ciafaloni, M. and Veneziano, G., “Higher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisions”, Nucl. Phys. B, 347, 550–580 (1990). [External LinkDOI].
12 Amati, D., Ciafaloni, M. and Veneziano, G., “Towards an S-matrix description of gravitational collapse”, J. High Energy Phys., 2008(02), 049 (2008). [External LinkDOI], [External LinkarXiv:0712.1209 [hep-th]].
13 Ambjørn, J., Jurkiewicz, J. and Loll, R., “Causal dynamical triangulations and the quest for quantum gravity”, in Murugan, J., Weltman, A. and Ellis, G.F.R., eds., Foundations of Space and Time: Reflections on Quantum Gravity, pp. 321–337, (Cambridge University Press, Cambridge; New York, 2012). [External LinkarXiv:1004.0352 [hep-th]].
14 Amelino-Camelia, G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510, 255–263 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0012238 [hep-th]].
15 Amelino-Camelia, G., “Doubly special relativity”, Nature, 418, 34–35 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207049 [gr-qc]].
16 Amelino-Camelia, G., “Doubly-special relativity: First results and key open problems”, Int. J. Mod. Phys. D, 11, 1643–1669 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0210063 [gr-qc]].
17 Amelino-Camelia, G., “Kinematical solution of the UHE-cosmic-ray puzzle without a preferred class of inertial observers”, Int. J. Mod. Phys. D, 12, 1211–1226 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0209232 [astro-ph]].
18 Amelino-Camelia, G., “Planck-scale Lorentz-symmetry test theories”, arXiv, e-print, (2004). [External LinkarXiv:astro-ph/0410076 [astro-ph]].
19 Amelino-Camelia, G., “Quantum Gravity Phenomenology”, arXiv, e-print, (2008). [External LinkarXiv:0806.0339 [gr-qc]].
20 Amelino-Camelia, G., “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”, Symmetry, 2, 230–271 (2010). [External LinkDOI], [External LinkarXiv:1003.3942 [gr-qc]].
21 Amelino-Camelia, G., “On the fate of Lorentz symmetry in relative-locality momentum spaces”, Phys. Rev. D, 85, 084034 (2012). [External LinkDOI], [External LinkarXiv:1110.5081 [hep-th]].
22 Amelino-Camelia, G., Arzano, M., Ling, Y. and Mandanici, G., “Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles”, Class. Quantum Grav., 23, 2585–2606 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0506110 [gr-qc]].
23 Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., “The principle of relative locality”, Phys. Rev. D, 84, 084010 (2011). [External LinkDOI], [External LinkarXiv:1101.0931 [hep-th]].
24 Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., “Relative locality and the soccer ball problem”, Phys. Rev. D, 84, 087702 (2011). [External LinkDOI], [External LinkarXiv:1104.2019 [hep-th]].
25 Amelino-Camelia, G., Lukierski, J. and Nowicki, A., “Distance measurement and κ-deformed propagation of light and heavy probes”, Int. J. Mod. Phys. A, 14, 4575–4588 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9903066 [gr-qc]].
26 Amelino-Camelia, G. and Majid, S., “Waves on noncommutative space-time and gamma-ray bursts”, Int. J. Mod. Phys. A, 15, 4301–4324 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9907110 [hep-th]].
27 Amelino-Camelia, G., Matassa, M., Mercati, F. and Rosati, G., “Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry”, Phys. Rev. Lett., 106, 071301 (2011). [External LinkDOI], [External LinkarXiv:1006.2126 [gr-qc]].
28 Amelino-Camelia, G., Procaccini, A. and Arzano, M., “A glimpse at the flat-spacetime limit of quantum gravity using the Bekenstein argument in reverse”, Int. J. Mod. Phys. D, 13, 2337–2343 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0506182 [hep-th]].
29 Amelino-Camelia, G., Smolin, L. and Starodubtsev, A., “Quantum symmetry, the cosmological constant and Planck scale phenomenology”, Class. Quantum Grav., 21, 3095–3110 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0306134 [hep-th]].
30 Anber, M.M. and Donoghue, J.F., “On the running of the gravitational constant”, Phys. Rev. D, 85, 104016 (2012). [External LinkDOI], [External LinkarXiv:1111.2875 [hep-th]].
31 Arzano, M., “Anatomy of a deformed symmetry: Field quantization on curved momentum space”, Phys. Rev. D, 83, 025025 (2011). [External LinkDOI], [External LinkarXiv:1009.1097 [hep-th]].
32 Arzano, M. and Kowalski-Glikman, J., “Kinematics of a relativistic particle with de Sitter momentum space”, Class. Quantum Grav., 28, 105009 (2011). [External LinkDOI], [External LinkarXiv:1008.2962 [hep-th]].
33 Arzano, M., Kowalski-Glikman, J. and Walkus, A., “Lorentz invariant field theory on κ-Minkowski space”, Class. Quantum Grav., 27, 025012 (2010). [External LinkDOI], [External LinkarXiv:0908.1974 [hep-th]].
34 Arzano, M. and Marciano, A., “Fock space, quantum fields and κ-Poincaré symmetries”, Phys. Rev. D, 76, 125005 (2007). [External LinkDOI], [External LinkarXiv:0707.1329 [hep-th]].
35 Arzano, M. and Marcianò, A., “Symplectic geometry and Noether charges for Hopf algebra space-time symmetries”, Phys. Rev. D, 75, 081701 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701268 [hep-th]].
36 Ashoorioon, A., Hovdebo, J.L. and Mann, R.B., “Running of the spectral index and violation of the consistency relation between tensor and scalar spectra from trans-Planckian physics”, Nucl. Phys. B, 727, 63–76 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0504135 [gr-qc]].
37 Ashoorioon, A., Kempf, A. and Mann, R.B., “Minimum length cutoff in inflation and uniqueness of the action”, Phys. Rev. D, 71, 023503 (2005). [External LinkDOI], [External LinkarXiv:astro-ph/0410139 [astro-ph]].
38 Ashoorioon, A. and Mann, R.B., “On the tensor/scalar ratio in inflation with UV cut off”, Nucl. Phys. B, 716, 261–279 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411056 [gr-qc]].
39 Ashtekar, A., “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57, 2244–2247 (1986). [External LinkDOI].
40 Ashtekar, A., Bojowald, M. and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233–268 (2003). [External LinkarXiv:gr-qc/0304074].
41 Ashtekar, A. and Lewandowski, J., “Quantum theory of geometry. II: Volume operators”, Adv. Theor. Math. Phys., 1, 388–429 (1998). [External LinkarXiv:gr-qc/9711031].
42 Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: a status report”, Class. Quantum Grav., 21, R53–R152 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0404018].
43 Ashtekar, A., Pawlowski, T., Singh, P. and Vandersloot, K., “Loop quantum cosmology of k = 1 FRW models”, Phys. Rev. D, 75, 024035 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612104].
44 Ashtekar, A. and Singh, P., “Loop Quantum Cosmology: A Status Report”, Class. Quantum Grav., 28, 213001 (2011). [External LinkDOI], [External LinkarXiv:1108.0893 [gr-qc]].
45 Bachas, C.P., “Lectures on D-branes”, arXiv, e-print, (1998). [External LinkarXiv:hep-th/9806199].
46 Bachmann, S. and Kempf, A., “The Transplanckian Question and the Casimir Effect”, arXiv, e-print, (2005). [External LinkarXiv:gr-qc/0504076 [gr-qc]].
47 Banks, T., “A critique of pure string theory: Heterodox opinions of diverse dimensions”, arXiv, e-print, (2003). [External LinkarXiv:hep-th/0306074].
48 Banks, T. and Fischler, W., “A Model for High Energy Scattering in Quantum Gravity”, arXiv, e-print, (1999). [External LinkarXiv:hep-th/9906038].
49 Barceló, C., Liberati, S. and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 14, lrr-2011-03 (2011). [External LinkarXiv:gr-qc/0505065 [gr-qc]]. URL (accessed 20 January 2012):
50 Barrau, A., Cailleteau, T., Cao, X., Diaz-Polo, J. and Grain, J., “Probing Loop Quantum Gravity with Evaporating Black Holes”, Phys. Rev. Lett., 107, 251301 (2011). [External LinkDOI], [External LinkarXiv:1109.4239 [gr-qc]].
51 Basu, S. and Mattingly, D., “Asymptotic Safety, Asymptotic Darkness, and the hoop conjecture in the extreme UV”, Phys. Rev. D, 82, 124017 (2010). [External LinkDOI], [External LinkarXiv:1006.0718 [hep-th]].
52 Battisti, M.V. and Montani, G., “The Big-Bang singularity in the framework of a Generalized Uncertainty Principle”, Phys. Lett. B, 656, 96–101 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703025 [gr-qc]].
53 Battisti, M.V. and Montani, G., “Quantum dynamics of the Taub universe in a generalized uncertainty principle framework”, Phys. Rev. D, 77, 023518 (2008). [External LinkDOI], [External LinkarXiv:0707.2726 [gr-qc]].
54 Bina, A., Jalalzadeh, S. and Moslehi, A., “Quantum Black Hole in the Generalized Uncertainty Principle Framework”, Phys. Rev. D, 81, 023528 (2010). [External LinkDOI], [External LinkarXiv:1001.0861 [gr-qc]].
55 Blaut, A., Daszkiewicz, M., Kowalski-Glikman, J. and Nowak, S., “Phase spaces of doubly special relativity”, Phys. Lett. B, 582, 82–85 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0312045 [hep-th]].
56 Bojowald, M., “Absence of singularity in loop quantum cosmology”, Phys. Rev. Lett., 86, 5227–5230 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0102069].
57 Bojowald, M., “Dynamical coherent states and physical solutions of quantum cosmological bounces”, Phys. Rev. D, 75, 123512 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703144].
58 Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 11, lrr-2008-4 (2008). URL (accessed 20 January 2012):
59 Bojowald, M., “Quantum Geometry and Quantum Dynamics at the Planck Scale”, in Kowalski-Glikman, J., Durka, R. and Szczachor, M., eds., The Planck Scale, Proceedings of the XXV Max Born Symposium, Wroclaw, Poland, 29 June – 03 July 2009, AIP Conference Proceedings, 1196, pp. 62–71, (American Institute of Physics, Melville, NY, 2009). [External LinkDOI], [External LinkarXiv:0910.2936 [gr-qc]].
60 Bojowald, M. and Kempf, A., “Generalized uncertainty principles and localization of a particle in discrete space”, Phys. Rev. D, 86, 085017 (2012). [External LinkDOI], [External LinkarXiv:1112.0994 [hep-th]].
61 Bolen, B. and Cavaglia, M., “(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle”, Gen. Relativ. Gravit., 37, 1255–1262 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411086 [gr-qc]].
62 Bombelli, L., Henson, J. and Sorkin, R.D., “Discreteness without symmetry breaking: A Theorem”, Mod. Phys. Lett. A, 24, 2579–2587 (2009). [External LinkDOI], [External LinkarXiv:gr-qc/0605006 [gr-qc]].
63 Bombelli, L. and Meyer, D.A., “The origin of Lorentzian geometry”, Phys. Lett. A, 141, 226–228 (1989). [External LinkDOI].
64 Born, M., “A suggestion for unifying quantum theory and relativity”, Proc. R. Soc. London, Ser. A, 165, 291–303 (1938). [External LinkDOI].
65 Bouaziz, D. and Bawin, M., “Regularization of the Singular Inverse Square Potential in Quantum Mechanics with a Minimal length”, Phys. Rev. A, 76, 032112 (2007). [External LinkDOI], [External LinkarXiv:0711.0599 [quant-ph]].
66 Bouaziz, D. and Bawin, M., “Singular inverse square potential in arbitrary dimensions with a minimal length: Application to the motion of a dipole in a cosmic string background”, Phys. Rev. A, 78, 032110 (2008). [External LinkDOI], [External LinkarXiv:1009.0930 [quant-ph]].
67 Bouaziz, D. and Ferkous, N., “Hydrogen atom in momentum space with a minimal length”, Phys. Rev. A, 82, 022105 (2010). [External LinkDOI], [External LinkarXiv:1009.0935 [quant-ph]].
68 Brandenberger, R.H. and Ho, P.-M., “Noncommutative space-time, stringy space-time uncertainty principle, and density fluctuations”, Phys. Rev. D, 66, 023517 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0203119 [hep-th]].
69 Brau, F., “Minimal length uncertainty relation and hydrogen atom”, J. Phys. A: Math. Gen., 32, 7691–7696 (1999). [External LinkDOI], [External LinkarXiv:quant-ph/9905033 [quant-ph]].
70 Bronstein, M., “Quantentheorie schwacher Gravitationsfelder”, Phys. Z. Sowjetunion, 9, 140–157 (1936).
71 Bruno, N.R., Amelino-Camelia, G. and Kowalski-Glikman, J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522, 133–138 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0107039 [hep-th]].
72 Calmet, X., Graesser, M. and Hsu, S.D.H., “Minimum length from quantum mechanics and general relativity”, Phys. Rev. Lett., 93, 211101 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0405033].
73 Calmet, X., Graesser, M.L. and Hsu, S.D.H., “Minimum length from first principles”, Int. J. Mod. Phys. D, 14, 2195–2200 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0505144].
74 Calmet, X., Hossenfelder, S. and Percacci, R., “Deformed Special Relativity from Asymptotically Safe Gravity”, Phys. Rev. D, 82, 124024 (2010). [External LinkDOI], [External LinkarXiv:1008.3345 [gr-qc]].
75 Camacho, A., “Generalized uncertainty principle and quantum electrodynamics”, Gen. Relativ. Gravit., 35, 1153–1160 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0303061 [gr-qc]].
76 Campo, D., “Problems with models of a fundamental length”, arXiv, e-print, (2010). [External LinkarXiv:1004.5324 [gr-qc]].
77 Carmona, J.M., Cortes, J.L., Indurain, J. and Mazon, D., “Quantum Noncanonical Field Theory: Symmetries and Interaction”, Phys. Rev. D, 80, 105014 (2009). [External LinkDOI], [External LinkarXiv:0905.1901 [hep-th]].
78 Carmona, J.M., Cortes, J.L. and Mazon, D., “Asymptotic approach to Special Relativity compatible with a relativistic principle”, Phys. Rev. D, 82, 085012 (2010). [External LinkDOI], [External LinkarXiv:1007.3190 [gr-qc]].
79 Carmona, J.M., Cortes, J.L., Mazon, D. and Mercati, F., “About Locality and the Relativity Principle Beyond Special Relativity”, Phys. Rev. D, 84, 085010 (2011). [External LinkDOI], [External LinkarXiv:1107.0939 [hep-th]].
80 Carr, B., Modesto, L. and Prémont-Schwarz, I., “Generalized Uncertainty Principle and Self-dual Black Holes”, arXiv, e-print, (2011). [External LinkarXiv:1107.0708 [gr-qc]].
81 Cavaglia, M. and Das, S., “How classical are TeV scale black holes?”, Class. Quantum Grav., 21, 4511–4522 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404050 [hep-th]].
82 Chandra, N. and Chatterjee, S., “Thermodynamics of Ideal Gas in Doubly Special Relativity”, Phys. Rev. D, 85, 045012 (2012). [External LinkDOI], [External LinkarXiv:1108.0896 [gr-qc]].
83 Chang, L.N., Lewis, Z., Minic, D. and Takeuchi, T., “On the Minimal Length Uncertainty Relation and the Foundations of String Theory”, Adv. High Energy Phys., 2011, 493514 (2011). [External LinkDOI], [External LinkarXiv:1106.0068 [hep-th]].
84 Chang, L.N., Minic, D., Okamura, N. and Takeuchi, T., “The Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem”, Phys. Rev. D, 65, 125028 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0201017 [hep-th]].
85 Chang, L.N., Minic, D., Okamura, N. and Takeuchi, T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65, 125027 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0111181 [hep-th]].
86 Chang, L.N., Minic, D. and Takeuchi, T., “Quantum Gravity, Dynamical Energy–Momentum Space and Vacuum Energy”, Mod. Phys. Lett. A, 25, 2947–2954 (2010). [External LinkDOI], [External LinkarXiv:1004.4220 [hep-th]].
87 Chen, P. and Adler, R.J., “Black hole remnants and dark matter”, Nucl. Phys. B (Proc. Suppl.), 124, 103–106 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0205106 [gr-qc]].
88 Chialva, D., “Enhanced CMBR non-Gaussianities from Lorentz violation”, J. Cosmol. Astropart. Phys., 2012(01), 037 (2012). [External LinkDOI], [External LinkarXiv:1106.0040 [hep-th]].
89 Chialva, D., “Signatures of very high energy physics in the squeezed limit of the bispectrum”, J. Cosmol. Astropart. Phys., 2012(10), 037 (2012). [External LinkDOI], [External LinkarXiv:1108.4203 [astro-ph.CO]].
90 Ciafaloni, M. and Colferai, D., “Quantum Tunneling and Unitarity Features of an S-matrix for Gravitational Collapse”, J. High Energy Phys., 2009(12), 062 (2009). [External LinkDOI], [External LinkarXiv:0909.4523 [hep-th]].
91 Coleman, S.R., Preskill, J. and Wilczek, F., “Quantum hair on black holes”, Nucl. Phys. B, 378, 175–246 (1992). [External LinkDOI], [External LinkarXiv:hep-th/9201059].
92 Cunliff, C., “Conformal fluctuations do not establish a minimum length”, arXiv, e-print, (2012). [External LinkarXiv:1201.2247 [gr-qc]].
93 Dadic, I., Jonke, L. and Meljanac, S., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67, 087701 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0210264 [hep-th]].
94 Das, S., Ghosh, S. and Roychowdhury, D., “Relativistic Thermodynamics with an Invariant Energy Scale”, Phys. Rev. D, 80, 125036 (2009). [External LinkDOI], [External LinkarXiv:0908.0413 [hep-th]].
95 Das, S. and Mann, R.B., “Planck scale effects on some low energy quantum phenomena”, Phys. Lett. B, 704, 596–599 (2011). [External LinkDOI], [External LinkarXiv:1109.3258 [hep-th]].
96 Das, S. and Vagenas, E.C., “Universality of Quantum Gravity Corrections”, Phys. Rev. Lett., 101, 221301 (2008). [External LinkDOI], [External LinkarXiv:0810.5333 [hep-th]].
97 Das, S. and Vagenas, E.C., “Phenomenological Implications of the Generalized Uncertainty Principle”, Can. J. Phys., 87, 233–240 (2009). [External LinkDOI], [External LinkarXiv:0901.1768 [hep-th]].
98 Das, S., Vagenas, E.C. and Ali, A.F., “Discreteness of Space from GUP II: Relativistic Wave Equations”, Phys. Lett. B, 690, 407–412 (2010). [External LinkDOI], [External LinkarXiv:1005.3368 [hep-th]].
99 Daszkiewicz, M., Imilkowska, K. and Kowalski-Glikman, J., “Velocity of particles in doubly special relativity”, Phys. Lett. A, 323, 345–350 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0304027 [hep-th]].
100 Dehghani, M., “Corrected black hole’s thermodynamics and tunneling radiation with generalized uncertainty principle and modified dispersion relation”, Int. J. Theor. Phys., 50, 618–624 (2011). [External LinkDOI].
101 Doplicher, S., Fredenhagen, K. and Roberts, J.E., “The quantum structure of space-time at the Planck scale and quantum fields”, Commun. Math. Phys., 172, 187–220 (1995). [External LinkDOI], [External LinkarXiv:hep-th/0303037].
102 Dorsch, G. and Nogueira, J.A., “Maximally Localized States in Quantum Mechanics with a Modified Commutation Relation to All Orders”, Int. J. Mod. Phys. A, 27, 1250113 (2012). [External LinkDOI], [External LinkarXiv:1106.2737 [hep-th]].
103 Douglas, M.R., Kabat, D.N., Pouliot, P. and Shenker, S.H., “D-branes and short distances in string theory”, Nucl. Phys. B, 485, 85–127 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9608024].
104 Douglas, M.R. and Nekrasov, N.A., “Noncommutative field theory”, Rev. Mod. Phys., 73, 977–1029 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0106048 [hep-th]].
105 Dvali, G., Folkerts, S. and Germani, C., “Physics of Trans-Planckian Gravity”, Phys. Rev. D, 84, 024039 (2011). [External LinkDOI], [External LinkarXiv:1006.0984 [hep-th]].
106 Dvali, G. and Gomez, C., “Self-Completeness of Einstein Gravity”, arXiv, e-print, (2010). [External LinkarXiv:1005.3497 [hep-th]].
107 Eardley, D.M. and Giddings, S.B., “Classical black hole production in high-energy collisions”, Phys. Rev. D, 66, 044011 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0201034].
108 Falls, K., Litim, D.F. and Raghuraman, A., “Black holes and asymptotically safe gravity”, Int. J. Mod. Phys. A, 27, 1250019 (2012). [External LinkDOI], [External LinkarXiv:1002.0260 [hep-th]].
109 Fityo, T.V., “Statistical physics in deformed spaces with minimal length”, Phys. Lett. A, 372, 5872–5877 (2008). [External LinkDOI].
110 Flint, H.T., “Relativity and the quantum theory”, Proc. R. Soc. London, Ser. A, 117, 630–637 (1928). [External LinkDOI].
111 Fontanini, M., Spallucci, E. and Padmanabhan, T., “Zero-point length from string fluctuations”, Phys. Lett. B, 633, 627–630 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0509090].
112 Frassino, A.M. and Panella, O., “The Casimir Effect in Minimal Length Theories Based on a Generalized Uncertainity Principle”, Phys. Rev. D, 85, 045030 (2012). [External LinkDOI], [External LinkarXiv:1112.2924 [hep-th]].
113 Freidel, L., Kowalski-Glikman, J. and Nowak, S., “Field theory on κ-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry”, Int. J. Mod. Phys. A, 23, 2687–2718 (2008). [External LinkDOI], [External LinkarXiv:0706.3658 [hep-th]].
114 Freidel, L., Kowalski-Glikman, J. and Smolin, L., “2+1 gravity and doubly special relativity”, Phys. Rev. D, 69, 044001 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0307085 [hep-th]].
115 Galán, P. and Mena Marugán, G.A., “Quantum time uncertainty in a gravity’s rainbow formalism”, Phys. Rev. D, 70, 124003 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0411089 [gr-qc]].
116 Galán, P. and Mena Marugán, G.A., “Length uncertainty in a gravity’s rainbow formalism”, Phys. Rev. D, 72, 044019 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0507098 [gr-qc]].
117 Galán, P. and Mena Marugán, G.A., “Entropy and temperature of black holes in a gravity’s rainbow”, Phys. Rev. D, 74, 044035 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0608061 [gr-qc]].
118 Gambini, R. and Pullin, J., A First Course in Loop Quantum Gravity, (Oxford University Press, Oxford; New York, 2011). [External LinkGoogle Books].
119 Garattini, R., “Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant”, Int. J. Mod. Phys.: Conf. Ser., 14, 326–336 (2012). [External LinkDOI], [External LinkarXiv:1112.1630 [gr-qc]].
120 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9403008 [gr-qc]].
121 Garay, L.J., “Spacetime Foam as a Quantum Thermal Bath”, Phys. Rev. Lett., 80, 2508–2511 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9801024 [gr-qc]].
122 Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9806047 [gr-qc]].
123 Ghosh, S., “A Lagrangian for DSR Particle and the Role of Noncommutativity”, Phys. Rev. D, 74, 084019 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0608206 [hep-th]].
124 Ghosh, S., “Generalized Uncertainty Principle and Klein Paradox”, arXiv, e-print, (2012). [External LinkarXiv:1202.1962 [hep-th]].
125 Ghosh, S. and Roy, P., “‘Stringy’ Coherent States Inspired By Generalized Uncertainty Principle”, Phys. Lett. B, 711, 423–427 (2012). [External LinkDOI], [External LinkarXiv:1110.5136 [hep-th]].
126 Giddings, S.B., “Locality in quantum gravity and string theory”, Phys. Rev. D, 74, 106006 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0604072].
127 Giddings, S.B., Gross, D.J. and Maharana, A., “Gravitational effects in ultrahigh-energy string scattering”, Phys. Rev. D, 77, 046001 (2008). [External LinkDOI], [External LinkarXiv:0705.1816 [hep-th]].
128 Giddings, S.B. and Lippert, M., “Precursors, black holes, and a locality bound”, Phys. Rev. D, 65, 024006 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0103231].
129 Giddings, S.B. and Lippert, M., “The information paradox and the locality bound”, Phys. Rev. D, 69, 124019 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0402073].
130 Giddings, S.B., Schmidt-Sommerfeld, M. and Andersen, J.R., “High energy scattering in gravity and supergravity”, Phys. Rev. D, 82, 104022 (2010). [External LinkDOI], [External LinkarXiv:1005.5408 [hep-th]].
131 Giddings, S.B. and Thomas, S.D., “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D, 65, 056010 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0106219].
132 Girelli, F., Konopka, T., Kowalski-Glikman, J. and Livine, E.R., “The free particle in deformed special relativity”, Phys. Rev. D, 73, 045009 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0512107 [hep-th]].
133 Girelli, F., Liberati, S., Percacci, R. and Rahmede, C., “Modified Dispersion Relations from the Renormalization Group of Gravity”, Class. Quantum Grav., 24, 3995–4008 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0607030 [gr-qc]].
134 Girelli, F. and Livine, E.R., “Physics of Deformed Special Relativity: Relativity Principle revisited”, arXiv, e-print, (2004). [External LinkarXiv:gr-qc/0412004 [gr-qc]].
135 Girelli, F. and Livine, E.R., “Non-Commutativity of Effective Space-Time Coordinates and the Minimal Length”, arXiv, e-print, (2007). [External LinkarXiv:0708.3813 [hep-th]].
136 Girelli, F. and Livine, E.R., “Special relativity as a non commutative geometry: Lessons for deformed special relativity”, Phys. Rev. D, 81, 085041 (2010). [External LinkDOI], [External LinkarXiv:gr-qc/0407098 [gr-qc]].
137 Gopakumar, R., Minwalla, S. and Strominger, A., “Noncommutative solitons”, J. High Energy Phys., 2000(05), 020 (2000). [External LinkDOI], [External LinkarXiv:hep-th/0003160 [hep-th]].
138 Gorelik, G.E., “Matvei Bronstein and quantum gravity: 70th anniversary of the unsolved problem”, Phys. Usp., 48, 1039–1053 (2005). [External LinkDOI].
139 Greensite, J., “Is there a minimum length in D = 4 lattice quantum gravity?”, Phys. Lett. B, 255, 375–380 (1991). [External LinkDOI].
140 Gross, D.J. and Mende, P.F., “String theory beyond the Planck scale”, Nucl. Phys. B, 303, 407–454 (1988). [External LinkDOI].
141 Hagar, A., “Length Matters: The History and the Philosophy of the Notion of Fundamental Length in Modern Physics”, in preparation, (2012). Online version (accessed 17 December 2012):
External Link
142 Harbach, U. and Hossenfelder, S., “The Casimir effect in the presence of a minimal length”, Phys. Lett. B, 632, 379–383 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0502142 [hep-th]].
143 Harbach, U., Hossenfelder, S., Bleicher, M. and Stoecker, H., “Probing the minimal length scale by precision tests of the muon g-2”, Phys. Lett. B, 584, 109–113 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0308138 [hep-ph]].
144 Hassan, S.F. and Sloth, M.S., “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434–458 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0204110 [hep-th]].
145 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220 (1975). [External LinkDOI].
146 Heisenberg, W., The Physical Principles of the Quantum Theory, (University of Chicago Press, Chicago, 1930). [External LinkGoogle Books].
147 Heisenberg, W., “Zur Theorie der ‘Schauer’ in der Höhenstrahlung”, Z. Phys., 101, 533–540 (1936). [External LinkDOI].
148 Heisenberg, W., “Über die in der Theorie der Elementarteilchen auftretende universelle Länge”, Ann. Phys. (Leipzig), 32, 20–33 (1938). [External LinkDOI].
149 Heisenberg, W., “Bericht über die allgemeinen Eigenschaften der Elementarteilchen / Report on the General Properties of Elementary Particles”, in Blum, W., Dürr, H.-P. and Rechenberg, H., eds., Werner Heisenberg: Gesammelte Werke. Collected Works, Series B, pp. 346–358, (Springer, Berlin; New York, 1984).
150 Heisenberg, W., “[247] Heisenberg an Peierls, 1930”, in von Meyenn, K., ed., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Bd. II: 1930–1939, Sources in the History of Mathematics and Physical Sciences, 6, pp. 15–18, (Springer, Berlin; New York, 1985). [External LinkGoogle Books].
151 Hinchliffe, I., Kersting, N. and Ma, Y.L., “Review of the phenomenology of noncommutative geometry”, Int. J. Mod. Phys. A, 19, 179–204 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0205040 [hep-ph]].
152 Hossenfelder, S., “Running coupling with minimal length”, Phys. Rev. D, 70, 105003 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0405127 [hep-ph]].
153 Hossenfelder, S., “Suppressed black hole production from minimal length”, Phys. Lett. B, 598, 92–98 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404232 [hep-th]].
154 Hossenfelder, S., “Interpretation of quantum field theories with a minimal length scale”, Phys. Rev. D, 73, 105013 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0603032 [hep-th]].
155 Hossenfelder, S., “Self-consistency in theories with a minimal length”, Class. Quantum Grav., 23, 1815–1821 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0510245 [hep-th]].
156 Hossenfelder, S., “Deformed Special Relativity in Position Space”, Phys. Lett. B, 649, 310–316 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612167 [gr-qc]].
157 Hossenfelder, S., “Multi-Particle States in Deformed Special Relativity”, Phys. Rev. D, 75, 105005 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0702016 [hep-th]].
158 Hossenfelder, S., “A note on quantum field theories with a minimal length scale”, Class. Quantum Grav., 25, 038003 (2008). [External LinkDOI], [External LinkarXiv:0712.2811 [hep-th]].
159 Hossenfelder, S., “The Box-Problem in Deformed Special Relativity”, arXiv, e-print, (2009). [External LinkarXiv:0912.0090 [gr-qc]].
160 Hossenfelder, S., “Bounds on an energy-dependent and observer-independent speed of light from violations of locality”, Phys. Rev. Lett., 104, 140402 (2010). [External LinkDOI], [External LinkarXiv:1004.0418 [hep-ph]].
161 Hossenfelder, S., “Comment on arXiv:1007.0718 by Lee Smolin”, arXiv, e-print, (2010). [External LinkarXiv:1008.1312 [gr-qc]].
162 Hossenfelder, S., “Comments on Nonlocality in Deformed Special Relativity, in reply to arXiv:1004.0664 by Lee Smolin and arXiv:1004.0575 by Jacob et al”, arXiv, e-print, (2010). [External LinkarXiv:1005.0535 [gr-qc]].
163 Hossenfelder, S., “Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al”, arXiv, e-print, (2010). [External LinkarXiv:1006.4587 [gr-qc]].
164 Hossenfelder, S., “Experimental Search for Quantum Gravity”, in Frignanni, V.R., ed., Classical and Quantum Gravity: Theory, Analysis and Applications, (Nova Science Publishers, Hauppauge, NY, 2011). [External LinkarXiv:1010.3420 [gr-qc]].
165 Hossenfelder, S., “Can we measure structures to a precision better than the Planck length?”, Class. Quantum Grav., 29, 115011 (2012). [External LinkDOI], [External LinkarXiv:1205.3636 [gr-qc]].
166 Hossenfelder, S., “Comment on arXiv:1104.2019, ‘Relative locality and the soccer ball problem,’ by Amelino-Camelia et al”, arXiv, e-print, (2012). [External LinkarXiv:1202.4066 [hep-th]].
167 Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S. and Stöcker, H., “Signatures in the Planck regime”, Phys. Lett. B, 575, 85–99 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0305262 [hep-th]].
168 Hsu, S.D.H., “Quantum production of black holes”, Phys. Lett. B, 555, 92–98 (2003). [External LinkDOI], [External LinkarXiv:hep-ph/0203154].
169 Jacob, U., Mercati, F., Amelino-Camelia, G. and Piran, T., “Modifications to Lorentz invariant dispersion in relatively boosted frames”, Phys. Rev. D, 82, 084021 (2010). [External LinkDOI], [External LinkarXiv:1004.0575 [astro-ph.HE]].
170 Johnson, C.V., “D-Brane Primer”, in Harvey, J., Kachru, S. and Silverstein, E., eds., Strings, Branes and Gravity (TASI 99), Boulder, Colorado, USA, 31 May – 25 June 1999, pp. 129–350, (World Scientific, Singapore; River Edge, NJ, 2000). [External LinkDOI], [External LinkarXiv:hep-th/0007170 [hep-th]], [External LinkGoogle Books].
171 Judes, S. and Visser, M., “Conservation laws in ‘Doubly special relativity”’, Phys. Rev. D, 68, 045001 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0205067 [gr-qc]].
172 Kalyana Rama, S., “Some consequences of the generalized uncertainty principle: Statistical mechanical, cosmological, and varying speed of light”, Phys. Lett. B, 519, 103–110 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0107255 [hep-th]].
173 Karliner, M., Klebanov, I.R. and Susskind, L., “Size and shape of strings”, Int. J. Mod. Phys. A, 3, 1981 (1988). [External LinkDOI].
174 Kempf, A., “Quantum groups and quantum field theory with nonzero minimal uncertainties in positions and momenta”, Czech. J. Phys., 44, 1041–1048 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9405067].
175 Kempf, A., “Uncertainty relation in quantum mechanics with quantum group symmetry”, J. Math. Phys., 35, 4483–4496 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9311147].
176 Kempf, A., “On Noncommutative Geometric Regularisation”, Phys. Rev. D, 54, 5174–5178 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9602119].
177 Kempf, A., “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30, 2093–2102 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9604045 [hep-th]].
178 Kempf, A., “On quantum field theory with nonzero minimal uncertainties in positions and momenta”, J. Math. Phys., 38, 1347–1372 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9602085].
179 Kempf, A., “Fields over unsharp coordinates”, Phys. Rev. Lett., 85, 2873 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9905114 [hep-th]].
180 Kempf, A., “Mode generating mechanism in inflation with cutoff”, Phys. Rev. D, 63, 083514 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0009209].
181 Kempf, A., “Covariant Information-Density Cutoff in Curved Space-Time”, Phys. Rev. Lett., 92, 221301 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0310035].
182 Kempf, A., “Spacetime could be simultaneously continuous and discrete in the same way that information can”, New J. Phys., 12, 115001 (2010). [External LinkDOI], [External LinkarXiv:1010.4354 [gr-qc]].
183 Kempf, A. and Mangano, G., “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55, 7909–7920 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9612084 [hep-th]].
184 Kempf, A., Mangano, G. and Mann, R.B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52, 1108–1118 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9412167].
185 Kim, W., Kim, Y.-W. and Park, Y.-J., “Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle”, Phys. Rev. D, 74, 104001 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0605084 [gr-qc]].
186 Kim, W., Son, E.J. and Yoon, M., “Thermodynamics of a black hole based on a generalized uncertainty principle”, J. High Energy Phys., 2008(01), 035 (2008). [External LinkDOI], [External LinkarXiv:0711.0786 [gr-qc]].
187 Kiritsis, E., Introduction to Superstring Theory, Leuven Notes in Mathematical and Theoretical Physics, (Leuven University Press, Leuven, 1998). [External LinkarXiv:hep-th/9709062].
188 Kober, M., “Gauge Theories under Incorporation of a Generalized Uncertainty Principle”, Phys. Rev. D, 82, 085017 (2010). [External LinkDOI], [External LinkarXiv:1008.0154 [physics.gen-ph]].
189 Kober, M., “Electroweak Theory with a Minimal Length”, Int. J. Mod. Phys. A, 26, 4251–4285 (2011). [External LinkDOI], [External LinkarXiv:1104.2319 [hep-ph]].
190 Kober, M., “Generalized Quantization Principle in Canonical Quantum Gravity and Application to Quantum Cosmology”, Int. J. Mod. Phys. A, 27, 1250106 (2012). [External LinkDOI], [External LinkarXiv:1109.4629 [gr-qc]].
191 Kostelecky, V.Alan and Russell, N., “Data Tables for Lorentz and CPT Violation”, Rev. Mod. Phys., 83, 11 (2011). [External LinkDOI], [External LinkarXiv:0801.0287 [hep-ph]].
192 Kothawala, D., Sriramkumar, L., Shankaranarayanan, S. and Padmanabhan, T., “Path integral duality modified propagators in spacetimes with constant curvature”, Phys. Rev. D, 80, 044005 (2009). [External LinkDOI], [External LinkarXiv:0904.3217 [hep-th]].
193 Kowalski-Glikman, J., “Observer independent quantum of mass”, Phys. Lett. A, 286, 391–394 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0102098 [hep-th]].
194 Kowalski-Glikman, J., “Doubly special quantum and statistical mechanics from quantum κ- Poincaré algebra”, Phys. Lett. A, 299, 454–460 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0111110 [hep-th]].
195 Kowalski-Glikman, J., “Introduction to Doubly Special Relativity”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, 40th Karpacz Winter School of Theoretical Physics, Ladek Zdrój, Poland, 4 – 14 February 2004, Lecture Notes in Physics, 669, pp. 131–159, (Springer, Berlin; New York, 2005). [External LinkDOI], [External LinkarXiv:hep-th/0405273 [hep-th]].
196 Kowalski-Glikman, J., “An introduction to relative locality”, unpublished, (2013).
197 Kowalski-Glikman, J. and Nowak, S., “Doubly special relativity and de Sitter space”, Class. Quantum Grav., 20, 4799–4816 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0304101 [hep-th]].
198 Kowalski-Glikman, J. and Starodubtsev, A., “Effective particle kinematics from Quantum Gravity”, Phys. Rev. D, 78, 084039 (2008). [External LinkDOI], [External LinkarXiv:0808.2613 [gr-qc]].
199 Kragh, H., “Arthur March, Werner Heisenberg, and the search for a smallest length”, Rev. Hist. Sci., 48, 401–434 (1995). [External LinkDOI].
200 Lévi, R., “Théorie de l’action universelle et discontinue”, J. Phys. Radium, 8, 182–198 (1927). [External LinkDOI].
201 Li, X., “Black hole entropy without brick walls”, Phys. Lett. B, 540, 9–13 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204029 [gr-qc]].
202 Litim, D.F., “Fixed Points of Quantum Gravity and the Renormalisation Group”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, PoS(QG-Ph)024, (SISSA, Trieste, 2008). [External LinkarXiv:0810.3675 [hep-th]]. URL (accessed 15 November 2012):
External Link
203 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13 (1998). [External LinkarXiv:gr-qc/9805049 [gr-qc]]. URL (accessed 11 October 2011):
204 Lowe, D.A., Polchinski, J., Susskind, L., Thorlacius, L. and Uglum, J., “Black hole complementarity versus locality”, Phys. Rev. D, 52, 6997–7010 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9506138].
205 Lukierski, J., Nowicki, A. and Ruegg, H., “New quantum Poincaré algebra and κ-deformed field theory”, Phys. Lett. B, 293, 344–352 (1992). [External LinkDOI].
206 Lukierski, J., Ruegg, H. and Zakrzewski, W.J., “Classical and Quantum Mechanics of Free κ-Relativistic Systems”, Ann. Phys. (N.Y.), 243, 90–116 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9312153 [hep-th]].
207 Maggiore, M., “The Algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319, 83–86 (1993). [External LinkDOI], [External LinkarXiv:hep-th/9309034 [hep-th]].
208 Maggiore, M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304, 65–69 (1993). [External LinkDOI], [External LinkarXiv:hep-th/9301067].
209 Maggiore, M., “Quantum groups, gravity and the generalized uncertainty principle”, Phys. Rev. D, 49, 5182–5187 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9305163 [hep-th]].
210 Magueijo, J., “Could quantum gravity be tested with high intensity lasers?”, Phys. Rev. D, 73, 124020 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603073 [gr-qc]].
211 Magueijo, J. and Smolin, L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88, 190403 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0112090 [hep-th]].
212 Magueijo, J. and Smolin, L., “Generalized Lorentz invariance with an invariant energy scale”, Phys. Rev. D, 67, 044017 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0207085 [gr-qc]].
213 Majid, S. and Ruegg, H., “Bicrossproduct structure of κ-Poincare group and non-commutative geometry”, Phys. Lett. B, 334, 348–354 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9405107].
214 Majumder, B., “Black Hole Entropy and the Modified Uncertainty Principle: A heuristic analysis”, Phys. Lett. B, 703, 402–405 (2011). [External LinkDOI], [External LinkarXiv:1106.0715 [gr-qc]].
215 Majumder, B., “Effects of GUP in Quantum Cosmological Perfect Fluid Models”, Phys. Lett. B, 699, 315–319 (2011). [External LinkDOI], [External LinkarXiv:1104.3488 [gr-qc]].
216 Majumder, B., “The Generalized Uncertainty Principle and the Friedmann equations”, Astrophys. Space Sci., 336, 331–335 (2011). [External LinkDOI], [External LinkarXiv:1105.2425 [gr-qc]].
217 Majumder, B., “Quantum Black Hole and the Modified Uncertainty Principle”, Phys. Lett. B, 701, 384–387 (2011). [External LinkDOI], [External LinkarXiv:1105.5314 [gr-qc]].
218 Manrique, E., Rechenberger, S. and Saueressig, F., “Asymptotically Safe Lorentzian Gravity”, Phys. Rev. Lett., 106, 251302 (2011). [External LinkDOI], [External LinkarXiv:1102.5012 [hep-th]].
219 March, A., “Die Geometrie kleinster Räume”, Z. Phys., 104, 93 (1936).
220 Martin, J. and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0005209].
221 Maziashvili, M., “Implications of minimum-length deformed quantum mechanics for QFT/QG”, Fortschr. Phys. (2013). [External LinkDOI], [External LinkarXiv:1110.0649 [gr-qc]].
222 Mead, C.A., “Possible Connection Between Gravitation and Fundamental Length”, Phys. Rev., 135, B849–B862 (1964). [External LinkDOI].
223 Mead, C.A., “Observable Consequences of Fundamental-Length Hypotheses”, Phys. Rev., 143, 990–1005 (1966). [External LinkDOI].
224 Mead, C.A. and Wilczek, F., “Walking the Planck Length through History”, Phys. Today, 54, 15 (2001). [External LinkDOI].
225 Medved, A.J.M. and Vagenas, E.C., “When conceptual worlds collide: The GUP and the BH entropy”, Phys. Rev. D, 70, 124021 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0411022 [hep-th]].
226 Meljanac, S. and Samsarov, A., “Scalar field theory on κ-Minkowski space-time and translation and Lorentz invariance”, Int. J. Mod. Phys. A, 26, 1439–1468 (2011). [External LinkDOI], [External LinkarXiv:1007.3943 [hep-th]].
227 Mena Marugán, G.A., Olmedo, J. and Pawlowski, T., “Prescriptions in Loop Quantum Cosmology: A comparative analysis”, Phys. Rev. D, 84, 064012 (2011). [External LinkDOI], [External LinkarXiv:1108.0829 [gr-qc]].
228 Mende, P.F. and Ooguri, H., “Borel summation of string theory for Planck scale scattering”, Nucl. Phys. B, 339, 641–662 (1990). [External LinkDOI].
229 Mercuri, S., “Introduction to Loop Quantum Gravity”, in Pinheiro, C., de Arruda, A.S., Blas, H. and Pires, G.O., eds., 5th International School on Field Theory and Gravitation, April 20 – 24, 2009, Cuiabá, Brazil, Proceedings of Science, PoS(ISFTG)016, (SISSA, Trieste, 2009). [External LinkarXiv:1001.1330 [gr-qc]]. URL (accessed 15 November 2012):
External Link
230 Mignemi, S., “Doubly special relativity and translation invariance”, Phys. Lett. B, 672, 186–189 (2009). [External LinkDOI], [External LinkarXiv:0808.1628 [gr-qc]].
231 Mimasu, K. and Moretti, S., “Top quark phenomenology of the Arkani-Hamed–Dimopoulos–Dvali model and the minimal length scenario”, Phys. Rev. D, 85, 074019 (2012). [External LinkDOI], [External LinkarXiv:1108.3280 [hep-ph]].
232 Moayedi, S.K., Setare, M.R. and Moayeri, H., “Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length”, Int. J. Theor. Phys., 49, 2080–2088 (2010). [External LinkDOI], [External LinkarXiv:1004.0563 [hep-th]].
233 Moayedi, S.K., Setare, M.R. and Moayeri, H., “Formulation of the Spinor Field in the Presence of a Minimal Length Based on the Quesne–Tkachuk Algebra”, Int. J. Mod. Phys. A, 26, 4981–4990 (2011). [External LinkDOI], [External LinkarXiv:1105.1900 [hep-th]].
234 Möglich, F., “Über das Massenverhältnis Elektron-Neutron”, Die Naturwissenschaften, 26, 409–410 (1938). [External LinkDOI].
235 Mohaupt, T., “Introduction to string theory”, in Giulini, D., Kiefer, C. and Lämmerzahl, C., eds., Quantum Gravity: From Theory to Experimental Search, 271th WE-Heraeus Seminar ‘Aspects of Quantum Gravity’, Bad Honnef, Germany, 24 February – 1 March 2002, Lecture Notes in Physics, 631, pp. 173–251, (Springer, Berlin; New York, 2003). [External LinkDOI], [External LinkarXiv:hep-th/0207249].
236 Moyal, J.E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45, 99–124 (1949). [External LinkDOI].
237 Myung, Y.S., Kim, Y.-W. and Park, Y.-J., “Black hole thermodynamics with generalized uncertainty principle”, Phys. Lett. B, 645, 393–397 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0609031 [gr-qc]].
238 Ng, Y.J. and van Dam, H., “Limitation to quantum measurements of space-time distances”, Ann. N.Y. Acad. Sci., 755, 579–584 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9406110].
239 Nicolini, P., “Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review”, Int. J. Mod. Phys. A, 24, 1229–1308 (2009). [External LinkDOI], [External LinkarXiv:0807.1939 [hep-th]].
240 Niedermaier, M. and Reuter, M., “The Asymptotic Safety Scenario in Quantum Gravity”, Living Rev. Relativity, 9, lrr-2006-5 (2006). URL (accessed 20 January 2012):
241 Nouicer, K., “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38, 10027–10035 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0512027 [hep-th]].
242 Nozari, K. and Fazlpour, B., “Generalized uncertainty principle, modified dispersion relations and early universe thermodynamics”, Gen. Relativ. Gravit., 38, 1661–1679 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601092 [gr-qc]].
243 Nozari, K. and Mehdipour, S.H., “Gravitational uncertainty and black hole remnants”, Mod. Phys. Lett. A, 20, 2937–2948 (2005). [External LinkDOI], [External LinkarXiv:0809.3144 [gr-qc]].
244 Nozari, K. and Pedram, P., “Minimal length and bouncing-particle spectrum”, Europhys. Lett., 92, 50013 (2010). [External LinkDOI], [External LinkarXiv:1011.5673 [hep-th]].
245 Nozari, K., Pedram, P. and Molkara, M., “Minimal Length, Maximal Momentum and the Entropic Force Law”, Int. J. Theor. Phys., 51, 1268–1275 (2012). [External LinkDOI], [External LinkarXiv:1111.2204 [gr-qc]].
246 Olmo, G.J., “Palatini Actions and Quantum Gravity Phenomenology”, J. Cosmol. Astropart. Phys., 2011(10), 018 (2011). [External LinkDOI], [External LinkarXiv:1101.2841 [gr-qc]].
247 Padmanabhan, T., “Physical Significance of Planck Length”, Ann. Phys. (N.Y.), 165, 38–58 (1985). [External LinkDOI].
248 Padmanabhan, T., “Planck length as the lower bound to all physical length scales”, Gen. Relativ. Gravit., 17, 215–221 (1985). [External LinkDOI].
249 Padmanabhan, T., “Limitations on the operational definition of space-time events and quantum gravity”, Class. Quantum Grav., 4, L107–L113 (1987). [External LinkDOI].
250 Padmanabhan, T., “Duality and zero point length of space-time”, Phys. Rev. Lett., 78, 1854–1857 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9608182 [hep-th]].
251 Padmanabhan, T., “Hypothesis of path integral duality. I. Quantum gravitational corrections to the propagator”, Phys. Rev. D, 57, 6206–6215 (1998). [External LinkDOI].
252 Panella, O., “Casimir-Polder intermolecular forces in minimal length theories”, Phys. Rev. D, 76, 045012 (2007). [External LinkDOI], [External LinkarXiv:0707.0405 [hep-th]].
253 Panes, B., “Minimum length-maximum velocity”, Eur. Phys. J. C, 72, 1930 (2012). [External LinkDOI], [External LinkarXiv:1112.3753 [hep-ph]].
254 Pauli, W., “[899] Pauli an Heisenberg, 11. Juli 1947”, in von Meyenn, K., ed., Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. III: 1940–1949, Sources in the History of Mathematics and Physical Sciences, 11, pp. 461–464, (Springer, Berlin; New York, 1993). Online version (accessed 12 January 2012):
External Link
255 Pedram, P., “A higher order GUP with minimal length uncertainty and maximal momentum”, Phys. Lett. B, 714, 317–323 (2011). [External LinkDOI], [External LinkarXiv:1110.2999 [hep-th]].
256 Pedram, P., “Minimal Length and the Quantum Bouncer: A Nonperturbative Study”, Int. J. Theor. Phys., 51, 1901–1910 (2012). [External LinkDOI], [External LinkarXiv:1201.2802 [hep-th]].
257 Pedram, P., “New Approach to Nonperturbative Quantum Mechanics with Minimal Length Uncertainty”, Phys. Rev. D, 85, 024016 (2012). [External LinkDOI], [External LinkarXiv:1112.2327 [hep-th]].
258 Pedram, P., “A note on the one-dimensional hydrogen atom with minimal length uncertainty”, arXiv, e-print, (2012). [External LinkarXiv:1203.5478 [quant-ph]].
259 Pedram, P., Nozari, K. and Taheri, S.H., “The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field”, J. High Energy Phys., 2011(03), 093 (2011). [External LinkDOI], [External LinkarXiv:1103.1015 [hep-th]].
260 Percacci, R., “Asymptotic Safety”, in Oriti, D., ed., Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, pp. 111–128, (Cambridge University Press, Cambridge; New York, 2009). [External LinkarXiv:0709.3851 [hep-th]].
261 Percacci, R. and Vacca, G.P., “Asymptotic Safety, Emergence and Minimal Length”, Class. Quantum Grav., 27, 245026 (2010). [External LinkDOI], [External LinkarXiv:1008.3621 [hep-th]].
262 Peres, A. and Rosen, N., “Quantum Limitations on the Measurement of Gravitational Fields”, Phys. Rev., 118, 335–336 (1960). [External LinkDOI].
263 Pérez-Payán, S., Sabido, M. and Yee, C., “Effects of deformed phase space on scalar field cosmology”, arXiv, e-print, (2011). [External LinkarXiv:1111.6136 [hep-th]].
264 Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M.S. and Brukner, Č., “Probing Planck-scale physics with quantum optics”, Nature Phys., 8, 393–397 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.1979 [quant-ph]].
265 Planck, M., “Über irreversible Strahlungsvorgänge”, Ann. Phys. (Berlin), 1, 69 (1900). [External LinkDOI].
266 Pokrowski, G.I., “Zur Frage nach der Struktur der Zeit”, Z. Phys., 51, 737–739 (1928). [External LinkDOI].
267 Proca, A. and Goudsmit, S., “Sur la masse des particules élémentaires”, J. Phys. Radium, 10, 209–214 (1939). [External LinkDOI].
268 Quesne, C. and Tkachuk, V.M., “Composite system in deformed space with minimal length”, Phys. Rev. A, 81, 012106 (2010). [External LinkDOI], [External LinkarXiv:0906.0050 [hep-th]].
269 Raghavan, R.S., “Time-Energy Uncertainty in Neutrino Resonance: Quest for the Limit of Validity of Quantum Mechanics”, arXiv, e-print, (2009). [External LinkarXiv:0907.0878 [hep-ph]].
270 Reuter, M. and Schwindt, J.-M., “A minimal length from the cutoff modes in asymptotically safe quantum gravity”, J. High Energy Phys., 2006(01), 070 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0511021 [hep-th]].
271 Rovelli, C. and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593–619 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9411005].
272 Rychkov, V.S., “Observers and measurements in noncommutative space-times”, J. Cosmol. Astropart. Phys., 2003(07), 006 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0305187 [hep-th]].
273 Said, J.L. and Adami, K.Z., “The generalized uncertainty principle in f(R) gravity for a charged black hole”, Phys. Rev. D, 83, 043008 (2011). [External LinkDOI], [External LinkarXiv:1102.3553 [gr-qc]].
274 Salecker, H. and Wigner, E.P., “Quantum limitations of the measurement of space-time distances”, Phys. Rev., 109, 571–577 (1958). [External LinkDOI].
275 Scardigli, F., “Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment”, Phys. Lett., B452, 39–44 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9904025].
276 Scardigli, F. and Casadio, R., “Generalized uncertainty principle, extra dimensions and holography”, Class. Quantum Grav., 20, 3915–3926 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0307174 [hep-th]].
277 Schutzhold, R. and Unruh, W.G., “Large-scale nonlocality in ‘doubly special relativity’ with an energy-dependent speed of light”, JETP Lett., 78, 431–435 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0308049 [gr-qc]].
278 Schwarz, J.H., “Introduction to superstring theory”, arXiv, e-print, (2000). [External LinkarXiv:hep-ex/0008017].
279 Sefiedgar, A.S., Nozari, K. and Sepangi, H.R., “Modified dispersion relations in extra dimensions”, Phys. Lett. B, 696, 119–123 (2011). [External LinkDOI], [External LinkarXiv:1012.1406 [gr-qc]].
280 Setare, M.R., “Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle”, Phys. Rev. D, 70, 087501 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0410044 [hep-th]].
281 Setare, M.R., “The generalized uncertainty principle and corrections to the Cardy–Verlinde formula in SAdS5 black holes”, Int. J. Mod. Phys. A, 21, 1325–1332 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0504179 [hep-th]].
282 Shankaranarayanan, S. and Padmanabhan, T., “Hypothesis of path integral duality: Applications to QED”, Int. J. Mod. Phys. D, 10, 351–366 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0003058 [gr-qc]].
283 Shenker, S.H., “Another Length Scale in String Theory?”, arXiv, e-print, (1995). [External LinkarXiv:hep-th/9509132].
284 Sindoni, L., “Emergent Models for Gravity: an Overview of Microscopic Models”, SIGMA, 8, 027 (2012). [External LinkDOI], [External LinkarXiv:1110.0686 [gr-qc]]. URL (accessed 20 November 2012):
External Link
285 Smailagic, A., Spallucci, E. and Padmanabhan, T., “String theory T-duality and the zero point length of spacetime”, arXiv, e-print, (2003). [External LinkarXiv:hep-th/0308122].
286 Smolin, L., “On limitations of the extent of inertial frames in non-commutative relativistic spacetimes”, arXiv, e-print, (2010). [External LinkarXiv:1007.0718 [gr-qc]].
287 Smolin, L., “Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity”, Gen. Relativ. Gravit., 43, 3671–3691 (2011). [External LinkDOI], [External LinkarXiv:1004.0664 [gr-qc]].
288 Snyder, H.S., “Quantized Space-Time”, Phys. Rev., 71, 38–41 (1947). [External LinkDOI].
289 Snyder, H.S., “[817] Snyder an Pauli, 1946”, in von Meyenn, K., ed., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Bd. III: 1940–1949, Sources in the History of Mathematics and Physical Sciences, 11, pp. 358–360, (Springer, Berlin; New York, 1993).
290 Sorkin, R.D., “Causal sets: Discrete gravity”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, Pan-American Advanced Studies Institute School on Quantum Gravity, held at the CECS, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Científicos, pp. 305–327, (Springer, New York, 2005). [External LinkarXiv:gr-qc/0309009 [gr-qc]].
291 Spallucci, E. and Fontanini, M., “Zero-point Length, Extra-Dimensions and String T-duality”, in Grece, S.A., ed., New Developments in String Theory Research, pp. 245–270, (Nova Science Publishers, Hauppauge, NY, 2005). [External LinkarXiv:gr-qc/0508076].
292 Sprenger, M., Nicolini, P. and Bleicher, M., “Neutrino oscillations as a novel probe for a minimal length”, Class. Quantum Grav., 28, 235019 (2011). [External LinkDOI], [External LinkarXiv:1011.5225 [hep-ph]].
293 Sprenger, M., Nicolini, P. and Bleicher, M., “Physics on the smallest scales: an introduction to minimal length phenomenology”, Eur. J. Phys., 33, 853–862 (2012). [External LinkDOI], [External LinkarXiv:1202.1500 [physics.ed-ph]].
294 Srinivasan, K., Sriramkumar, L. and Padmanabhan, T., “Hypothesis of path integral duality. II. Corrections to quantum field theoretic results”, Phys. Rev. D, 58, 044009 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9710104 [gr-qc]].
295 Sriramkumar, L. and Shankaranarayanan, S., “Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation”, J. High Energy Phys., 2006(12), 050 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0608224 [hep-th]].
296 Stetsko, M.M., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. A, 74, 062105 (2006). [External LinkDOI], [External LinkarXiv:quant-ph/0703269 [quant-ph]].
297 Susskind, L., “String theory and the principles of black hole complementarity”, Phys. Rev. Lett., 71, 2367–2368 (1993). [External LinkDOI], [External LinkarXiv:hep-th/9307168].
298 Susskind, L., “Strings, black holes and Lorentz contraction”, Phys. Rev. D, 49, 6606–6611 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9308139].
299 Szabo, R.J., “BUSSTEPP lectures on string theory: An introduction to string theory and D-brane dynamics”, arXiv, e-print, (2002). [External LinkarXiv:hep-th/0207142].
300 ’t Hooft, G. and Veltman, M., “One-loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincare A, 20, 69–94 (1974). Online version (accessed 20 November 2012):
External Link
301 Tamaki, T., Harada, T., Miyamoto, U. and Torii, T., “Have we already detected astrophysical symptoms of space-time noncommutativity?”, Phys. Rev. D, 65, 083003 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0111056 [gr-qc]].
302 Tezuka, K.-I., “Uncertainty of Velocity in kappa-Minkowski Spacetime”, arXiv, e-print, (2003). [External LinkarXiv:hep-th/0302126 [hep-th]].
303 Thiemann, T., “Closed formula for the matrix elements of the volume operator in canonical quantum gravity”, J. Math. Phys., 39, 3347–3371 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9606091].
304 Thiemann, T., “Loop quantum gravity: An inside view”, in Stamatescu, I.-O. and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, 721, pp. 185–263, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:hep-th/0608210].
305 Thiemann, T., Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2007). [External LinkarXiv:gr-qc/0110034].
306 Thorne, K.S., “Nonspherical gravitational collapse: A short review”, in Klauder, J.R., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972). [External LinkADS].
307 Tomassini, L. and Viaggiu, S., “Physically motivated uncertainty relations at the Planck length for an emergent non-commutative spacetime”, Class. Quantum Grav., 28, 075001 (2011). [External LinkDOI], [External LinkarXiv:1102.0894 [gr-qc]].
308 Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827–2838 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9409008].
309 Vakili, B., “Cosmology with minimal length uncertainty relations”, Int. J. Mod. Phys. D, 18, 1059–1071 (2009). [External LinkDOI], [External LinkarXiv:0811.3481 [gr-qc]].
310 Veneziano, G., “An enlarged uncertainty principle from gedanken string collisions?”, in Arnowitt, R.L., Bryan, R. and Duff, M.J., eds., Strings ’89, 3rd International Superstring Workshop, Texas A&M University, College Station, TX, March 13 – 8, 1989, pp. 86–103, (World Scientific, Singapore, 1990). Online version (accessed 29 March 2012):
External Link
311 Vilela Mendes, R., “Some consequences of a non-commutative space-time structure”, Eur. Phys. J. C, 42, 445–452 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0406013 [hep-th]].
312 Wang, P., Yang, H. and Zhang, X., “Quantum gravity effects on compact star cores”, arXiv, e-print, (2011). [External LinkarXiv:1110.5550 [gr-qc]].
313 Wess, J., “Nonabelian gauge theories on noncommutative spaces”, in Nath, P., Zerwas, P.M. and Grosche, C., eds., The 10th International Conference On Supersymmetry And Unification Of Fundamental Interactions (SUSY02), June 17 – 23, 2002, DESY Hamburg, pp. 586–599, (DESY, Hamburg, 2002). Online version (accessed 29 March 2012):
External Link
314 Wohlgenannt, M., “Non-commutative Geometry & Physics”, Ukr. J. Phys., 55, 5–14 (2010). [External LinkarXiv:hep-th/0602105 [hep-th]]. URL (accessed 15 November 2012):
External Link
315 Xiang, L. and Wen, X.Q., “Black hole thermodynamics with generalized uncertainty principle”, J. High Energy Phys., 2009(10), 046 (2009). [External LinkDOI], [External LinkarXiv:0901.0603 [gr-qc]].
316 Yang, C.N., “On quantized space-time”, Phys. Rev., 72, 874 (1947). [External LinkDOI].
317 Yoneya, T., “On the interpretation of minimal length in string theories”, Mod. Phys. Lett. A, 4, 1587 (1989). [External LinkDOI].
318 Yoneya, T., “String theory and space-time uncertainty principle”, Prog. Theor. Phys., 103, 1081–1125 (2000). [External LinkDOI], [External LinkarXiv:hep-th/0004074].
319 Yoon, M., Ha, J. and Kim, W., “Entropy of Reissner-Nordstrom black holes with minimal length revisited”, Phys. Rev. D, 76, 047501 (2007). [External LinkDOI], [External LinkarXiv:0706.0364 [gr-qc]].
320 Zhang, X., Shao, L. and Ma, B.-Q., “Photon Gas Thermodynamics in Doubly Special Relativity”, Astropart. Phys., 34, 840–845 (2011). [External LinkDOI], [External LinkarXiv:1102.2613 [hep-th]].
321 Zhao, H.-X., Li, H.-F., Hu, S.-Q. and Zhao, R., “Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime”, Commun. Theor. Phys., 48, 465–468 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0608023 [gr-qc]].