"Quantum-Spacetime Phenomenology"
Giovanni Amelino-Camelia 
1 Introduction and Preliminaries
1.1 The “Quantum-Gravity problem” as seen by a phenomenologist
1.2 Quantum spacetime vs quantum black hole and graviton exchange
1.3 20th century quantum-gravity phenomenology
1.4 Genuine Planck-scale sensitivity and the dawn of quantum-spacetime phenomenology
1.5 A simple example of genuine Planck-scale sensitivity
1.6 Focusing on a neighborhood of the Planck scale
1.7 Characteristics of the experiments
1.8 Paradigm change and test theories of not everything
1.9 Sensitivities rather than limits
1.10 Other limitations on the scope of this review
1.11 Schematic outline of this review
2 Quantum-Gravity Theories, Quantum Spacetime, and Candidate Effects
2.1 Quantum-Gravity Theories and Quantum Spacetime
2.2 Candidate effects
3 Quantum-Spacetime Phenomenology of UV Corrections to Lorentz Symmetry
3.1 Some relevant concepts
3.2 Preliminaries on test theories with modified dispersion relation
3.3 Photon stability
3.4 Pair-production threshold anomalies and gamma-ray observations
3.5 Photopion production threshold anomalies and the cosmic-ray spectrum
3.6 Pion non-decay threshold and cosmic-ray showers
3.7 Vacuum Cerenkov and other anomalous processes
3.8 In-vacuo dispersion for photons
3.9 Quadratic anomalous in-vacuo dispersion for neutrinos
3.10 Implications for neutrino oscillations
3.11 Synchrotron radiation and the Crab Nebula
3.12 Birefringence and observations of polarized radio galaxies
3.13 Testing modified dispersion relations in the lab
3.14 On test theories without energy-dependent modifications of dispersion relations
4 Other Areas of UV Quantum-Spacetime Phenomenology
4.1 Preliminary remarks on fuzziness
4.2 Spacetime foam, distance fuzziness and interferometric noise
4.3 Fuzziness for waves propagating over cosmological distances
4.4 Planck-scale modifications of CPT symmetry and neutral-meson studies
4.5 Decoherence studies with kaons and atoms
4.6 Decoherence and neutrino oscillations
4.7 Planck-scale violations of the Pauli Exclusion Principle
4.8 Phenomenology inspired by causal sets
4.9 Tests of the equivalence principle
5 Infrared Quantum-Spacetime Phenomenology
5.1 IR quantum-spacetime effects and UV/IR mixing
5.2 A simple model with soft UV/IR mixing and precision Lamb-shift measurements
5.3 Soft UV/IR mixing and atom-recoil experiments
5.4 Opportunities for Bose–Einstein condensates
5.5 Soft UV/IR mixing and the end point of tritium beta decay
5.6 Non-Keplerian rotation curves from quantum-gravity effects
5.7 An aside on gravitational quantum wells
6 Quantum-Spacetime Cosmology
6.1 Probing the trans-Planckian problem with modified dispersion relations
6.2 Randomly-fluctuating metrics and the cosmic microwave background
6.3 Loop quantum cosmology
6.4 Cosmology with running spectral dimensions
6.5 Some other quantum-gravity-cosmology proposals
7 Quantum-Spacetime Phenomenology Beyond the Standard Setup
7.1 A totally different setup with large extra dimensions
7.2 The example of hard UV/IR mixing
7.3 The possible challenge of not-so-subleading higher-order terms
8 Closing Remarks


1 Abbott, B.P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser interferometer gravitational-wave observatory”, Rep. Prog. Phys., 72, 076901 (2009). [External LinkDOI], [External LinkarXiv:0711.3041 [gr-qc]].
2 Abdo, A.A. et al., “Fermi Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission”, Astrophys. J., 706, L138–L144 (2009). [External LinkDOI], [External LinkarXiv:0909.2470 [astro-ph.HE]].
3 Abdo, A.A. et al. (The Fermi LAT and Fermi GBM Collaborations), “Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C”, Science, 323, 1688–1693 (2009). [External LinkDOI], [External LinkADS].
4 Abdo, A.A. et al. (Fermi LAT and Fermi GBM), “A limit on the variation of the speed of light arising from quantum gravity effects”, Nature, 462, 331–334 (2009).
5 Abraham, J. et al. (The Pierre Auger Collaboration), “Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects”, Science, 318, 938–943 (2007). [External LinkDOI], [External LinkarXiv:0711.2256 [astro-ph]].
6 Abraham, J. et al. (Pierre Auger Collaboration), “Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory”, arXiv, e-print, (2009). [External LinkarXiv:0906.2319].
7 Abraham, J. et al. (Pierre Auger Observatory), “Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV”, Phys. Rev. Lett., 104, 091101 (2010). [External LinkDOI], [External LinkarXiv:1002.0699 [astro-ph.HE]].
8 Abraham, J. et al. (Pierre Auger collaboration), “Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory”, Phys. Lett. B, 685, 239–246 (2010). [External LinkDOI], [External LinkarXiv:1002.1975 [astro-ph.HE]].
9 Abramovici, A. et al., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333 (1992). [External LinkDOI], [External LinkADS].
10 Abramowski, A. et al. (HESS Collaboration), “Search for Lorentz invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944”, Astropart. Phys., 34, 738–747 (2011). [External LinkDOI], [External LinkarXiv:1101.3650 [astro-ph.HE]].
11 Abreu, P. et al. (Pierre Auger Observatory), “Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter”, Astropart. Phys., 34, 314–326 (2010). [External LinkDOI], [External LinkarXiv:1009.1855].
12 Acernese, F. et al. (The Virgo Collaboration), “Virgo status”, Class. Quantum Grav., 25, 184001 (2008). [External LinkDOI], [External LinkADS].
13 Adler, R. et al. (CPLEAR Collaboration), “Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR”, Phys. Lett. B, 364, 239–245 (1995). [External LinkDOI], [External LinkarXiv:hep-ex/9511001].
14 Adunas, G.Z., Rodriguez-Milla, E. and Ahluwalia, D.V., “Probing quantum violations of the equivalence principle”, Gen. Relativ. Gravit., 33, 183–194 (2001). [External Linkgr-qc/0006022].
15 Aharonian, F. et al. (HEGRA Collaboration), “Reanalysis of the high energy cutoff of the 1997 Mkn 501 TeV energy spectrum”, Astron. Astrophys., 366, 62–67 (2000). [External LinkDOI], [External LinkarXiv:astro-ph/0011483].
16 Aharonian, F. et al. (HEGRA Collaboration), “TeV gamma rays from the blazar H 1426+428 and the diffuse extragalactic background radiation”, Astron. Astrophys., 384, L23–L26 (2002). [External LinkDOI], [External LinkarXiv:astro-ph/0202072].
17 Aharonian, F. et al. (HEGRA Collaboration), “Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes”, Astron. Astrophys., 393, 89–99 (2002). [External LinkDOI], [External LinkarXiv:astro-ph/0205499].
18 Aharonian, F. et al. (HESS Collaboration), “Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304”, Phys. Rev. Lett., 101, 170402 (2008). [External LinkDOI], [External LinkarXiv:0810.3475 [astro-ph]].
19 Aharony, O., Gomis, J. and Mehen, T., “On theories with light-like noncommutativity”, J. High Energy Phys., 09, 023 (2000). [External LinkarXiv:hep-th/0006236].
20 Ahluwalia, D.V., “Quantum measurements, gravitation, and locality”, Phys. Lett. B, 339, 301–303 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9308007].
21 Ahluwalia, D.V., “Reconciling superkamiokande, LSND, and home-stake neutrino oscillation data”, Mod. Phys. Lett. A, 13, 2249–2264 (1998). [External Linkhep-ph/9807267].
22 Ahluwalia, D.V., “Wave-particle duality at the Planck scale: Freezing of neutrino oscillations”, Phys. Lett. A, 275, 31–35 (2000).
23 Ahluwalia, D.V., “Ambiguity in source flux of cosmic / astrophysical neutrinos: Effects of bi-maximal mixing and quantum- gravity induced decoherence”, Mod. Phys. Lett. A, 16, 917–926 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0104316].
24 Ahluwalia, D.V., “At the interface of quantum and gravitational realms”, arXiv, e-print, (2002). [External LinkarXiv:gr-qc/0202098].
25 Ahluwalia, D.V. and Kirchbach, M., “Primordial space-time foam as an origin of cosmological matter-antimatter asymmetry”, Int. J. Mod. Phys. D, 10, 811–824 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0107246].
26 Ahluwalia-Khalilova, D.V., “Operational indistinguishabilty of doubly special relativities from special relativity”, arXiv, e-print, (2002). [External LinkarXiv:gr-qc/0212128].
27 Akhundov, A.A., Bellucci, S. and Shiekh, A., “Gravitational interaction to one loop in effective quantum gravity”, Phys. Lett. B, 395, 16–23 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9611018 [gr-qc]].
28 Akofor, E., Balachandran, A.P., Jo, S.G. and Joseph, A., “Quantum Fields on the Groenewold-Moyal Plane: C, P, T and CPT”, J. High Energy Phys., 08, 045 (2007). [External LinkDOI], [External LinkarXiv:0706.1259 [hep-th]].
29 Albert, J. et al. (MAGIC Collaboration), “Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope”, Phys. Lett. B, 668, 253–257 (2008). [External LinkDOI], [External LinkarXiv:0708.2889 [astro-ph]].
30 Albrecht, A. and Magueijo, J., “A time varying speed of light as a solution to cosmological puzzles”, Phys. Rev. D, 59, 043516 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9811018].
31 Alesci, E. and Arzano, M., “Anomalous dimension in semiclassical gravity”, Phys. Lett. B, 707, 272–277 (2012). [External LinkDOI], [External LinkarXiv:1108.1507 [gr-qc]].
32 Alexander, S., Brandenberger, R. and Magueijo, J., “Non-commutative inflation”, Phys. Rev. D, 67, 081301 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0108190].
33 Alfaro, J., Morales-Técotl, H.A. and Urrutia, L.F., “Quantum gravity corrections to neutrino propagation”, Phys. Rev. Lett., 84, 2318–2321 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9909079].
34 Alfaro, J., Morales-Técotl, H.A. and Urrutia, L.F., “Quantum gravity and spin 1/2 particles effective dynamics”, Phys. Rev. D, 66, 124006 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0208192].
35 Alfaro, J. and Palma, G., “Loop quantum gravity corrections and cosmic rays decays”, Phys. Rev. D, 65, 103516 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0111176].
36 Aloisio, R., Berezinsky, V., Blasi, P. and Ostapchenko, S., “Signatures of the transition from galactic to extragalactic cosmic rays”, Phys. Rev. D, 77, 025007 (2008). [External LinkDOI], [External LinkarXiv:0706.2834 [astro-ph]].
37 Aloisio, R., Blasi, P., Galante, A., Ghia, P.L. and Grillo, A.F., “Space time fluctuations and ultra high energy cosmic ray interactions”, Astropart. Phys., 19, 127–133 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0205271].
38 Aloisio, R., Blasi, P., Ghia, P.L. and Grillo, A.F., “Probing the structure of space-time with cosmic rays”, Phys. Rev. D, 62, 053010 (2000). [External LinkDOI], [External LinkarXiv:astro-ph/0001258].
39 Altschul, B., “Lorentz violation and synchrotron radiation”, Phys. Rev. D, 72, 085003 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0507258].
40 Altschul, B., “Limits on Lorentz violation from synchrotron and inverse Compton sources”, Phys. Rev. Lett., 96, 201101 (2006). [External LinkDOI], [External LinkarXiv:hep-ph/0603138].
41 Altschul, B., “Vacuum Cerenkov radiation in Lorentz-violating theories without CPT violation”, Phys. Rev. Lett., 98, 041603 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0609030].
42 Álvarez-Gaumé, L. and Gomez, C., “Remarks on Quantum Gravity”, Commun. Math. Phys., 89, 235 (1983). [External LinkDOI].
43 Álvarez-Gaumé, L. and Vázquez-Mozo, M.A., “General properties of noncommutative field theories”, Nucl. Phys. B, 668, 293–321 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0305093].
44 Amati, D., Ciafaloni, M. and Veneziano, G., “Can spacetime be probed below the string size?”, Phys. Lett. B, 216, 41–47 (1989). [External LinkDOI].
45 Ambjørn, J., Jurkiewicz, J. and Kristjansen, C.F., “Quantum gravity, dynamical triangulations and higher derivative regularization”, Nucl. Phys. B, 393, 601–632 (1993). [External LinkDOI], [External LinkarXiv:hep-th/9208032 [hep-th]].
46 Ambjørn, J., Jurkiewicz, J. and Loll, R., “Emergence of a 4D world from causal quantum gravity”, Phys. Rev. Lett., 93, 131301 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404156].
47 Ambjørn, J., Jurkiewicz, J. and Loll, R., “Reconstructing the universe”, Phys. Rev. D, 72, 064014 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0505154].
48 Ambjørn, J., Jurkiewicz, J. and Loll, R., “Spectral dimension of the universe”, Phys. Rev. Lett., 95, 171301 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0505113 [hep-th]].
49 Ambjørn, J., Jurkiewicz, J. and Loll, R., “Causal dynamical triangulations and the quest for quantum gravity”, in Murugan, J., Weltman, A. and Ellis, G.F.R., eds., Foundations of Space and Time: Reflections on Quantum Gravity, pp. 321–337, (Cambridge University Press, Cambridge; New York, 2012). [External LinkarXiv:1004.0352 [hep-th]].
50 Amelino-Camelia, G., “Limits on the measurability of space-time distances in the semiclassical approximation of quantum gravity”, Mod. Phys. Lett. A, 9, 3415–3422 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9603014].
51 Amelino-Camelia, G., “Gravity-wave interferometers as quantum-gravity detectors”, Nature, 398, 216–218 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9808029].
52 Amelino-Camelia, G., “Are We at the Dawn of Quantum-Gravity Phenomenology?”, in Kowalski-Glikman, J., ed., Towards Quantum Gravity, Proceeding of the XXXV International Winter School on Theoretical Physics Held in Polanica, Poland, 2 – 11 February 1999, Lecture Notes in Physics, 541, pp. 1–49, (Springer, Berlin; New York, 2000). [External LinkarXiv:gr-qc/9910089].
53 Amelino-Camelia, G., “Gravity-wave interferometers as probes of a low-energy effective quantum gravity”, Phys. Rev. D, 62, 024015 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9903080].
54 Amelino-Camelia, G., “A phenomenological description of quantum-gravity-induced space-time noise”, Nature, 410, 1065–1069 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0104086].
55 Amelino-Camelia, G., “Testable scenario for relativity with minimum-length”, Phys. Lett. B, 510, 255–263 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0012238].
56 Amelino-Camelia, G., “Doubly-Special Relativity: First Results and Key Open Problems”, Int. J. Mod. Phys. D, 11, 1643–1669 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0210063].
57 Amelino-Camelia, G., “Quantum-gravity phenomenology: Status and prospects”, Mod. Phys. Lett. A, 17, 899–922 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204051].
58 Amelino-Camelia, G., “Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale”, Int. J. Mod. Phys. D, 11, 35–60 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0012051].
59 Amelino-Camelia, G., “Space-time quantum solves three experimental paradoxes”, Phys. Lett. B, 528, 181–187 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0107086].
60 Amelino-Camelia, G., “Kinematical solution of the UHE-cosmic-ray puzzle without a preferred class of inertial observers”, Int. J. Mod. Phys. D, 12, 1211–1226 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0209232].
61 Amelino-Camelia, G., “Proposal of a second generation of quantum-gravity-motivated Lorentz-symmetry tests: Sensitivity to effects suppressed quadratically by the Planck scale”, Int. J. Mod. Phys. D, 12, 1633–1640 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0305057].
62 Amelino-Camelia, G., “Phenomenology of Planck-scale Lorentz-symmetry test theories”, New J. Phys., 6, 188 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0212002].
63 Amelino-Camelia, G., “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”, Symmetry, 2, 230–271 (2010). [External LinkarXiv:1003.3942 [gr-qc]].
64 Amelino-Camelia, G. and Arzano, M., “Coproduct and star product in field theories on Lie- algebra non-commutative space-times”, Phys. Rev. D, 65, 084044 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0105120].
65 Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “Distance measurement and wave dispersion in a Liouville- string approach to quantum gravity”, Int. J. Mod. Phys. A, 12, 607–624 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9605211].
66 Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Sarkar, S., “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo”, Nature, 393, 763–765 (1998). [External LinkDOI], [External LinkarXiv:astro-ph/9712103].
67 Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., “Principle of relative locality”, Phys. Rev. D, 84, 084010 (2011). [External LinkDOI], [External LinkarXiv:1101.0931 [hep-th]].
68 Amelino-Camelia, G. and Lämmerzahl, C., “Quantum-gravity motivated Lorentz symmetry tests with laser interferometers”, Class. Quantum Grav., 21, 899–916 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0306019].
69 Amelino-Camelia, G., Lämmerzahl, C., Mercati, F. and Tino, G.M., “Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms”, Phys. Rev. Lett., 103, 171302 (2009). [External LinkDOI], [External LinkarXiv:0911.1020 [gr-qc]].
70 Amelino-Camelia, G. and Majid, S., “Waves on noncommutative space-time and gamma-ray bursts”, Int. J. Mod. Phys. A, 15, 4301–4324 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9907110].
71 Amelino-Camelia, G., Matassa, M., Mercati, F. and Rosati, G., “Taming nonlocality in theories with deformed Lorentz symmetry”, Phys. Rev. Lett., 106, 071301 (2011). [External LinkarXiv:1006.2126 [gr-qc]].
72 Amelino-Camelia, G., Ng, Y.J. and Vanm Dam, H., “Anomalous particle-production thresholds through systematic and non-systematic quantum-gravity effects”, Astropart. Phys., 19, 729–738 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0204077].
73 Amelino-Camelia, G. and Piran, T., “Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV-gamma paradoxes”, Phys. Rev. D, 64, 036005 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0008107].
74 Amelino-Camelia, G. and Smolin, L., “Prospects for constraining quantum gravity dispersion with near term observations”, Phys. Rev. D, 80, 084017 (2009). [External LinkDOI], [External LinkarXiv:0906.3731 [astro-ph.HE]].
75 Amelino-Camelia, G., Smolin, L. and Starodubtsev, A., “Quantum symmetry, the cosmological constant and Planck scale phenomenology”, Class. Quantum Grav., 21, 3095–3110 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0306134].
76 Anandan, J., “Gravitationally coupled electromagnetic systems and quantum interference”, Class. Quantum Grav., 1, L51 (1984).
77 Anandan, J., “Relativistic thermoelectromagnetic gravitational effects in normal conductors and superconductors”, Phys. Lett. A, 105, 280–284 (1984).
78 Anselmi, D., “Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model”, Phys. Rev. D, 79, 025017 (2009). [External LinkDOI], [External LinkarXiv:0808.3475 [hep-ph]].
79 Anselmi, D. and Halat, M., “Renormalization of Lorentz violating theories”, Phys. Rev. D, 76, 125011 (2007). [External LinkDOI], [External LinkarXiv:0707.2480 [hep-th]].
80 Antoniadis, I., “A possible new dimension at a few TeV”, Phys. Lett. B, 246, 377–384 (1990). [External LinkDOI].
81 Antonov, E.E., Dedenko, L.G., Kirillov, A.A., Roganova, T.M., Fedorova, G.F. and Fedunin, E.Y., “Test of Lorentz Invariance through Observation of the Longitudinal Development of Ultrahigh-Energy Extensive Air Showers”, JETP Lett., 73, 446–450 (2001). [External LinkDOI], [External LinkADS].
82 Appelquist, T., Cheng, H.-C. and Dobrescu, B.A., “Bounds on universal extra dimensions”, Phys. Rev. D, 64, 035002 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0012100].
83 Arias, P., Gamboa, J., Lopez-Sarrion, J., Mendez, F. and Das, A.K., “CPT / Lorentz invariance violation and neutrino oscillation”, Phys. Lett. B, 650, 401–406 (2007). [External LinkDOI], [External LinkarXiv:hep-ph/0608007].
84 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G.R., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429, 263–272 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9803315].
85 Arkani-Hamed, N., Dimopoulos, S. and March-Russell, J., “Stabilization of sub-millimeter dimensions: The new guise of the hierarchy problem”, Phys. Rev. D, 63, 064020 (2001). [External LinkDOI], [External LinkarXiv:hep-th/9809124].
86 Arzano, M. and Benedetti, D., “Rainbow statistics”, Int. J. Mod. Phys. A, 24, 4623–4641 (2009). [External LinkDOI], [External LinkarXiv:0809.0889 [hep-th]].
87 Arzano, M., Calcagni, G., Oriti, D. and Scalisi, M., “Fractional and noncommutative spacetimes”, Phys. Rev. D, 84, 125002 (2011). [External LinkDOI], [External LinkarXiv:1107.5308 [hep-th]].
88 Arzano, M. and Kowalski-Glikman, J., “Kinematics of a relativistic particle with de Sitter momentum space”, Class. Quantum Grav., 28, 105009 (2011). [External LinkDOI], [External LinkarXiv:1008.2962 [hep-th]].
89 Arzano, M., Kowalski-Glikman, J. and Walkus, A., “A Bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry”, Europhys. Lett., 90, 30006 (2010). [External LinkDOI], [External LinkarXiv:0912.2712 [hep-th]].
90 Aschieri, P., “Duality rotations and BPS monopoles with space and time noncommutativity”, Nucl. Phys. B, 617, 321–347 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0106281].
91 Ashtekar, A., “Quantum mechanics of geometry”, arXiv, e-print, (1999). [External LinkarXiv:gr-qc/9901023].
92 Ashtekar, A., “Some recent advances in loop quantum cosmology”, J. Phys.: Conf. Ser., 360, 012001 (2012). [External LinkDOI].
93 Ashtekar, A., “Introduction to Loop Quantum Gravity”, in Calcagni, G., Papantonopoulos, L., Siopsis, G. and Tsamis, N., eds., Quantum Gravity and Quantum Cosmology, Sixth Aegean School, held in Chora on Naxos Island, Greece, 12 – 17 September 2011, Lecture Notes in Physics, 863, pp. 31–56, (Springer, Berlin; New York, 2013). [External LinkDOI], [External LinkarXiv:1201.4598 [gr-qc]].
94 Ashtekar, A., Bojowald, M. and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233–268 (2003). [External LinkarXiv:gr-qc/0304074].
95 Ashtekar, A. and Lewandowski, J., “Quantum theory of geometry. I: Area operators”, Class. Quantum Grav., 14, A55–A82 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9602046].
96 Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53–R152 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0404018 [gr-qc]].
97 Balachandran, A.P., Joseph, A. and Padmanabhan, P., “Non-Pauli Transitions From Spacetime Noncommutativity”, Phys. Rev. Lett., 105, 051601 (2010). [External LinkDOI], [External LinkarXiv:1003.2250 [hep-th]].
98 Balachandran, A.P., Mangano, G., Pinzul, A. and Vaidya, S., “Spin and statistics on the Groenwald–Moyal plane: Pauli-forbidden levels and transitions”, Int. J. Mod. Phys. A, 21, 3111–3126 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0508002].
99 Balachandran, A.P. and Padmanabhan, P., “Non-Pauli Effects from Noncommutative Spacetimes”, J. High Energy Phys., 1012, 001 (2010). [External LinkDOI], [External LinkarXiv:1006.1185 [hep-th]].
100 Balachandran, A.P., Pinzul, A. and Queiroz, A.R., “Twisted Poincare Invariance, Noncommutative Gauge Theories and UV-IR Mixing”, Phys. Lett. B, 668, 241–245 (2008). [External LinkDOI], [External LinkarXiv:0804.3588 [hep-th]].
101 Banerjee, R., “Dissipation and Noncommutativity in Planar Quantum Mechanics”, Mod. Phys. Lett. A, 17, 631 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0106280].
102 Banerjee, R., Dutta Roy, B. and Samanta, S., “Remarks on the noncommutative gravitational quantum well”, Phys. Rev. D, 74, 045015 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0605277].
103 Barcelo, C., Visser, M. and Liberati, S., “Einstein gravity as an emergent phenomenon?”, Int. J. Mod. Phys. D, 10, 799–806 (2001). [External LinkDOI], [External Linkgr-qc/0106002].
104 Barrow, J.D., “Cosmologies with varying light speed”, Phys. Rev. D, 59, 043515 (1999). [External LinkDOI].
105 Bartalucci, S. et al. (VIP Collaboration), “New experimental limit on the Pauli exclusion principle violation by electrons”, Phys. Lett. B, 641, 18–22 (2006). [External LinkDOI], [External LinkarXiv:quant-ph/0605047].
106 Basu, S. and Mattingly, D., “Constraints from cosmic rays on non-systematic Lorentz violation”, Class. Quantum Grav., 22, 3029–3044 (2005). [External LinkDOI], [External Linkastro-ph/0501425].
107 Bellini, G. et al. (Borexino Collaboration), “New experimental limits on the Pauli forbidden transitions in C-12 nuclei obtained with 485 days Borexino data”, Phys. Rev. C, 81, 034317 (2010). [External LinkDOI], [External LinkarXiv:0911.0548 [hep-ex]].
108 Benatti, F. and Floreanini, R., “Completely positive dynamical maps and the neutral kaon system”, Nucl. Phys. B, 488, 335–363 (1997). [External LinkDOI].
109 Benatti, F. and Floreanini, R., “Open system approach to neutrino oscillations”, J. High Energy Phys., 2000(02), 032 (2000). [External LinkDOI], [External LinkarXiv:hep-ph/0002221].
110 Benedetti, D., “Fractal properties of quantum spacetime”, Phys. Rev. Lett., 102, 111303 (2009). [External LinkDOI], [External LinkarXiv:0811.1396 [hep-th]].
111 Berezinsky, V., “Puzzles in astrophysics in the past and present”, Phys. Atom. Nucl., 66, 423–434 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0107306].
112 Bernabeu, J., Mavromatos, N.E. and Papavassiliou, J., “Novel type of CPT violation for correlated EPR states”, Phys. Rev. Lett., 92, 131601 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0310180].
113 Bernabeu, J., Mavromatos, N.E. and Sarkar, S., “Decoherence induced CPT violation and entangled neutral mesons”, Phys. Rev. D, 74, 045014 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0606137].
114 Bernadotte, S. and Klinkhamer, F.R., “Bounds on length scales of classical spacetime foam models”, Phys. Rev. D, 75, 024028 (2007). [External LinkDOI], [External LinkarXiv:hep-ph/0610216].
115 Bertolami, O., “Threshold Effects and Lorentz Symmetry”, in Elze, H.-T., ed., Decoherence and Entropy in Complex Systems, Selected Lectures from DICE 2002, Lecture Notes in Physics, 633, pp. 96–102, (Springer, Berlin; New York, 2004). [External LinkDOI], [External LinkarXiv:hep-ph/0301191].
116 Bertolami, O. and Carvalho, C.S., “Proposed astrophysical test of Lorentz invariance”, Phys. Rev. D, 61, 103002 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9912117].
117 Bertolami, O., Colladay, D., Kostelecký, V.A. and Potting, R., “CPT violation and baryogenesis”, Phys. Lett. B, 395, 178–183 (1997). [External LinkDOI], [External LinkarXiv:hep-ph/9612437].
118 Bertolami, O., Rosa, J.G., de Aragao, C.M.L., Castorina, P. and Zappala, D., “Noncommutative gravitational quantum well”, Phys. Rev. D, 72, 025010 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0505064].
119 Biller, S.D. et al., “Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies”, Phys. Rev. Lett., 83, 2108–2111 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9810044].
120 Bjerrum-Bohr, N.E.J, Donoghue, J.F. and Holstein, B.R., “Quantum gravitational corrections to the nonrelativistic scattering potential of two masses”, Phys. Rev. D, 67, 084033 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0211072 [hep-th]].
121 Blasone, M., Magueijo, J. and Pires-Pacheco, P., “Neutrino mixing and Lorentz invariance”, Europhys. Lett., 70, 600 (2005). [External LinkDOI], [External LinkarXiv:hep-ph/0307205].
122 Blaut, A., Daszkiewicz, M., Kowalski-Glikman, J. and Nowak, S., “Phase spaces of doubly special relativity”, Phys. Lett. B, 582, 82–85 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0312045].
123 Bluhm, R., “Overview of the Standard Model Extension: Implications and Phenomenology of Lorentz Violation”, in Ehlers, J. and Lämmerzahl, C., eds., Special Relativity: Will it Survive the Next 101 Years?, 71st WE-Heraeus Seminar, Potsdam from February 13 – 18, 2005, Lecture Notes in Physics, 702, pp. 191–226, (Springer, Berlin; New York, 2006). [External LinkDOI], [External LinkarXiv:hep-ph/0506054].
124 Boggs, S.E. and Coburn, W., “Statistical Uncertainty in the Re-Analysis of Polarization in GRB021206”, arXiv, e-print, (2003). [External LinkarXiv:astro-ph/0310515].
125 Bojowald, M., “Absence of singularity in loop quantum cosmology”, Phys. Rev. Lett., 86, 5227–5230 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0102069].
126 Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 11, lrr-2008-4 (2008). [External LinkDOI]. URL (accessed 10 June 2013):
127 Bojowald, M., Calcagni, G. and Tsujikawa, S., “Observational constraints on loop quantum cosmology”, Phys. Rev. Lett., 107, 211302 (2011). [External LinkDOI], [External LinkarXiv:1101.5391 [astro-ph.CO]].
128 Bojowald, M., Morales-Técotl, H.A. and Sahlmann, H., “On loop quantum gravity phenomenology and the issue of Lorentz invariance”, Phys. Rev. D, 71, 084012 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411101].
129 Bolmont, J. and Jacholkowska, A., “Lorentz symmetry breaking studies with photons from astrophysical observations”, Adv. Space Res., 47, 380–391 (2011). [External LinkDOI], [External LinkarXiv:1007.4954 [astro-ph.HE]].
130 Bolokhov, P.A., Groot Nibbelink, S. and Pospelov, M., “Lorentz violating supersymmetric quantum electrodynamics”, Phys. Rev. D, 72, 015013 (2005). [External LinkDOI], [External LinkarXiv:hep-ph/0505029].
131 Bombelli, L., Lee, J., Meyer, D. and Sorkin, R.D., “Space-Time as a Causal Set”, Phys. Rev. Lett., 59, 521–524 (1987). [External LinkDOI].
132 Bombelli, L. and Winkler, O., “Comparison of QG induced dispersion with standard physics effects”, Class. Quantum Grav., 21, L89–L96 (2004). [External Linkgr-qc/0403049].
133 Borgman, J. and Ford, L.H., “Effects of stress tensor fluctuations upon focusing”, Phys. Rev. D, 70, 064032 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0307043 [gr-qc]].
134 Brandenberger, R.H., “Inflationary cosmology: Progress and problems”, in Mansouri, R. and Brandenberger, R.H., eds., Large Scale Structure Formation, 1st Iranian International School on Cosmology, Kish Island, Iran, 22 January – 4 February 1999, Astrophysics and Space Science Library, 247, pp. 169–211, (Kluwer; Springer, Dordrecht, 2000). [External LinkDOI], [External LinkarXiv:hep-ph/9910410 [hep-ph]].
135 Brandenberger, R.H., “Do we have a Theory of Early Universe Cosmology?”, arXiv, e-print, (2012). [External LinkarXiv:1204.6108 [astro-ph.CO]].
136 Brandenberger, R.H. and Martin, J., “The robustness of inflation to changes in super-Planck- scale physics”, Mod. Phys. Lett. A, 16, 999–1006 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0005432].
137 Brau, F. and Buisseret, F., “Minimal length uncertainty relation and gravitational quantum well”, Phys. Rev. D, 74, 036002 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0605183].
138 Briscese, F., “Trapped Bose–Einstein condensates with Planck-scale induced deformation of the energy–momentum dispersion relation”, Phys. Lett. B, 718, 214–217 (2012). [External LinkDOI], [External LinkarXiv:1206.1236].
139 Briscese, F., Grether, M. and de Llano, M., “Planck-scale effects on Bose-Einstein condensates”, Europhys. Lett., 98, 60001 (2012). [External LinkDOI], [External LinkarXiv:1204.4670 [gr-qc]].
140 Bruno, N.R., Amelino-Camelia, G. and Kowalski-Glikman, J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522, 133–138 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0107039].
141 Brustein, R., Eichler, D. and Foffa, S., “Probing the Planck scale with neutrino oscillations”, Phys. Rev. D, 65, 105006 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0106309].
142 Brustein, R., Gasperini, M., Giovannini, M., Mukhanov, V.F. and Veneziano, G., “Metric perturbations in dilaton driven inflation”, Phys. Rev. D, 51, 6744–6756 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9501066].
143 Brustein, R., Gasperini, M., Giovannini, M. and Veneziano, G., “Relic gravitational waves from string cosmology”, Phys. Lett. B, 361, 45–51 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9507017].
144 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0311082 [gr-qc]]. URL (accessed 10 June 2013):
145 Burgess, C.P., “Lectures on cosmic inflation and its potential stringy realizations”, Class. Quantum Grav., 24, 795 (2007). [External LinkDOI], [External LinkarXiv:0708.2865 [hep-th]].
146 Calmet, X., Hsu, S.D.H. and Reeb, D., “Grand unification and enhanced quantum gravitational effects”, Phys. Rev. Lett., 101, 171802 (2008). [External LinkDOI], [External Link0805.0145 [hep-ph]].
147 Calmet, X., Hsu, S.D.H. and Reeb, D., “Grand unification through gravitational effects”, Phys. Rev. D, 81, 035007 (2010). [External LinkDOI], [External LinkarXiv:0911.0415 [hep-ph]].
148 Camacho, A., “Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle”, Mod. Phys. Lett. A, 14, 2545–2556 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9911112].
149 Camacho, A., “Decoherence-induced violations of Einstein equivalence principle”, Int. J. Mod. Phys. D, 10, 767–774 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0107028].
150 Carlip, S., “Space-time foam and the cosmological constant”, Phys. Rev. Lett., 79, 4071–4074 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9708026 [gr-qc]].
151 Carlip, S., “Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885–942 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0108040].
152 Carlip, S., “Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe”, Living Rev. Relativity, 8, lrr-2005-1 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0409039 [gr-qc]]. URL (accessed 10 June 2013):
153 Carlip, S., Mosna, R.A. and Pitelli, J.P.M., “Vacuum Fluctuations and the Small Scale Structure of Spacetime”, Phys. Rev. Lett., 107, 021303 (2011). [External LinkDOI], [External LinkarXiv:1103.5993 [gr-qc]].
154 Carmona, J.M. and Cortes, J.L., “Testing Lorentz invariance violations in the tritium beta-decay anomaly”, Phys. Lett. B, 494, 75–80 (2000). [External LinkDOI], [External LinkarXiv:hep-ph/0007057].
155 Carmona, J.M. and Cortes, J.L., “Infrared and ultraviolet cutoffs of quantum field theory”, Phys. Rev. D, 65, 025006 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0012028].
156 Carmona, J.M., Cortés, J.L. and Induráin, J., “Interpretation of neutrino oscillations based on new physics in the infrared”, J. High Energy Phys., 2008(06), 033 (2008). [External LinkDOI], [External LinkarXiv:0709.2267 [hep-ph]].
157 Caron, B. et al. (The Virgo Collaboration), “The Virgo interferometer”, Class. Quantum Grav., 14, 1461–1469 (1997). [External LinkDOI], [External LinkADS].
158 Carroll, S.M., Field, G.B. and Jackiw, R., “Limits on a Lorentz- and parity-violating modification of electrodynamics”, Phys. Rev. D, 41, 1231–1240 (1990). [External LinkDOI].
159 Carroll, S.M. and Lim, E.A., “Lorentz-violating vector fields slow the universe down”, Phys. Rev. D, 70, 123525 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0407149].
160 Chaichian, M., Dolgov, A.D., Novikov, V.A. and Tureanu, A., “CPT Violation Does Not Lead to Violation of Lorentz Invariance and Vice Versa”, Phys. Lett. B, 699, 177–180 (2011). [External LinkDOI], [External LinkarXiv:1103.0168 [hep-th]].
161 Chaichian, M., Kulish, P.P., Nishijima, K. and Tureanu, A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604, 98–102 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0408069].
162 Chaichian, M., Nishijima, K. and Tureanu, A., “Spin-statistics and CPT theorems in noncommutative field theory”, Phys. Lett. B, 568, 146–152 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0209008].
163 Chakraborty, B., Gangopadhyay, S., Hazra, A.G. and Scholtz, F.G., “Twisted Galilean symmetry and the Pauli principle at low energies”, J. Phys. A: Math. Gen., 39, 9557–9572 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0601121 [hep-th]].
164 Chandrasekhar, S., “The maximum mass of ideal white dwarfs”, Astrophys. J., 74, 81–82 (1931). [External LinkDOI].
165 Chandrasekhar, S., “The highly collapsed configurations of a stellar mass (Second paper)”, Mon. Not. R. Astron. Soc., 95, 207–225 (1935). [External LinkADS].
166 Chapline, G., Hohlfeld, E., Laughlin, R.B. and Santiago, D.I., “Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A, 18, 3587–3590 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0012094].
167 Chen, Y. and Wen, L., “Probing Spacetime Foam with Photons: Suppression of Observable Effects due to Uncertainty in Optical Paths”, arXiv, e-print, (2006). [External LinkarXiv:gr-qc/0605093 [gr-qc]].
168 Choubey, S. and King, S.F., “Gamma ray bursts as probes of neutrino mass, quantum gravity, and dark energy”, Phys. Rev. D, 67, 073005 (2003). [External LinkDOI], [External LinkarXiv:hep-ph/0207260].
169 Christian, J., “Testing quantum gravity via cosmogenic neutrino oscillations”, Phys. Rev. D, 71, 024012 (2005). [External Linkgr-qc/0409077].
170 Christiansen, W.A., Ng, Y.J., Floyd, D.J.E. and Perlman, E.S., “Limits on Spacetime Foam”, Phys. Rev. D, 83, 084003 (2011). [External LinkDOI], [External LinkarXiv:0912.0535 [astro-ph.CO]].
171 Christiansen, W.A., Ng, Y.J. and van Dam, H., “Probing spacetime foam with extragalactic sources”, Phys. Rev. Lett., 96, 051301 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0508121 [gr-qc]].
172 Chu, C.-S., Greene, B.R. and Shiu, G., “Remarks on inflation and noncommutative geometry”, Mod. Phys. Lett. A, 16, 2231–2240 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0011241].
173 Coburn, W. and Boggs, S.E., “Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002”, Nature, 423, 415–417 (2003). [External LinkDOI].
174 Cohen, A.G. and Glashow, S.L., “A Lorentz-violating origin of neutrino mass?”, arXiv, e-print, (2006). [External LinkarXiv:hep-ph/0605036].
175 Cohen, A.G. and Glashow, S.L., “Pair Creation Constrains Superluminal Neutrino Propagation”, Phys. Rev. Lett., 107, 181803 (2011). [External LinkDOI], [External LinkarXiv:1109.6562 [hep-ph]].
176 Cohen, A.G., Kaplan, D.B. and Nelson, A.E., “Effective field theory, black holes, and the cosmological constant”, Phys. Rev. Lett., 82, 4971–4974 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9803132].
177 Colella, R., Overhauser, A.W. and Werner, S.A., “Observation of gravitationally induced quantum interference”, Phys. Rev. Lett., 34, 1472–1474 (1975).
178 Coleman, S.R., “Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence”, Nucl. Phys. B, 307, 867 (1988). [External LinkDOI].
179 Coleman, S.R. and Glashow, S.L., “High-Energy Tests of Lorentz Invariance”, Phys. Rev. D, 59, 116008 (1999). [External LinkDOI], [External LinkarXiv:hep-ph/9812418].
180 Colladay, D. and Kostelecký, V.A., “CPT violation and the standard model”, Phys. Rev. D, 55, 6760–6774 (1997). [External LinkDOI], [External LinkarXiv:hep-ph/9703464].
181 Colladay, D. and Kostelecký, V.A., “Lorentz-violating extension of the standard model”, Phys. Rev. D, 58, 116002 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9809521].
182 Collins, J., Perez, A., Sudarsky, D., Urrutia, L. and Vucetich, H., “Lorentz invariance and quantum gravity: an additional fine-tuning problem?”, Phys. Rev. Lett., 93, 191301 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0403053].
183 Combes, F., Boissé, P., Mazure, A. and Blanchard, A., Galaxies and Cosmology, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 2002), 2nd edition.
184 Connes, A., Noncommutative Geometry, (Academic Press, San Diego, CA, 1994). [External LinkGoogle Books].
185 Connes, A., “Noncommutative geometry and reality”, J. Math. Phys., 36, 6194–6231 (1995). [External LinkDOI].
186 Contaldi, C.R., Dowker, F. and Philpott, L., “Polarization Diffusion from Spacetime Uncertainty”, Class. Quantum Grav., 27, 172001 (2010). [External LinkDOI], [External LinkarXiv:1001.4545 [gr-qc]].
187 Corsi, A., Guetta, D. and Piro, L., “GeV emission from short Gamma-Ray Bursts: the case of GRB 081024B”, arXiv, e-print, (2009). [External LinkarXiv:0905.1513 [astro-ph.CO]].
188 Costa, E. et al., “Discovery of the X-ray afterglow of the γ-ray burst of 28 February 1997”, Nature, 387, 783–785 (1997). [External LinkDOI], [External LinkarXiv:astro-ph/9706065 [astro-ph]].
189 Coule, D.H., “Comment: Planck scale still safe from stellar interferometry”, Class. Quantum Grav., 20, 3107–3112 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0302333].
190 Crichigno, P.M. and Vucetich, H., “Quantum corrections to Lorentz invariance violating theories: Fine-tuning problem”, Phys. Lett. B, 651, 313–318 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0607214].
191 Czerhoniak, P., “Force in Kappa deformed relativistic dynamics”, Mod. Phys. Lett. A, 15, 1823–1831 (2000). [External LinkDOI], [External LinkarXiv:hep-th/0012066 [hep-th]].
192 Damour, T., “String theory, cosmology and varying constants”, Astrophys. Space Sci., 283, 445–456 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0210059].
193 Damour, T., Piazza, F. and Veneziano, G., “Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204094].
194 Damour, T., Piazza, F. and Veneziano, G., “Violations of the equivalence principle in a dilaton-runaway scenario”, Phys. Rev. D, 66, 046007 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0205111].
195 Damour, T. and Polyakov, A.M., “The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9401069].
196 Damour, T. and Polyakov, A.M., “String theory and gravity”, Gen. Relativ. Gravit., 26, 1171–1176 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9411069].
197 Danielsson, U.H., “A note on inflation and trans-Planckian physics”, Phys. Rev. D, 66, 023511 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0203198 [hep-th]].
198 Danielsson, U.H., “Transplanckian signatures in WMAP3?”, arXiv, e-print, (2006). [External LinkarXiv:astro-ph/0606474].
199 Daszkiewicz, M., Imilkowska, K. and Kowalski-Glikman, J., “Velocity of particles in doubly special relativity”, Phys. Lett. A, 323, 345–350 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0304027].
200 Daszkiewicz, M., Imilkowska, K., Kowalski-Glikman, J. and Nowak, S., “Scalar field theory on kappa-Minkowski space-time and doubly special relativity”, Int. J. Mod. Phys. A, 20, 4925–4940 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0410058].
201 de Angelis, A., “GLAST, the gamma-ray large area space telescope”, arXiv, e-print, (2000). [External LinkarXiv:astro-ph/0009271].
202 DeDeo, S. and Prescod-Weinstein, C., “Energy-Dependent Speeds of Light for Cosmic-Ray Observatories”, arXiv, e-print, (2008). [External LinkarXiv:0811.1999 [astro-ph]].
203 Deser, S., “General Relativity and the Divergence Problem in Quantum Field Theory”, Rev. Mod. Phys., 29, 417–423 (1957). [External LinkDOI].
204 Di Domenico, A., “CPT and QM tests using kaon interferometry”, arXiv, e-print, (2009). [External LinkarXiv:0904.1976].
205 Di Domenico, A. (KLOE Collaboration), “Status and Perspectives of CP and CPT Tests With Neutral Kaons at KLOE”, in Benussi, L. et al., eds., Discoveries in Flavour Physics at e+e Colliders, Frascati, Italy, February 28th – March 3rd, 2006, Frascati Physics Series, XLI, pp. 79–85, (INFN, Frascati, 2006). Online version (accessed 10 June 2013):
External Link
206 Di Stefano, R., Ford, L.H., Yu, H.-W. and Fixsen, D.J., “Quantum gravity and astrophysics: The microwave background and other thermal sources”, arXiv, e-print, (2001). [External LinkarXiv:astro-ph/0107001].
207 Dienes, K.R., Dudas, E. and Gherghetta, T., “Extra spacetime dimensions and unification”, Phys. Lett. B, 436, 55–65 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9803466].
208 Dimopoulos, S., Graham, P.W., Hogan, J.M., Kasevich, M.A. and Rajendran, S., “Gravitational Wave Detection with Atom Interferometry”, Phys. Lett. B, 678, 37–40 (2009). [External LinkarXiv:0712.1250 [gr-qc]].
209 Diosi, L. and Lukacs, B., “Karolyhazy’s quantum space-time generates neutron star density in vacuum”, Nuovo Cimento B, 108, 1419–1422 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9302028 [gr-qc]].
210 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996–2999 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9310024 [gr-qc]].
211 Doplicher, S., Fredenhagen, K. and Roberts, J.E., “Space-time quantization induced by classical gravity”, Phys. Lett. B, 331, 39–44 (1994). [External LinkDOI].
212 Dou, D. and Percacci, R., “The running gravitational couplings”, Class. Quantum Grav., 15, 3449–3468 (1998). [External LinkDOI], [External LinkarXiv:hep-th/9707239].
213 Douglas, M.R. and Nekrasov, N.A., “Noncommutative field theory”, Rev. Mod. Phys., 73, 977–1029 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0106048].
214 Dowker, F., Henson, J. and Sorkin, R.D., “Quantum gravity phenomenology, Lorentz invariance and discreteness”, Mod. Phys. Lett. A, 19, 1829–1840 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0311055].
215 Dowker, F., Henson, J. and Sorkin, R.D., “Discreteness and the transmission of light from distant sources”, Phys. Rev. D, 82, 104048 (2010). [External LinkDOI], [External LinkarXiv:1009.3058 [gr-qc]].
216 Dvali, G., Folkerts, S. and Germani, C., “Physics of Trans-Planckian Gravity”, Phys. Rev. D, 84, 024039 (2011). [External LinkDOI], [External LinkarXiv:1006.0984 [hep-th]].
217 Easther, R., Greene, B.R., Kinney, W.H. and Shiu, G., “Inflation as a probe of short distance physics”, Phys. Rev. D, 64, 103502 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0104102].
218 Ellis, J.R., Farakos, K., Mavromatos, N.E., Mitsou, V.A. and Nanopoulos, D.V., “Astrophysical probes of the constancy of the velocity of light”, Astrophys. J., 535, 139–151 (2000). [External Linkastro-ph/9907340].
219 Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V. and Srednicki, M., “Search for Violations of Quantum Mechanics”, Nucl. Phys. B, 241, 381–405 (1984). [External LinkDOI].
220 Ellis, J.R., Lopez, J.L., Mavromatos, N.E. and Nanopoulos, D.V., “Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system”, Phys. Rev. D, 53, 3846–3870 (1996). [External LinkDOI], [External LinkarXiv:hep-ph/9505340].
221 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “String theory modifies quantum mechanics”, Phys. Lett. B, 293, 37–48 (1992). [External LinkDOI], [External LinkarXiv:hep-th/9207103].
222 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “Testing quantum mechanics in the neutral kaon system”, Phys. Lett. B, 293, 142–148 (1992). [External LinkDOI], [External LinkarXiv:hep-ph/9207268].
223 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “Some physical aspects of Liouville string dynamics”, arXiv, e-print, (1994). [External LinkarXiv:hep-th/9405196].
224 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “A microscopic Liouville arrow of time”, Chaos Solitons Fractals, 10, 345–363 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9805120].
225 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “Non-critical Liouville string escapes constraints on generic models of quantum gravity”, Phys. Rev. D, 65, 064007 (2002). [External LinkDOI], [External LinkarXiv:astro-ph/0108295].
226 Ellis, J.R., Mavromatos, N.E. and Nanopoulos, D.V., “Probing a Possible Vacuum Refractive Index with Gamma-Ray Telescopes”, Phys. Lett. B, 674, 83 (2009). [External LinkarXiv:0901.4052].
227 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Sakharov, A.S., “Synchrotron radiation and quantum gravity”, Nature, 428, 386 (2004). [External Linkastro-ph/0309144].
228 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sakharov, A.S. and Sarkisyan, E.K.G., “Robust limits on Lorentz violation from gamma-ray bursts”, Astropart. Phys., 25, 402–411 (2006). [External Linkastro-ph/0510172 [astro-ph]].
229 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sakharov, A.S. and Sarkisyan, E.K.G., “Corrigendum to ‘Robust limits on Lorentz violation from gamma-ray bursts”’, Astropart. Phys., 29, 158 (2008). [External Linkastro-ph/0510172 [astro-ph]].
230 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Volkov, G., “Gravitational-recoil effects on fermion propagation in space-time foam”, Gen. Relativ. Gravit., 32, 1777–1798 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9911055].
231 Ellis, J.R., Mavromatos, N.E. and Sakharov, A.S., “Synchrotron radiation from the Crab Nebula discriminates between models of space-time foam”, Astropart. Phys., 20, 669–682 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0308403].
232 Falcone, A.D. et al., “Gamma Ray Burst Section of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy”, arXiv, e-print, (2008). [External LinkarXiv:0810.0520 [astro-ph]].
233 Ferenc, D. (MAGIC Collaboration), “The MAGIC gamma-ray observatory”, Nucl. Instrum. Methods A, 553, 274–281 (2005). [External LinkDOI].
234 Fidecaro, M. and Gerber, H.-J., “The fundamental symmetries in the neutral kaon system: A pedagogical choice”, Rep. Prog. Phys., 69, 1713–1770 (2006). [External LinkDOI], [External LinkarXiv:hep-ph/0603075].
235 Finkbeiner, D.P., Davis, M. and Schlegel, D.J., “Detection of a Far IR Excess with DIRBE at 60 and 100 Microns”, Astrophys. J., 544, 81–97 (2000). [External LinkDOI], [External LinkarXiv:astro-ph/0004175].
236 Fiore, G. and Wess, J., “On ‘full’ twisted Poincare’ symmetry and QFT on Moyal-Weyl spaces”, Phys. Rev. D, 75, 105022 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701078].
237 Freidel, L., Kowalski-Glikman, J. and Smolin, L., “2+1 gravity and doubly special relativity”, Phys. Rev. D, 69, 044001 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0307085].
238 Freidel, L. and Livine, E.R., “Effective 3-D quantum gravity and non-commutative quantum field theory”, Phys. Rev. Lett., 96, 221301 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0512113 [hep-th]].
239 Gaete, P. and Wotzasek, C., “Lorentz Violating Julia-Toulouse Mechanism”, Phys. Rev. D, 75, 057902 (2007). [External Linkhep-ph/0607321].
240 Gagnon, O. and Moore, G.D., “Limits on Lorentz violation from the highest energy cosmic rays”, Phys. Rev. D, 70, 065002 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0404196].
241 Gago, A.M., Santos, E.M., Teves, W.J.C. and Zukanovich Funchal, R., “A study on quantum decoherence phenomena with three generations of neutrinos”, arXiv, e-print, (2002). [External LinkarXiv:hep-ph/0208166].
242 Gaisser, T.K., “Cosmic rays: current status, historical context”, arXiv, e-print, (2010). [External LinkarXiv:1010.5996 [astro-ph.HE]].
243 Galán, P. and Mena Marugán, G.A., “Canonical Realizations of Doubly Special Relativity”, Int. J. Mod. Phys. D, 16, 1133–1147 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0702027 [gr-qc]].
244 Galaverni, M. and Sigl, G., “Lorentz Violation in the Photon Sector and Ultra-High Energy Cosmic Rays”, Phys. Rev. Lett., 100, 021102 (2008). [External LinkDOI], [External LinkarXiv:0708.1737 [astro-ph]].
245 Gambini, R., Porto, R.A. and Pullin, J., “Decoherence from discrete quantum gravity”, Class. Quantum Grav., 21, L51–L57 (2004). [External LinkarXiv:gr-qc/0305098].
246 Gambini, R., Porto, Rafael A. and Pullin, J., “Realistic Clocks, Universal Decoherence, and the Black Hole Information Paradox”, Phys. Rev. Lett., 93, 240401 (2004). [External LinkDOI].
247 Gambini, R. and Pullin, J., “Nonstandard optics from quantum space-time”, Phys. Rev. D, 59, 124021 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9809038].
248 Gamboa, J., López-Sarrión, J. and Polychronakos, A.P., “Ultraviolet modified photons and anisotropies in the cosmic microwave background radiation”, Phys. Lett. B, 634, 471–473 (2006). [External Linkhep-ph/0510113].
249 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9403008].
250 Garay, L.J., “Space-time foam as a quantum thermal bath”, Phys. Rev. Lett., 80, 2508–2511 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9801024 [gr-qc]].
251 Garay, L.J., “Quantum evolution in spacetime foam”, Int. J. Mod. Phys. A, 14, 4079–4120 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9911002].
252 Gasperini, M., “Testing the principle of equivalence with neutrino oscillations”, Phys. Rev. D, 38, 2635–2637 (1988).
253 Gasperini, M. and Veneziano, G., “String Theory and Pre-big bang Cosmology”, arXiv, e-print, (2007). [External LinkarXiv:hep-th/0703055].
254 Gharibyan, V., “Possible observation of photon speed energy dependence”, Phys. Lett. B, 611, 231–238 (2005). [External LinkDOI], [External LinkarXiv:hep-ex/0303010 [hep-ex]].
255 Gharibyan, V., “Testing Planck-Scale Gravity with Accelerators”, Phys. Rev. Lett., 109, 141103 (2012). [External LinkDOI], [External LinkarXiv:1207.7297 [hep-ph]].
256 Ghirlanda, G., Ghisellini, G. and Nava, L., “The onset of the GeV afterglow of GRB 090510”, arXiv, e-print, (2009). [External LinkarXiv:0909.0016 [astro-ph.HE]].
257 Giddings, S.B., “Is string theory a theory of quantum gravity?”, Found. Phys., 43, 115–139 (2013). [External LinkDOI], [External LinkarXiv:1105.6359 [hep-th]].
258 Giddings, S.B. and Thomas, S.D., “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D, 65, 056010 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0106219].
259 Girelli, F., Livine, E.R. and Oriti, D., “Deformed special relativity as an effective flat limit of quantum gravity”, Nucl. Phys. B, 708, 411–433 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0406100 [gr-qc]].
260 Giudice, G.F., Rattazzi, R. and Wells, J.D., “Quantum gravity and extra dimensions at high-energy colliders”, Nucl. Phys. B, 544, 3–38 (1999). [External LinkDOI], [External LinkarXiv:hep-ph/9811291].
261 Gleiser, R.J. and Kozameh, C.N., “Astrophysical limits on quantum gravity motivated birefringence”, Phys. Rev. D, 64, 083007 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0102093].
262 Gleiser, R.J., Kozameh, C.N. and Parisi, F., “On low energy quantum gravity induced effects on the propagation of light”, Class. Quantum Grav., 20, 4375–4386 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0304048].
263 Goklu, E. and Lämmerzahl, C., “Metric fluctuations and the Weak Equivalence Principle”, Class. Quantum Grav., 25, 105012 (2008). [External LinkDOI], [External LinkarXiv:0801.4553 [gr-qc]].
264 Granot, J. (Fermi LAT and GBM collaborations), “GRB Theory in the Fermi Era”, arXiv, e-print, (2009). [External LinkarXiv:0905.2206 [astro-ph.HE]].
265 Greenberg, O.W., “CPT violation implies violation of Lorentz invariance”, Phys. Rev. Lett., 89, 231602 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0201258].
266 Greene, BR., Schalm, K., Shiu, G. and van der Schaar, J.P., “Decoupling in an expanding universe: Backreaction barely constrains short distance effects in the CMB”, J. Cosmol. Astropart. Phys., 0502, 001 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0411217].
267 Greisen, K., “End to the cosmic-ray spectrum?”, Phys. Rev. Lett., 16, 748–750 (1966). [External LinkDOI].
268 Groot Nibbelink, S. and Pospelov, M., “Lorentz violation in supersymmetric field theories”, Phys. Rev. Lett., 94, 081601 (2005). [External LinkDOI], [External LinkarXiv:hep-ph/0404271].
269 Gross, D.J. and Mende, P.F., “String Theory Beyond the Planck Scale”, Nucl. Phys. B, 303, 407–454 (1988). [External LinkDOI].
270 Gubitosi, G. and Pagano, L., “Planck-scale sensitivity of CMB polarization data”, Nucl. Phys. B (Proc. Suppl.), 194, 69–75 (2009). [External LinkDOI].
271 Gubitosi, G., Pagano, L., Amelino-Camelia, G., Melchiorri, A. and Cooray, A., “A Constraint on Planck-scale Modifications to Electrodynamics with CMB polarization data”, J. Cosmol. Astropart. Phys., 2009(08), 021 (2009). [External LinkDOI], [External LinkarXiv:0904.3201 [astro-ph.CO]].
272 Halprin, A., Leung, C.N. and Pantaleone, J.T., “A Possible Violation of the Equivalence Principle by Neutrinos”, Phys. Rev. D, 53, 5365–5376 (1996). [External LinkDOI], [External LinkarXiv:hep-ph/9512220].
273 Hamada, K., Horata, S., Sugiyama, N. and Yukawa, T., “Analyzing WMAP Observation by Quantum Gravity”, Prog. Theor. Phys., 119, 253–262 (2007). [External LinkDOI], [External LinkarXiv:0705.3490 [astro-ph]].
274 Hamann, J., Hannestad, S., Sloth, M.S. and Wong, Y.Y.Y., “Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes”, J. Cosmol. Astropart. Phys., 2008(09), 015 (2008). [External LinkDOI], [External LinkarXiv:0807.4528 [astro-ph]].
275 Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. and Markström, K., “Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime”, Phys. Rev. D, 81, 104032 (2010). [External LinkDOI], [External LinkarXiv:0911.5075 [gr-qc]].
276 Han, T. and Willenbrock, S., “Scale of quantum gravity”, Phys. Lett. B, 616, 215–220 (2005). [External LinkDOI], [External Linkhep-ph/0404182].
277 Hanneke, D., Fogwell, S. and Gabrielse, G., “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant”, Phys. Rev. Lett., 100, 120801 (2008). [External LinkDOI], [External LinkarXiv:0801.1134 [physics.atom-ph]].
278 Hauser, M.G. and Dwek, E., “The Cosmic Infrared Background: Measurements and Implications”, Annu. Rev. Astron. Astrophys., 39, 249–307 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0105539].
279 Hawking, S.W., “Breakdown of Predictability in Gravitational Collapse”, Phys. Rev. D, 14, 2460–2473 (1976). [External LinkDOI].
280 Hawking, S.W., “The Unpredictability of Quantum Gravity”, Commun. Math. Phys., 87, 395 (1982). [External LinkDOI].
281 Hawking, S.W., “Virtual black holes”, Phys. Rev. D, 53, 3099–3107 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9510029 [hep-th]].
282 Heinzel, G. et al., “LISA interferometry: Recent developments”, Class. Quantum Grav., 23, S119–S124 (2006). [External LinkDOI], [External LinkADS].
283 Helling, R.C. and You, J., “Macroscopic Screening of Coulomb Potentials From UV/IR-Mixing”, J. High Energy Phys., 2008(06), 067 (2008). [External LinkDOI], [External LinkarXiv:0707.1885 [hep-th]].
284 Henson, J., “The causal set approach to quantum gravity”, arXiv, e-print, (2006). [External LinkarXiv:gr-qc/0601121].
285 Hinton, J.A. (HESS Collaboration), “The status of the HESS project”, New Astron. Rev., 48, 331–337 (2004). [External LinkDOI], [External Linkastro-ph/0403052 [astro-ph]].
286 Hogan, C.J., “Indeterminacy of Holographic Quantum Geometry”, Phys. Rev. D, 78, 087501 (2008). [External LinkarXiv:0806.0665].
287 Hogan, C.J., “Measurement of Quantum Fluctuations in Geometry”, Phys. Rev. D, 77, 104031 (2008). [External LinkDOI], [External LinkarXiv:0712.3419 [gr-qc]].
288 Hogan, C.J., “Quantum Geometry and Interferometry”, in Auger, G., Binétruy, P. and Plagnol, E., eds., The 9th LISA Symposium, Bibliothéque Nationale de France, Paris, 21 – 25 May 2012, ASP Conference Series, 467, pp. 17–26, (Astronomical Society of the Pacific, San Francisco, 2013). [External LinkarXiv:1208.3703 [quant-ph]].
289 Hořava, P., “Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 79, 084008 (2009). [External LinkDOI], [External LinkarXiv:0901.3775].
290 Hořava, P., “Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point”, Phys. Rev. Lett., 102, 161301 (2009). [External LinkDOI], [External LinkarXiv:0902.3657 [hep-th]].
291 Hossenfelder, S., “Multi-Particle States in Deformed Special Relativity”, Phys. Rev. D, 75, 105005 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0702016].
292 Hossenfelder, S., “Bounds on an energy-dependent and observer-independent speed of light from violations of locality”, Phys. Rev. Lett., 104, 140402 (2010). [External LinkDOI], [External LinkarXiv:1004.0418 [hep-ph]].
293 Hossenfelder, S., “Minimal Length Scale Scenarios for Quantum Gravity”, Living Rev. Relativity, 16, lrr-2013-2 (2013). [External LinkDOI], [External LinkarXiv:1203.6191]. URL (accessed 10 June 2013):
294 Hossenfelder, S. and Smolin, L., “Phenomenological Quantum Gravity”, Phys. Canada, 66, 99–102 (2010). [External LinkarXiv:0911.2761 [physics.pop-ph]].
295 Hoyle, C.D., Schmidt, U., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Kapner, D.J. and Swanson, H.E., “Submillimeter Test of the Gravitational Inverse-Square Law: A Search for ‘large’ Extra Dimensions”, Phys. Rev. Lett., 86, 1418–1421 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0011014].
296 Hu, B.L., “A kinetic theory approach to quantum gravity”, Int. J. Theor. Phys., 41, 2091–2119 (2002). [External LinkDOI], [External Linkgr-qc/0204069].
297 Hu, B.L., “Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806 (2005). [External LinkDOI], [External Linkgr-qc/0503067].
298 Huet, P. and Peskin, M.E., “Violation of CPT and quantum mechanics in the K0K0 system”, Nucl. Phys. B, 434, 3–38 (1995). [External LinkDOI].
299 Jackiw, R. and Kostelecký, V.A., “Radiatively induced Lorentz and CPT violation in electrodynamics”, Phys. Rev. Lett., 82, 3572–3575 (1999). [External LinkDOI], [External LinkarXiv:hep-ph/9901358].
300 Jackson, J.D., Classical Electrodynamics, (John Wiley & Sons, New York, 1999), 3rd edition.
301 Jacob, U. and Piran, T., “Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation”, Nature Phys., 3, 87–90 (2007).
302 Jacob, U. and Piran, T., “Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight on Lorentz invariance violation”, Phys. Rev. D, 78, 124010 (2008). [External LinkarXiv:0810.1318].
303 Jacob, U. and Piran, T., “Lorentz-violation-induced arrival delays of cosmological particles”, J. Cosmol. Astropart. Phys., 2008(01), 031 (2008). [External LinkDOI], [External LinkarXiv:0712.2170 [astro-ph]].
304 Jacobson, T.A., “Thermodynamics of space-time: The Einstein equation of state”, Phys. Rev. Lett., 75, 1260–1263 (1995). [External LinkDOI], [External Linkgr-qc/9504004].
305 Jacobson, T.A., Liberati, S. and Mattingly, D., “TeV astrophysics constraints on Planck scale Lorentz violation”, Phys. Rev. D, 66, 081302 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0112207].
306 Jacobson, T.A., Liberati, S. and Mattingly, D., “Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale”, Nature, 424, 1019–1021 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0212190].
307 Jacobson, T.A., Liberati, S. and Mattingly, D., “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D, 67, 124011 (2003). [External LinkDOI], [External LinkarXiv:hep-ph/0209264].
308 Jacobson, T.A., Liberati, S. and Mattingly, D.M., “Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints”, Ann. Phys. (N.Y.), 321, 150–196 (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0505267].
309 Jacobson, T.A., Liberati, S., Mattingly, D. and Stecker, F.W., “New limits on Planck scale Lorentz violation in QED”, Phys. Rev. Lett., 93, 021101 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0309681].
310 Jankiewicz, M., Buniy, R.V., Kephart, T.W. and Weiler, T.J., “Space-time foam and cosmic ray interactions”, Astropart. Phys., 21, 651–666 (2004). [External LinkDOI], [External Linkhep-ph/0312221].
311 Johnston, S., “Particle propagators on discrete spacetime”, Class. Quantum Grav., 25, 202001 (2008). [External LinkDOI], [External LinkarXiv:0806.3083 [hep-th]].
312 Johnston, S., “Feynman Propagator for a Free Scalar Field on a Causal Set”, Phys. Rev. Lett., 103, 180401 (2009). [External LinkDOI], [External LinkarXiv:0909.0944 [hep-th]].
313 Joung, E., Mourad, J. and Noui, K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50, 052503 (2009). [External LinkDOI], [External LinkarXiv:0806.4121 [hep-th]].
314 Judes, S. and Visser, M., “Conservation laws in ‘doubly special relativity”’, Phys. Rev. D, 68, 045001 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0205067].
315 Kahniashvili, T., Durrer, R. and Maravin, Y., “Testing Lorentz Invariance Violation with WMAP Five Year Data”, Phys. Rev. D, 78, 123009 (2008). [External LinkarXiv:0807.2593 [astro-ph]].
316 Kaloper, N. and Mattingly, D., “Low energy bounds on Poincare violation in causal set theory”, Phys. Rev. D, 74, 106001 (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0607485].
317 Kamionkowski, M., “How to De-Rotate the Cosmic Microwave Background Polarization”, Phys. Rev. Lett., 102, 111302 (2009). [External LinkDOI], [External LinkarXiv:0810.1286 [astro-ph]].
318 Kanno, S. and Soda, J., “Lorentz Violating Inflation”, Phys. Rev. D, 74, 063505 (2006). [External Linkhep-th/0604192].
319 Karolyhazy, F., “Gravitation and quantum mechanics of macroscopic objects”, Nuovo Cimento A, 42, 390–402 (1966). [External LinkDOI].
320 Kempf, A., “Mode generating mechanism in inflation with cutoff”, Phys. Rev. D, 63, 083514 (2001). [External LinkDOI], [External LinkarXiv:astro-ph/0009209 [astro-ph]].
321 Kempf, A. and Lorenz, L., “Exact solution of inflationary model with minimum length”, Phys. Rev. D, 74, 103517 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0609123].
322 Kempf, A. and Mangano, G., “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55, 7909–7920 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9612084 [hep-th]].
323 Kempf, A., Mangano, G. and Mann, R.B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52, 1108–1118 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9412167].
324 Khriplovich, I.B. and Kirilin, G.G., “Quantum long range interactions in general relativity”, J. Exp. Theor. Phys., 98, 1063–1072 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0402018 [gr-qc]].
325 Kiefer, C., “The Semiclassical approximation to quantum gravity”, arXiv, e-print, (1993). [External LinkarXiv:gr-qc/9312015].
326 Kiefer, C. and Singh, T.P., “Quantum gravitational corrections to the functional Schrodinger equation”, Phys. Rev. D, 44, 1067–1076 (1991). [External LinkDOI].
327 Kifune, T., “Invariance violation extends the cosmic ray horizon?”, Astrophys. J., 518, L21–L24 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9904164].
328 Kinoshita, T., “The fine structure constant”, Rep. Prog. Phys., 59, 1459 (1996). [External LinkDOI].
329 Kirilin, G.G. and Khriplovich, I.B., “Quantum Power Correction to the Newton Law”, J. Exp. Theor. Phys., 95, 981–986 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207118 [gr-qc]].
330 Klinkhamer, F.R. and Rupp, C., “Spacetime foam, CPT anomaly, and photon propagation”, Phys. Rev. D, 70, 045020 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0312032].
331 Kluźniak, W., “Transparency of the universe to TeV photons in some models of quantum gravity”, Astropart. Phys., 11, 117–118 (1999). [External LinkDOI].
332 Konishi, K., Paffuti, G. and Provero, P., “Minimum Physical Length and the Generalized Uncertainty Principle in String Theory”, Phys. Lett. B, 234, 276 (1990). [External LinkDOI].
333 Konopelko, A.K., Mastichiadis, A., Kirk, J.G., de Jager, O.C. and Stecker, F.W., “Modelling the TeV gamma-ray spectra of two low redshift AGNs: Mkn 501 and Mkn 421”, Astrophys. J., 597, 851–859 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0302049].
334 Konopka, T.J. and Major, S.A., “Observational limits on quantum geometry effects”, New J. Phys., 4, 57 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0201184].
335 Kosinski, P., Lukierski, J. and Maslanka, P., “Local field theory on κ-Minkowski space, star products and noncommutative translations”, Czech. J. Phys., 50, 1283–1290 (2000). [External LinkDOI], [External LinkarXiv:hep-th/0009120].
336 Kosinski, P. and Maslanka, P., “On the definition of velocity in doubly special relativity theories”, Phys. Rev. D, 68, 067702 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0211057].
337 Kostelecký, A.V. and Mewes, M., “Electrodynamics with Lorentz-violating operators of arbitrary dimension”, Phys. Rev. D, 80, 015020 (2009). [External LinkDOI], [External LinkarXiv:0905.0031 [hep-ph]].
338 Kostelecký, A.V. and Tasson, J.D., “Matter-gravity couplings and Lorentz violation”, Phys. Rev. D, 83, 016013 (2011). [External LinkDOI], [External LinkarXiv:1006.4106 [gr-qc]].
339 Kostelecký, V.A., “Sensitivity of CPT tests with neutral mesons”, Phys. Rev. Lett., 80, 1818 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9809572].
340 Kostelecký, V.A. and Lane, C.D., “Constraints on Lorentz violation from clock-comparison experiments”, Phys. Rev. D, 60, 116010 (1999). [External LinkDOI], [External LinkarXiv:hep-ph/9908504].
341 Kostelecký, V.A. and Lehnert, R., “Stability, causality, and Lorentz and CPT violation”, Phys. Rev. D, 63, 065008 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0012060].
342 Kostelecký, V.A. and Mewes, M., “Cosmological constraints on Lorentz violation in electrodynamics”, Phys. Rev. Lett., 87, 251304 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0111026].
343 Kostelecký, V.A. and Mewes, M., “Signals for Lorentz violation in electrodynamics”, Phys. Rev. D, 66, 056005 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0205211].
344 Kostelecký, V.A. and Mewes, M., “Lorentz-violating electrodynamics and the cosmic microwave background”, Phys. Rev. Lett., 99, 011601 (2007). [External Linkastro-ph/0702379].
345 Kostelecký, V.A. and Potting, R., “CPT, strings, and meson factories”, Phys. Rev. D, 51, 3923–3935 (1995). [External Linkhep-ph/9501341].