"The Hole Argument and Some Physical and Philosophical Implications"
John Stachel 
1 Introduction
1.1 Why should we care?
1.2 Summary: Where we are headed
1.3 Outline of the article
2 Early History
2.1 From the special theory to the search for a theory of gravity
2.2 From the equivalence principle to the metric tensor
2.3 From the metric tensor to the hole argument
2.4 From the hole argument back to general covariance
2.5 The point coincidence argument
2.6 From general covariance to Kretschmann’s critique
2.7 The Cauchy problem for the Einstein equations: from Hilbert to Lichnerowicz
3 Modern Revival of the Argument
3.1 Did Einstein misunderstand coordinate transformations?
3.2 Einstein’s vision and fiber bundles
4 The Hole Argument and Some Extensions
4.1 Structures, algebraic and geometric, permutability and general permutability
4.2 Differentiable manifolds and diffeomorphisms, covariance and general covariance
4.3 Fiber bundles: principal bundles, associated bundles, frame bundles, natural and gauge-natural bundles
4.4 Covariance and general covariance for natural and gauge-natural bundles
5 Current Discussions: Philosophical Issues
5.1 Relationalism versus substantivalism: Is that all there is?
5.2 Evolution of Earman’s relationalism
5.3 Pooley’s position: sophisticated substantivalism
5.4 Stachel and dynamic structural realism
5.5 Relations, internal and external, quiddity and haecceity
5.6 Structures, algebraic and geometric
5.7 Does “general relativity” extend the principle of relativity?
6 Current Discussions: Physical Issues
6.1 Space-time symmetry groups and partially background-independent space-times
6.2 General relativity as a gauge theory
6.3 The hole argument for elementary particles
6.4 The problem of quantum gravity
7 Conclusion: The Hole Argument Redivivus
A Nijenhuis on the Formal Definition of Natural Bundles
B Appendix to Section 4: Some Philosophical Concepts
B.1 Things: Synchonic states and diachronic processes
B.2 Open versus closed systems: Determinism versus causality
B.3 Properties: Intrinsic and extrinsic
B.4 Relations: Internal and external
B.5 Quiddity and haecceity

The Hole Argument and Some Physical and Philosophical Implications

John Stachel 
Center for Einstein Studies,
Boston University
745 Commonwealth Avenue
Boston, MA 02215


This is a historical-critical study of the hole argument, concentrating on the interface between historical, philosophical and physical issues. Although it includes a review of its history, its primary aim is a discussion of the contemporary implications of the hole argument for physical theories based on dynamical, background-independent space-time structures.

The historical review includes Einstein’s formulations of the hole argument, Kretschmann’s critique, as well as Hilbert’s reformulation and Darmois’ formulation of the general-relativistic Cauchy problem. The 1970s saw a revival of interest in the hole argument, growing out of attempts to answer the question: Why did three years elapse between Einstein’s adoption of the metric tensor to represent the gravitational field and his adoption of the Einstein field equations?

The main part presents some modern mathematical versions of the hole argument, including both coordinate-dependent and coordinate-independent definitions of covariance and general covariance; and the fiber bundle formulation of both natural and gauge natural theories. By abstraction from continuity and differentiability, these formulations can be extended from differentiable manifolds to any set; and the concepts of permutability and general permutability applied to theories based on relations between the elements of a set, such as elementary particle theories.

We are closing with an overview of current discussions of philosophical and physical implications of the hole argument.

Keywords: General relativity, History of science, Philosophy of science

Go to first Section