1 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.2480 [astro-ph.HE]].
2 Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09, (Virgo, Cascina, 2009). Online version (accessed 26 July 2013):
External Link
3 Adelberger, E.G., Heckel, B.R. and Nelson, A.E., “Tests of the Gravitational Inverse-Square Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/0307284].
4 Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries”, Phys. Rev. D, 77, 104017 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.2335 [gr-qc]].
5 Ajith, P. et al., “Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins”, Phys. Rev. Lett., 106, 241101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.2867 [gr-qc]].
6 Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum gravity”, Phys. Rev. D, 78, 066005 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.2542 [gr-qc]].
7 Alexander, S.H.S. and Gates Jr, S.J., “Can the string scale be related to the cosmic baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0409014].
8 Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”, Phys. Rev. Lett., 99, 241101 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0703265].
9 Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons gravity”, Phys. Rev. D, 75, 124022 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0299 [hep-th]].
10 Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.1797 [gr-qc]].
11 Alexander, S. and Yunes, N., “Chern-Simons modified general relativity”, Phys. Rep., 480, 1–55 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2562 [hep-th]].
12 Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons gravity”, Phys. Rev. D, 83, 124050 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.0009 [astro-ph.HE]].
13 Ali-Haïmoud, Y. and Chen, Y., “Slowly rotating stars and black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5329 [astro-ph.HE]].
14 Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330 (1984). [External LinkDOI], [External LinkADS].
15 Alves, M.E.S. and Tinto, M., “Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 83, 123529 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.4824 [gr-qc]].
16 Amaro-Seoane, P., “Stellar dynamics and extreme-mass ratio inspirals”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1205.5240 [astro-ph.CO]].
17 Amaro-Seoane, P., Brem, P., Cuadra, J. and Armitage, P.J., “The Butterfly Effect in the Extreme-mass Ratio Inspiral Problem”, Astrophys. J. Lett., 744, L20 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.5174 [astro-ph.CO]].
18 Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C. and Babak, S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0703495].
19 Amaro-Seoane, P. and Preto, M., “The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth”, Class. Quantum Grav., 28, 094017 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5781 [astro-ph.CO]].
20 Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class. Quantum Grav., 29, 124016 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.0839 [gr-qc]].
21 Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW Notes, 6, 4–110 (2013). [External LinkADS], [External LinkarXiv:1201.3621 [astro-ph.CO]].
22 Amelino-Camelia, G., “The three perspectives on the quantum-gravity problem and their implications for the fate of Lorentz symmetry”, arXiv, e-print, (2003). [External LinkADS], [External LinkarXiv:gr-qc/0309054].
23 Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26, 094019 (2009). [External LinkDOI], [External LinkADS].
24 Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.0093 [gr-qc]].
25 Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum Grav., 26, 094001 (2009). [External LinkDOI], [External LinkADS].
26 Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact binaries”, Class. Quantum Grav., 29, 075011 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.5911 [gr-qc]].
27 Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Probing the nonlinear structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604067].
28 Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604018].
29 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., Sinha, S. and Van Den Broeck, C., “Higher signal harmonics, LISA’s angular resolution, and dark energy”, Phys. Rev. D, 76, 104016 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.3920].
30 Arun, K.G., Iyer, B.R, Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008 (2005). [External LinkDOI].
31 Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative Theories of Gravity Using Gravitational Wave Observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2198 [gr-qc]].
32 Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26, 155002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1190 [gr-qc]].
33 Arun, K.G. et al., “Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce”, Class. Quantum Grav., 26, 094027 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.1011 [gr-qc]].
34 Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole physics”, Phys. Rev. D, 83, 044026 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.3558 [hep-th]].
35 Babak, S., Gair, J.R. and Porter, E.K., “An algorithm for the detection of extreme mass ratio inspirals in LISA data”, Class. Quantum Grav., 26, 135004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4133 [gr-qc]].
36 Babak, S. and Grishchuk, L.P., “Finite-Range Gravity and its Role in Gravitational Waves, Black Holes and Cosmology”, Int. J. Mod. Phys. D, 12, 1905–1959 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209006].
37 Babak, S. et al. (Challenge-1B participants), “The Mock LISA Data Challenges: from Challenge 1B to Challenge 3”, Class. Quantum Grav., 25, 184026 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.2110 [gr-qc]].
38 Babak, S. et al., LISA Data Analysis Status, LISA-MSO-TN-1001-2-1, (LISA Mission Science Office, Greenbelt, MD, 2009). Online version (accessed 26 July 2013):
External Link
39 Babak, S. et al. (Challenge 3 participants), “The Mock LISA Data Challenges: from challenge 3 to challenge 4”, Class. Quantum Grav., 27, 084009 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.0548 [gr-qc]].
40 Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1304.7240 [gr-qc]].
41 Babichev, E., Deffayet, C. and Ziour, R., “Recovery of general relativity in massive gravity via the Vainshtein mechanism”, Phys. Rev. D, 82, 104008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.4506 [gr-qc]].
42 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511103].
43 Baker, J.G. and Thorpe, J.I., “Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors”, Phys. Rev. Lett., 108, 211101 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.5656 [gr-qc]].
44 Balmelli, S. and Jetzer, P., “Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins”, Phys. Rev. D, 87, 124036 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1305.5674 [gr-qc]].
45 Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.1664 [gr-qc]].
46 Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0310125].
47 Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612029].
48 Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole”, Phys. Rev. D, 75, 064021 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701069].
49 Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole”, Phys. Rev. D, 81, 084021 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.2386 [gr-qc]].
50 Barausse, E., “Relativistic dynamical friction in a collisional fluid”, Mon. Not. R. Astron. Soc., 382, 826–834 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.0211].
51 Barausse, E. and Buonanno, A., “Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings”, Phys. Rev. D, 84, 104027 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.2904 [gr-qc]].
52 Barausse, E. and Rezzolla, L., “Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals”, Phys. Rev. D, 77, 104027 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.4558].
53 Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612123].
54 Barausse, E. and Sotiriou, T.P., “Perturbed Kerr Black Holes Can Probe Deviations from General Relativity”, Phys. Rev. Lett., 101, 099001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.3433].
55 Barausse, E., Sotiriou, T.P. and Miller, J.C., “Curvature singularities, tidal forces and the viability of Palatini f(R) gravity”, Class. Quantum Grav., 25, 105008 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1141 [gr-qc]].
56 Barausse, E., Sotiriou, T.P. and Miller, J.C., “A no-go theorem for polytropic spheres in Palatini f(R) gravity”, Class. Quantum Grav., 25, 062001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703132].
57 Barbero G, J.F. and Villaseñor, E.J., “Lorentz violations and Euclidean signature metrics”, Phys. Rev. D, 68, 087501 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0307066].
58 Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101(R) (2002). [External LinkDOI], [External LinkADS].
59 Bebronne, M.V., Theoretical and Phenomenological Aspects of Theories with Massive Gravitons, Ph.D. thesis, (Université Libre de Bruxelles, Brussels, Belgium, 2009). [External LinkADS], [External LinkarXiv:0910.4066 [gr-qc]].
60 Begelman, M.C., Volonteri, M. and Rees, M.J., “Formation of supermassive black holes by direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0602363].
61 Bekenstein, J.D., “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”, Phys. Rev. D, 70, 083509 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0403694].
62 Belinfante, F.J. and Swihart, J.C., “Phenomenological linear theory of gravitation: Part I. Classical mechanics”, Ann. Phys. (N.Y.), 1, 168–195 (1957). [External LinkDOI], [External LinkADS].
63 Bender, P.L. and Hils, D., “Confusion noise level due to galactic and extragalactic binaries”, Class. Quantum Grav., 14, 1439–1444 (1997). [External LinkDOI], [External LinkADS].
64 Bender, P.L. et al. (LISA Study Team), LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space. Pre-Phase A report, MPQ-233, (Max-Planck-Institut für Quantenoptik, Garching, 1998). Online version (accessed 26 July 2013):
External Link
65 Benenti, S. and Francaviglia, M., “Remarks on certain separability structures and their applications to general relativity”, Gen. Relativ. Gravit., 10, 79–92 (1979). [External LinkDOI], [External LinkADS].
66 Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and Solar System tests”, Phys. Rev. D, 83, 104022 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.0819 [gr-qc]].
67 Berry, C.P.L. and Gair, J.R., “Extreme-mass-ratio-bursts from extragalactic sources”, Mon. Not. R. Astron. Soc., 433, 3572–3583 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1306.0774 [astro-ph.HE]].
68 Berry, C.P.L. and Gair, J.R., “Observing the Galaxy’s massive black hole with gravitational wave bursts”, Mon. Not. R. Astron. Soc., 429, 589–612 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.2778 [astro-ph.HE]].
69 Berti, E., “Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity”, Braz. J. Phys. (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.5702 [gr-qc]].
70 Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411129].
71 Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504017].
72 Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.1202 [gr-qc]].
73 Berti, E. and Cardoso, V., “Supermassive Black Holes or Boson Stars? Hair Counting with Gravitational Wave Detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0605101].
74 Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S. and Brügmann, B., “Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis”, Phys. Rev. D, 76, 064034 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703053].
75 Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M. and Sperhake, U., “Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem”, Phys. Rev. D, 87, 124020 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.2836 [gr-qc]].
76 Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.2975 [gr-qc]].
77 Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512160].
78 Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.3528 [gr-qc]].
79 Berti, E., Gualtieri, L., Horbatsch, M. and Alsing, J., “Light scalar field constraints from gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.4340 [gr-qc]].
80 Berti, E. and Volonteri, M., “Cosmological Black Hole Spin Evolution by Mergers and Accretion”, Astrophys. J., 684, 822–828 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.0025].
81 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376 (2003). [External LinkDOI], [External LinkADS].
82 Binétruy, P., Bohé, A., Caprini, C. and Dufaux, J.-F., “Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources”, J. Cosmol. Astropart. Phys., 2012(06), 027 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.0983 [gr-qc]].
83 Bisnovatyi-Kogan, G.S. and Blinnikov, S.I., “Disk accretion onto a black hole at subcritical luminosity”, Astron. Astrophys., 59, 111–125 (1977). [External LinkADS].
84 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
85 Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order”, Phys. Rev. Lett., 93, 091101 (2004). [External LinkDOI].
86 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518 (1995). [External LinkDOI].
87 Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R) (2002). [External LinkDOI].
88 Blanchet, L. and Sathyaprakash, B.S., “Detecting a Tail Effect in Gravitational-Wave Experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [External LinkDOI], [External LinkADS].
89 Błaut, A., “Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity”, Phys. Rev. D, 85, 043005 (2012). [External LinkDOI], [External LinkADS].
90 Błaut, A., Babak, S. and Królak, A., “Mock LISA data challenge for the Galactic white dwarf binaries”, Phys. Rev. D, 81, 063008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.3020 [gr-qc]].
91 Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195–204 (1952). [External LinkADS].
92 Bondi, H. and Hoyle, F., “On the mechanism of accretion by stars”, Mon. Not. R. Astron. Soc., 104, 273–282 (1944). [External LinkADS].
93 Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78, 102001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.1178].
94 Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.1179].
95 Brown, D.A., Brink, J., Fang, H., Gair, J.R., Li, C., Lovelace, G., Mandel, I. and Thorne, K.S., “Prospects for Detection of Gravitational Waves from Intermediate-Mass-Ratio Inspirals”, Phys. Rev. Lett., 99, 201102 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612060].
96 Brown, D.A., Crowder, J., Cutler, C., Mandel, I. and Vallisneri, M., “A three-stage search for supermassive black-hole binaries in LISA data”, Class. Quantum Grav., 24, 595 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2447 [gr-qc]].
97 Brownstein, J.R. and Moffat, J.W., “Galaxy Rotation Curves without Nonbaryonic Dark Matter”, Astrophys. J., 636, 721–741 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0506370].
98 Brownstein, J.R. and Moffat, J.W., “The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter”, Mon. Not. R. Astron. Soc., 382, 29–47 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0702146].
99 Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9811091].
100 Buonanno, A. and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0001013].
101 Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0790 [gr-qc]].
102 Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511048].
103 Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries”, Phys. Rev. D, 86, 044010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1253 [gr-qc]].
104 Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.0322 [gr-qc]].
105 Cannella, U., Effective Field Theory Methods in Gravitational Physics and Tests of Gravity, Ph.D. thesis, (University of Geneva, Geneva, Switzerland, 2011). [External LinkADS], [External LinkarXiv:1103.0983 [gr-qc]].
106 Cannella, U., Foffa, S., Maggiore, M., Sanctuary, H. and Sturani, R., “Extracting the three- and four-graviton vertices from binary pulsars and coalescing binaries”, Phys. Rev. D, 80, 124035 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2186 [gr-qc]].
107 Capozziello, S., Carloni, S. and Troisi, A., “Quintessence without scalar fields”, in Pandalai, S.G., ed., Recent Research Developments in Astronomy and Astrophysics, Vol. 1, p. 625, (Research Signpost, Trivandrum, India, 2003). [External LinkADS], [External LinkarXiv:astro-ph/0303041].
108 Capozziello, S. and Francaviglia, M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativ. Gravit., 40, 357–420 (2008). [External LinkDOI].
109 Capozziello, S., Stabile, A. and Troisi, A., “a General Solution in the Newtonian Limit of f(R)-GRAVITY”, Mod. Phys. Lett. A, 24, 659–665 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.0448 [gr-qc]].
110 Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and Sinking: The Imprint of Massive Scalars around Rotating Black Holes”, Phys. Rev. Lett., 107, 241101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6021 [gr-qc]].
111 Cardoso, V. and Gualtieri, L., “Perturbations of Schwarzschild black holes in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064008 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.5008 [gr-qc]].
112 Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70, 043528 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0306438].
113 Carter, B., “Global Structure of the Kerr Family of Gravitational Fields”, Phys. Rev., 174, 1559–1571 (1968). [External LinkDOI], [External LinkADS].
114 Carter, B., “Axisymmetric black hole has only two degrees of freedom”, Phys. Rev. Lett., 26, 331–333 (1971). [External LinkDOI], [External LinkADS].
115 Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black holes”, Class. Quantum Grav., 16, A3–A21 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9912186].
116 Cembranos, J.A.R., “Dark Matter from R2 Gravity”, Phys. Rev. Lett., 102, 141301 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.1653 [hep-ph]].
117 Centrella, J., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5260 [gr-qc]].
118 Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5661 [astro-ph.HE]].
119 Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, (Oxford University Press, Oxford; New York, 1992).
120 Chatziioannou, K., Yunes, N. and Cornish, N., “Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D, 86, 022004 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.2585 [gr-qc]].
121 Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307338].
122 Ciufolini, I. and Pavlis, E.C., “A confirmation of the general relativistic prediction of the Lense-Thirring effect”, Nature, 431, 958–960 (2004). [External LinkDOI], [External LinkADS].
123 Clowe, D., Bradač, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C. and Zaritsky, D., “A Direct Empirical Proof of the Existence of Dark Matter”, Astrophys. J. Lett., 648, L109–L113 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0608407].
124 Collins, H., Gravity’s Shadow: The Search for Gravitational Waves, (University of Chicago Press, Chicago; London, 2004). [External LinkGoogle Books].
125 Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0402063].
126 Comelli, D., “Born-Infeld-type gravity”, Phys. Rev. D, 72, 064018 (2005). [External LinkDOI], [External LinkADS].
127 Cooray, A., “Gravitational-wave background of neutron star-white dwarf binaries”, Mon. Not. R. Astron. Soc., 354, 25–30 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0406467].
128 Cooray, A. and Seto, N., “Graviton mass from close white dwarf binaries detectable with LISA”, Phys. Rev. D, 69, 103502 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0311054].
129 Cooray, A. and Seto, N., “Can the Laser Interferometer Space Antenna Resolve the Distance to the Large Magellanic Cloud?”, Astrophys. J. Lett., 623, L113–L116 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0502500].
130 Cornish, N.J., “Detection strategies for extreme mass ratio inspirals”, Class. Quantum Grav., 28, 094016 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.3323 [gr-qc]].
131 Cornish, N.J. and Larson, S.L., “LISA data analysis: Source identification and subtraction”, Phys. Rev. D, 67, 103001 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0301548].
132 Cornish, N.J. and Porter, E.K., “The search for massive black hole binaries with LISA”, Class. Quantum Grav., 24, 5729–5755 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612091].
133 Cornish, N.J. and Rubbo, L.J., “LISA response function”, Phys. Rev. D, 67, 022001 (2003). [External LinkDOI], [External LinkADS].
134 Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.2088 [gr-qc]].
135 Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”, Phys. Rev. D, 72, 083005 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506015].
136 Crowder, J. and Cornish, N.J., “Solution to the galactic foreground problem for LISA”, Phys. Rev. D, 75, 043008 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0611546].
137 Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57, 7089–7102 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9703068].
138 Cutler, C. and Harms, J., “Big Bang Observer and the neutron-star-binary subtraction problem”, Phys. Rev. D, 73, 042001 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511092].
139 Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209101].
140 Cutler, C. and Lindblom, L., “Gravitational helioseismology?”, Phys. Rev. D, 54, 1287–1290 (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9601047].
141 Damour, T., “Coalescence of two spinning black holes: An effective one-body approach”, Phys. Rev. D, 64, 124013 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0103018].
142 Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [External LinkDOI], [External LinkADS].
143 Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803031].
144 Damour, T., Nagar, A. and Bernuzzi, S., “Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion”, Phys. Rev. D, 87, 084035 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.4357 [gr-qc]].
145 Davies, M.B. and King, A., “The Stars of the Galactic Center”, Astrophys. J. Lett., 624, L25–L27 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0503441].
146 de Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.4928 [gr-qc]]. URL (accessed 26 July 2013):
147 de Freitas Pacheco, J.A., Filloux, C. and Regimbau, T., “Capture rates of compact objects by supermassive black holes”, Phys. Rev. D, 74, 023001 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606427].
148 Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems”, Phys. Rev. D, 83, 082002 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.1391 [gr-qc]].
149 Dhurandhar, S.V. and Tinto, M., “Time-Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4 (2005). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
150 Di Stefano, R., Greiner, J., Murray, S. and Garcia, M., “A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption”, Astrophys. J. Lett., 551, L37–L40 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0112434].
151 Diener, P., Vega, I., Wardell, B. and Detweiler, S., “Self-Consistent Orbital Evolution of a Particle around a Schwarzschild Black Hole”, Phys. Rev. Lett., 108, 191102 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.4821 [gr-qc]].
152 Doeleman, S.S. et al., “Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87”, Science, 338, 355–358 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.6132 [astro-ph.HE]].
153 Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573, 1–4 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307285].
154 Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0509101].
155 Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R., “Black-hole spectroscopy: testing general relativity through gravitational-wave observations”, Class. Quantum Grav., 21, 787–803 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0309007].
156 Droz, S., Heusler, M. and Straumann, N., “New black hole solutions with hair”, Phys. Lett. B, 268, 371–376 (1991). [External LinkDOI], [External LinkADS].
157 Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, J.D., “Chaotic dynamics around astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701065].
158 Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum instability in Chern-Simons gravity”, Phys. Rev. D, 86, 124031 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4871 [gr-qc]].
159 Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [External LinkDOI], [External LinkADS].
160 Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V. and Will, C.M., “Gravitational-wave observations as a tool for testing relativistic gravity”, Phys. Rev. Lett., 30, 884–886 (1973). [External LinkDOI], [External LinkADS].
161 Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “Simulation of the white dwarf white dwarf galactic background in the LISA data”, Class. Quantum Grav., 22, 913 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504026].
162 Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “White-dwarf white-dwarf galactic background in the LISA data”, Phys. Rev. D, 71, 122003 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504112].
163 Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Æther Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., Deserfest: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World Scientific, Singapore; River Edge, NJ, 2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0410001 [gr-qc]].
164 Emparan, R., Fabbri, A. and Kaloper, N., “Quantum Black Holes as Holograms in AdS Braneworlds”, J. High Energy Phys., 2002(08), 043 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0206155].
165 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175–1177 (1968). [External LinkDOI], [External LinkADS].
166 Estabrook, F. and Wahlquist, H., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439–447 (1975). [External LinkDOI], [External LinkADS].
167 “European Gravitational Observatory”, project homepage, EGO. URL (accessed 26 July 2013):
External Link
168 Evans, J.D., Hall, L.M.H. and Caillol, P., “Standard cosmological evolution in a wide range of f(R) models”, Phys. Rev. D, 77, 083514 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.3695].
169 Everitt, C.W.F. et al., “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”, Phys. Rev. Lett., 106, 221101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3456 [gr-qc]].
170 Fang, H. and Lovelace, G., “Tidal coupling of a Schwarzschild black hole and circularly orbiting moon”, Phys. Rev. D, 72, 124016 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0505156].
171 Farmer, A.J. and Phinney, E.S., “The gravitational wave background from cosmological compact binaries”, Mon. Not. R. Astron. Soc., 346, 1197–1214 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0304393].
172 Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MULTINEST algorithm for gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1544 [gr-qc]].
173 Ferrarese, L. and Ford, H., “Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research”, Space Sci. Rev., 116, 523–624 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0411247].
174 Ferrarese, L. and Merritt, D., “A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies”, Astrophys. J. Lett., 539, L9–L12 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0006053].
175 Fierz, M., “Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin”, Helv. Phys. Acta, 12, 3–37 (1939). [External LinkDOI].
176 Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [External LinkDOI], [External LinkADS].
177 Finn, L.S., “Gravitational waves from solar oscillations: Proposal for a transition-zone test of general relativity”, Class. Quantum Grav., 2, 381–402 (1985). [External LinkDOI], [External LinkADS].
178 Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109049].
179 Finn, L.S. and Thorne, K.S., “Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA”, Phys. Rev. D, 62, 124021 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007074].
180 Flanagan, É.É., “Higher-order gravity theories and scalar tensor theories”, Class. Quantum Grav., 21, 417–426 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0309015].
181 Flanagan, É.É. and Hinderer, T., “Transient Resonances in the Inspirals of Point Particles into Black Holes”, Phys. Rev. Lett., 109, 071102 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.4923 [gr-qc]].
182 Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9701039].
183 Fodor, G., Hoenselaers, C. and Perjés, Z., “Multipole moments of axisymmetric systems in relativity”, J. Math. Phys., 30, 2252–2257 (1989). [External LinkDOI], [External LinkADS].
184 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7 (2008). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
185 Foster, B.Z., “Metric redefinitions in Einstein-Æther theory”, Phys. Rev. D, 72, 044017 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502066].
186 Freire, P.C.C. et al., “The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1450 [astro-ph.GA]].
187 Freitag, M., “Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole”, Astrophys. J. Lett., 583, L21–L24 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0211209].
188 Freitag, M., Amaro-Seoane, P. and Kalogera, V., “Stellar Remnants in Galactic Nuclei: Mass Segregation”, Astrophys. J., 649, 91–117 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0603280].
189 Furtado, C., Nascimento, J.R., Petrov, A.Y. and Santos, A.F., “Dynamical Chern-Simons modified gravity and Friedmann-Robertson-Walker metric”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1005.1911 [hep-th]].
190 Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2 (2007). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
191 Gair, J.R., “The black hole symphony: probing new physics using gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 366, 4365–4379 (2008). [External LinkDOI], [External LinkADS].
192 Gair, J.R., “Probing black holes at low redshift using LISA EMRI observations”, Class. Quantum Grav., 26, 094034 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0188 [gr-qc]].
193 Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S. and Vallisneri, M., “Event rate estimates for LISA extreme mass ratio capture sources”, Class. Quantum Grav., 21, S1595–S1606 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405137].
194 Gair, J.R. and Jones, G., “Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR)”, Class. Quantum Grav., 24, 1145–1168 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0610046].
195 Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”, Phys. Rev. D, 77, 024035 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.0628].
196 Gair, J.R. and Porter, E.K., “Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm”, Class. Quantum Grav., 26, 225004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.3733 [gr-qc]].
197 Gair, J.R and Porter, E.K, “Observing extreme-mass-ratio inspirals with eLISA/NGO”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1210.8066 [gr-qc]].
198 Gair, J.R., Sesana, A., Berti, E. and Volonteri, M., “Constraining properties of the black hole population using LISA”, Class. Quantum Grav., 28, 094018 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.6172 [gr-qc]].
199 Gair, J.R., Tang, C. and Volonteri, M., “LISA extreme-mass-ratio inspiral events as probes of the black hole mass function”, Phys. Rev. D, 81, 104014 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.1921 [astro-ph.GA]].
200 Gair, J.R. and Wen, L., “Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization”, Class. Quantum Grav., 22, S1359–S1371 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506116].
201 Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.6313 [gr-qc]].
202 Gasperini, M., “Singularity prevention and broken Lorentz symmetry”, Class. Quantum Grav., 4, 485–494 (1987). [External LinkDOI], [External LinkADS].
203 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 26 July 2013):
External Link
204 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588 (1970). [External LinkDOI], [External LinkADS].
205 Ghez, A.M. et al., “Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits”, Astrophys. J., 689, 1044–1062 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.2870].
206 Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F. and Ott, T., “Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center”, Astrophys. J., 692, 1075–1109 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.4674].
207 Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: inspiral of a test body in a ’quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510057].
208 Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit., 38, 1537–1546 (2006). [External LinkDOI], [External LinkADS].
209 Goldhaber, A.S. and Nieto, M.M., “Photon and graviton mass limits”, Rev. Mod. Phys., 82, 939–979 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.1003 [hep-ph]].
210 Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5819 [gr-qc]].
211 Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York, 2005). [External LinkADS].
212 Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”, Phys. Rev. D, 77, 044015 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.1868 [gr-qc]].
213 Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron. Astrophys., 368, 716–720 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101140].
214 Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of attraction”, Phys. Rev. E, 66, 046611 (2002). [External LinkDOI], [External LinkADS].
215 GW Community Science Team, Core Team, and GW Science Task Force, Gravitational-Wave Mission Concept Study Final Report, (NASA, Washington, DC; Greenbelt, MD, 2012). Online version (accessed 26 July 2013):
External Link
216 Haehnelt, M.G. and Kauffmann, G., “The correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models”, Mon. Not. R. Astron. Soc., 318, L35–L38 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0007369].
217 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52 (1974). [External LinkDOI], [External LinkADS].
218 Harko, T., Kovács, Z. and Lobo, F.S.N., “Thin accretion disk signatures in dynamical Chern-Simons-modified gravity”, Class. Quantum Grav., 27, 105010 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.1267 [gr-qc]].
219 Harry, G.M., “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [External LinkDOI], [External LinkADS].
220 Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J., 150, 1005–1029 (1967). [External LinkDOI], [External LinkADS].
221 Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [External LinkDOI], [External LinkADS].
222 Haugan, M.P. and Lämmerzahl, C., “Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them”, in Lämmerzahl, C., Everitt, C.W.F. and Hehl, F.W., eds., Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held at Bad Honnef, Germany, 21 – 7 August 1999, Lecture Notes in Physics, 562, pp. 195–212, (Springer, Berlin; New York, 2001). [External LinkADS], [External LinkarXiv:gr-qc/0103067].
223 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkADS], [External LinkGoogle Books].
224 Hawking, S.W. and Penrose, R., “The Singularities of Gravitational Collapse and Cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548 (1970). [External LinkDOI], [External LinkADS].
225 Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4596 [gr-qc]].
226 Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print, (2011). [External LinkADS], [External LinkarXiv:1112.3928 [gr-qc]].
227 Hellings, R.W., “Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection”, Phys. Rev. D, 17, 3158–3163 (1978). [External LinkDOI], [External LinkADS].
228 Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [External LinkDOI], [External LinkADS].
229 Hellings, R., Larson, S.L., Jensen, S., Fish, C., Benacquista, M., Cornish, N.J. and Lang, R.N., A Low-Cost, High-Performance Space Gravitational Astronomy Mission, (NASA/Goddard Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013):
External Link
230 Hermes, J.J. et al., “Rapid Orbital Decay in the 12.75-minute Binary White Dwarf J0651+2844”, Astrophys. J. Lett., 757, L21 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.5051 [astro-ph.SR]].
231 Hils, D. and Bender, P.L., “Gravitational Radiation from Helium Cataclysmics”, Astrophys. J., 537, 334–341 (2000). [External LinkDOI], [External LinkADS].
232 Hobbs, G. et al., “The International Pulsar Timing Array project: using pulsars as a gravitational wave detector”, Class. Quantum Grav., 27, 084013 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.5206 [astro-ph.SR]].
233 Holley-Bockelmann, K., Mihos, J.C., Sigurdsson, S., Hernquist, L. and Norman, C., “The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes”, Astrophys. J., 567, 817–827 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0111029].
234 Holz, D.E. and Hughes, S.A., “Using Gravitational-Wave Standard Sirens”, Astrophys. J., 629, 15–22 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0504616].
235 Hopman, C., “Extreme mass ratio inspiral rates: dependence on the massive black hole mass”, Class. Quantum Grav., 26, 094028 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.1667 [astro-ph.GA]].
236 Hopman, C., Freitag, M. and Larson, S.L., “Gravitational wave bursts from the Galactic massive black hole”, Mon. Not. R. Astron. Soc., 378, 129–136 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0612337].
237 Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J. Cosmol. Astropart. Phys., 2012(05), 010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.4009 [gr-qc]].
238 Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals”, Phys. Rev. D, 79, 084021 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.4208 [gr-qc]].
239 Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. I. Signal-to-noise ratio calculations”, Phys. Rev. D, 83, 044020 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.1985 [gr-qc]].
240 Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. II. Parameter estimation errors”, Phys. Rev. D, 83, 044021 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.0421 [gr-qc]].
241 Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0108483].
242 Hughes, S.A. and Blandford, R.D., “Black Hole Mass and Spin Coevolution by Mergers”, Astrophys. J. Lett., 585, L101–L104 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0208484].
243 Hughes, S.A. and Menou, K., “Golden Binary Gravitational-Wave Sources: Robust Probes of Strong-Field Gravity”, Astrophys. J., 623, 689–699 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0410148].
244 Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1826 [gr-qc]].
245 Iben Jr, I. and Tutukov, A.V., “The evolution of low-mass close binaries influenced by the radiation of gravitational waves and by a magnetic stellar wind”, Astrophys. J., 284, 719–744 (1984). [External LinkDOI], [External LinkADS].
246 Iben Jr, I. and Tutukov, A.V., “On the number-mass distribution of degenerate dwarfs produced by interacting binaries and evidence for mergers of low-mass helium dwarfs”, Astrophys. J., 311, 753–761 (1986). [External LinkDOI], [External LinkADS].
247 Islam, R.R., Taylor, J.E. and Silk, J., “Massive black hole remnants of the first stars in galactic haloes”, Mon. Not. R. Astron. Soc., 340, 647–656 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0208189].
248 Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779 (1967). [External LinkDOI], [External LinkADS].
249 Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68, 104012 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0308071].
250 Jacobson, T., “Einstein-æther gravity: a status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, PoS(QG-Ph)020, (SISSA, Trieste, 2008). [External LinkADS], [External LinkarXiv:0801.1547 [gr-qc]]. URL (accessed 1 August 2013):
External Link
251 Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
252 Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001 (2009). [External LinkDOI], [External LinkarXiv:0906.2901].
253 Jones, D.I., “Bounding the Mass of the Graviton Using Eccentric Binaries”, Astrophys. J. Lett., 618, L115–L118 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411123].
254 “KAGRA: Large-scale Cryogenic Gravitational Wave Telescope Project”, project homepage, Institute for Cosmic Ray Research (ICRR). URL (accessed 26 July 2013):
External Link
255 Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.0854 [gr-qc]].
256 Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna – DECIGO”, Class. Quantum Grav., 23, S125–S131 (2006). [External LinkDOI], [External LinkADS].
257 Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna: DECIGO”, Class. Quantum Grav., 28, 094011 (2011). [External LinkDOI], [External LinkADS].
258 Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [External LinkGoogle Books].
259 Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole binaries”, Phys. Rev. D, 82, 122001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.0284 [gr-qc]].
260 Kerr, R.P., “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics”, Phys. Rev. Lett., 11, 237–238 (1963). [External LinkDOI], [External LinkADS].
261 Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0411478].
262 Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0309300].
263 Kidder, L.E., Will, C.M. and Wiseman, A.G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47, 3281–3291 (1993). [External LinkDOI], [External LinkADS].
264 Kim, H. and Kim, W.-T., “Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium”, Astrophys. J., 665, 432–444 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0705.0084].
265 Kleihaus, B., Kunz, J., Sood, A. and Wirschins, M., “Sequences of globally regular and black hole solutions in SU(4) Einstein-Yang-Mills theory”, Phys. Rev. D, 58, 084006 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9802143].
266 Klein, A., Jetzer, P. and Sereno, M., “Parameter estimation for coalescing massive binary black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit precession”, Phys. Rev. D, 80, 064027 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.3318 [astro-ph.CO]].
267 Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys. J., 684, 870–887 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1144].
268 Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.2322 [astro-ph.GA]].
269 Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7, 84–115 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1365 [hep-th]].
270 Kokkotas, K. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9909058]. URL (accessed 26 July 2013):
271 Komatsu, E. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, Astrophys. J. Suppl. Ser., 192, 18 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.4538 [astro-ph.CO]].
272 Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4767 [gr-qc]].
273 Krolik, J.H., Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1999). [External LinkGoogle Books].
274 Kuroyanagi, S., Nakayama, K. and Saito, S., “Prospects for determination of thermal history after inflation with future gravitational wave detectors”, Phys. Rev. D, 84, 123513 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.4169 [astro-ph.CO]].
275 Laguna, P., “Probing space-time through numerical simulations”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, pp. 152–174, (World Scientific, Singapore; Hackensack, NJ, 2005). [External LinkADS], [External LinkGoogle Books].
276 Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128 (1986). [External LinkDOI], [External LinkADS].
277 Larson, S.L., “Online Sensitivity Curve Generator”, project homepage, Caltech. URL (accessed 26 July 2013):
External Link
278 Larson, S.L. and Finn, L.S., “The resolving power of LISA: comparing techniques for binary analysis”, in Merkowitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th International LISA Symposium, Proceedings of the 6th International LISA Symposium, Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Series, 873, pp. 415–421, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External LinkADS].
279 Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys. Rev. D, 61, 104008 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9912102].
280 Lee, K.J., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [External LinkDOI], [External LinkADS].
281 Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1008.2561 [astro-ph.HE]].
282 Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”, Class. Quantum Grav., 14, 1249–1257 (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9706025].
283 Li, C. and Lovelace, G., “A generalization of Ryan’s theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys. Rev. D, 77, 064022 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0702146].
284 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.0530 [gr-qc]].
285 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5274 [gr-qc]].
286 Lightman, A.P. and Eardley, D.M., “Black Holes in Binary Systems: Instability of Disk Accretion”, Astrophys. J. Lett., 187, L1 (1974). [External LinkDOI], [External LinkADS].
287 Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”, Phys. Rev. D, 8, 3293–3302 (1973). [External LinkDOI], [External LinkADS].
288 “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California Institute of Technology. URL (accessed 26 July 2013):
External Link
289 Lincoln, C.W. and Will, C.M., “Coalescing binary systems of compact objects to (post)52-Newtonian order: Late-time evolution and gravitational-radiation emission”, Phys. Rev. D, 42, 1123–1143 (1990). [External LinkDOI], [External LinkADS].
290 Littenberg, T.B., “Detection pipeline for Galactic binaries in LISA data”, Phys. Rev. D, 84, 063009 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.6355 [gr-qc]].
291 Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0368 [gr-qc]].
292 Lobo, J.A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series, pp. 168–179, (World Scientific, Singapore, 1998). [External LinkADS].
293 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0762]. URL (accessed 26 July 2013):
294 Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.3120 [gr-qc]].
295 Luna, M. and Sintes, A.M., “Parameter estimation of compact binaries using the inspiral and ringdown waveforms”, Class. Quantum Grav., 23, 3763–3782 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0601072].
296 Lynden-Bell, D. and Rees, M.J., “On quasars, dust and the galactic centre”, Mon. Not. R. Astron. Soc., 152, 461 (1971). [External LinkADS].
297 Macedo, C.F.B., Pani, P., Cardoso, V. and Crispino, L.C.B., “Into the lair: gravitational-wave signatures of dark matter”, Astrophys. J., 774, 48 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2646 [gr-qc]].
298 Madau, P. and Rees, M.J., “Massive Black Holes as Population III Remnants”, Astrophys. J. Lett., 551, L27–L30 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101223].
299 Maggiore, M., Gravitational Waves. Vol. 1: Theory and Experiments, (Oxford University Press, Oxford; New York, 2008).
300 Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9907055].
301 Magueijo, J. and Mozaffari, A., “Case for testing modified Newtonian dynamics using LISA pathfinder”, Phys. Rev. D, 85, 043527 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.1075 [astro-ph.CO]].
302 Mandel, I., Brown, D.A., Gair, J.R. and Miller, M.C., “Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO”, Astrophys. J., 681, 1431–1447 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0705.0285].
303 Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487 (1992). [External LinkDOI], [External LinkADS].
304 McKenzie, K. et al., LAGRANGE: A Space-Based Gravitational-Wave Detector with Geometric Suppression of Spacecraft Noise, (NASA/Goddard Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013):
External Link
305 McNamara, P., Vitale, S. and Danzmann, K. (LISA Pathfinder Science Working Team), “LISA Pathfinder”, Class. Quantum Grav., 25, 114034 (2008). [External LinkDOI], [External LinkADS].