1 Aad, G. et al. (ATLAS Collaboration), “Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics”, arXiv, e-print, (2009). [External LinkADS], [External LinkarXiv:0901.0512 [hep-ex]].
2 Aad, G. et al. (ATLAS Collaboration), “Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at √ ----- sNN = 2.76 TeV with the ATLAS Detector at the LHC”, Phys. Rev. Lett., 105, 252303 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.6182 [hep-ex]].
3 Aad, G. et al. (ATLAS Collaboration), “Search for TeV-scale gravity signatures in final states with leptons and jets with the ATLAS detector at √s-- = 7 TeV”, Phys. Lett. B, 716, 122–141 (2012). [External LinkDOI], [External LinkarXiv:1204.4646 [hep-ex]].
4 Aad, G. et al. (ATLAS Collaboration), “Search for Quantum Black Hole Production in High-Invariant-Mass Lepton+Jet Final States Using pp Collisions at √ -- s = 8 TeV and the ATLAS Detector”, Phys. Rev. Lett., 112, 091804 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1311.2006 [hep-ex]].
5 Abadie, J. et al. (LIGO Scientific Collaboration, Virgo Collaboration), “Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors”, Class. Quantum Grav., 27, 173001 (2010). [External LinkDOI], [External LinkarXiv:1003.2480 [astro-ph.HE]].
6 Abbott, B. P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.3041 [gr-qc]].
7 Abbott, L. F. and Wise, M. B., “Constraints on Generalized Inflationary Cosmologies”, Nucl. Phys. B, 244, 541–548 (1984). [External LinkDOI].
8 Abdolrahimi, S., Cattoën, C., Page, D. N. and Yaghoobpour-Tari, S., “Spectral methods in general relativity and large Randall-Sundrum II black holes”, J. Cosmol. Astropart. Phys., 2013(06), 039 (2013). [External LinkDOI], [External LinkarXiv:1212.5623 [hep-th]].
9 Abrahams, A. M. and Evans, C. R., “Critical behavior and scaling in vacuum axisymmetric gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983 (1993). [External LinkDOI].
10 Accadia, T. et al. (Virgo Collaboration), “Status and perspectives of the Virgo gravitational wave detector”, J. Phys.: Conf. Ser., 203, 012074 (2010). [External LinkDOI].
11 Adam, A., Kitchen, S. and Wiseman, T., “A numerical approach to finding general stationary vacuum black holes”, Class. Quantum Grav., 29, 165002 (2012). [External LinkDOI], [External LinkarXiv:1105.6347 [gr-qc]].
12 Adams, A., Chesler, P. M. and Liu, H., “Holographic Vortex Liquids and Superfluid Turbulence”, Science, 26, 368–372 (2013). [External LinkDOI], [External LinkarXiv:1212.0281 [hep-th]].
13 Adams, A., Chesler, P. M. and Liu, H., “Holographic turbulence”, Phys. Rev. Lett., 112, 151602 (2014). [External LinkDOI], [External LinkarXiv:1307.7267 [hep-th]].
14 Adler, R. J. and Zeks, B., “Gravitational Radiation from Supernova Explosions”, Phys. Rev. D, 12, 3007 (1975). [External LinkDOI].
15 Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H. and Oz, Y., “Large N field theories, string theory and gravity”, Phys. Rep., 323, 183–386 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9905111].
16 Aichelburg, P. C. and Sexl, R. U., “On the Gravitational field of a massless particle”, Gen. Relativ. Gravit., 2, 303–312 (1971). [External LinkDOI].
17 Ajith, P. et al., “Phenomenological template family for black-hole coalescence waveforms”, Class. Quantum Grav., 24, S689–S700 (2007). [External LinkDOI], [External LinkarXiv:0704.3764 [gr-qc]].
18 Ajith, P. et al., “The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries”, Class. Quantum Grav., 29, 124001 (2012). [External LinkDOI], [External LinkarXiv:1201.5319 [gr-qc]].
19 Albacete, J. L., Kovchegov, Y. V. and Taliotis, A., “Asymmetric Collision of Two Shock Waves in AdS(5)”, J. High Energy Phys., 2009(05), 060 (2009). [External LinkDOI], [External LinkarXiv:0902.3046 [hep-th]].
20 Alcubierre, M., “Hyperbolic slicings of spacetime: singularity avoidance and gauge shocks”, Class. Quantum Grav., 20, 607–624 (2003). [External LinkDOI], [External Linkgr-qc/0210050].
21 Alcubierre, M., Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, 140, (Oxford University Press, Oxford, 2008). [External LinkADS].
22 Alcubierre, M., Brandt, S., Brügmann, B., Gundlach, C., Masso, J., Seidel, E. and Walker, P., “Test beds and applications for apparent horizon finders in numerical relativity”, Class. Quantum Grav., 17, 2159–2190 (2000). [External LinkDOI], [External Linkgr-qc/9809004].
23 Alcubierre, M. and Brügmann, B., “Simple excision of a black hole in 3 + 1 numerical relativity”, Phys. Rev. D, 63, 104006 (2001). [External LinkDOI], [External Linkgr-qc/0008067].
24 Alcubierre, M., Brügmann, B., Diener, P., Koppitz, M., Pollney, D., Seidel, E. and Takahashi, R., “Gauge conditions for long-term numerical black hole evolutions without excision”, Phys. Rev. D, 67, 084023 (2003). [External LinkDOI], [External Linkgr-qc/0206072].
25 Alcubierre, M., Brügmann, B., Holz, D. E., Takahashi, R., Brandt, S., Seidel, E. and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids”, Int. J. Mod. Phys. D, 10, 273–289 (2001). [External LinkDOI].
26 Alcubierre, M. et al., “Toward standard testbeds for numerical relativity”, Class. Quantum Grav., 21, 589–613 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0305023].
27 Alexander, S. and Yunes, N., “Chern-Simons Modified General Relativity”, Phys. Rep., 480, 1–55 (2009). [External LinkDOI], [External LinkarXiv:0907.2562 [hep-th]].
28 Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L. and Palenzuela, C., “Conformal and covariant formulation of the Z4 system with constraint-violation damping”, Phys. Rev. D, 85, 064040 (2012). [External LinkDOI], [External LinkarXiv:1106.2254 [gr-qc]].
29 Alic, D., Rezzolla, L., Hinder, I. and Mösta, P., “Dynamical damping terms for symmetry-seeking shift conditions”, Class. Quantum Grav., 27, 245023 (2010). [External LinkDOI], [External LinkarXiv:1008.2212 [gr-qc]].
30 Alsing, J., Berti, E., Will, C. M. and Zaglauer, H., “Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity”, Phys. Rev. D, 85, 064041 (2012). [External LinkDOI], [External LinkarXiv:1112.4903 [gr-qc]].
31 Alvarez-Gaumé, L., Gómez, C., Sabio Vera, A., Tavanfar, A. and Vázquez-Mozo, M. A., “Critical formation of trapped surfaces in the collision of gravitational shock waves”, J. High Energy Phys., 2009(02), 009 (2009). [External LinkDOI], [External LinkarXiv:0811.3969 [hep-th]].
32 Amaro-Seoane, P. et al., “Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals”, Class. Quantum Grav., 24, R113–R169 (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0703495].
33 Anchordoqui, L. and Goldberg, H., “Experimental signature for black hole production in neutrino air showers”, Phys. Rev. D, 65, 047502 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0109242 [hep-ph]].
34 Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0211057 [astro-ph]].
35 Andrade, Z. and Price, R. H., “Headon collisions of unequal mass black holes: Close limit predictions”, Phys. Rev. D, 56, 6336–6350 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9611022 [gr-qc]].
36 Anninos, Peter, “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2 (2001). [External LinkDOI], [External LinkADS]. URL (accessed 2 April 2014):
37 Anninos, P., Hobill, D., Seidel, E., Smarr, L. and Suen, W.-M., “Collision of two black holes”, Phys. Rev. Lett., 71, 2851–2854 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9309016 [gr-qc]].
38 Ansorg, M., “Multi-Domain Spectral Method for Initial Data of Arbitrary Binaries in General Relativity”, Class. Quantum Grav., 24, S1–S14 (2007). [External LinkDOI], [External Linkgr-qc/0612081].
39 Ansorg, M., Brügmann, B. and Tichy, W., “Single-domain spectral method for black hole puncture data”, Phys. Rev. D, 70, 064011 (2004). [External LinkDOI], [External Linkgr-qc/0404056].
40 Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R., “New dimensions at a millimeter to a Fermi and superstrings at a TeV”, Phys. Lett. B, 436, 257–263 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/9804398].
41 Aretakis, S., “Stability and Instability of Extreme Reissner–Nordström Black Hole Spacetimes for Linear Scalar Perturbations II”, Ann. Henri Poincare, 12, 1491–1538 (2011). [External LinkDOI], [External LinkarXiv:1110.2009 [gr-qc]].
42 Aretakis, S., “Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I”, Commun. Math. Phys., 307, 17–63 (2011). [External LinkDOI], [External LinkarXiv:1110.2007 [gr-qc]].
43 Aretakis, S., “Horizon Instability of Extremal Black Holes”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1206.6598 [gr-qc]].
44 Aretakis, S., “Nonlinear instability of scalar fields on extremal black holes”, Phys. Rev. D, 87, 084052 (2013). [External LinkDOI], [External LinkarXiv:1304.4616 [gr-qc]].
45 Argyres, P. C., Dimopoulos, S. and March-Russell, J., “Black holes and sub-millimeter dimensions”, Phys. Lett. B, 441, 96–104 (1998). [External LinkDOI], [External LinkarXiv:hep-th/9808138].
46 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429, 263–272 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9803315 [hep-ph]].
47 Arnowitt, R., Deser, S. and Misner, C. W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405109 [gr-qc]].
48 Arun, K. G., Blanchet, L., Iyer, B. R. and Sinha, S., “Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits”, Phys. Rev. D, 80, 124018 (2009). [External LinkDOI], [External LinkarXiv:0908.3854 [gr-qc]].
49 Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. and March-Russell, J., “String Axiverse”, Phys. Rev. D, 81, 123530 (2010). [External LinkDOI], [External LinkarXiv:0905.4720 [hep-th]].
50 Arvanitaki, A. and Dubovsky, S., “Exploring the String Axiverse with Precision Black Hole Physics”, Phys. Rev. D, 83, 044026 (2011). [External LinkDOI], [External LinkarXiv:1004.3558 [hep-th]].
51 Ashtekar, A., Corichi, A. and Sudarsky, D., “Hairy black holes, horizon mass and solitons”, Class. Quantum Grav., 18, 919–940 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0011081 [gr-qc]].
52 Ashtekar, A. and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0308033].
53 Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0407042]. URL (accessed 2 April 2014):
54 Ashtekar, A., Pretorius, F. and Ramazanoglu, F. M., “Evaporation of 2-Dimensional Black Holes”, Phys. Rev. D, 83, 044040 (2011). [External LinkDOI], [External LinkarXiv:1012.0077 [gr-qc]].
55 Ashtekar, A., Pretorius, F. and Ramazanoglu, F. M., “Surprises in the Evaporation of 2-Dimensional Black Holes”, Phys. Rev. Lett., 106, 161303 (2011). [External LinkDOI], [External LinkarXiv:1011.6442 [gr-qc]].
56 Avelino, P. P., Hamilton, A. J. S. and Herdeiro, C. A. R., “Mass Inflation in Brans-Dicke gravity”, Phys. Rev. D, 79, 124045 (2009). [External LinkDOI], [External LinkarXiv:0904.2669 [gr-qc]].
57 Avelino, P. P., Hamilton, A. J. S., Herdeiro, C. A. R. and Zilhão, M., “Mass inflation in a D-dimensional Reissner-Nordström black hole: A hierarchy of particle accelerators?”, Phys. Rev. D, 84, 024019 (2011). [External LinkDOI], [External LinkarXiv:1105.4434 [gr-qc]].
58 Babiuc, M. C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002 (2007). [External LinkDOI], [External Linkgr-qc/0612051].
59 Babiuc, M. C., Kreiss, H-O. and Winicour, J., “Testing the well-posedness of characteristic evolution of scalar waves”, Class. Quantum Grav., 31, 025022 (2014). [External LinkDOI], [External LinkarXiv:1305.7179 [gr-qc]].
60 Babiuc, M. C., Szilagyi, B., Winicour, J. and Zlochower, Y., “A Characteristic Extraction Tool for Gravitational Waveforms”, Phys. Rev. D, 84, 044057 (2011). [External LinkDOI], [External LinkarXiv:1011.4223 [gr-qc]].
61 Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models”, Phys. Rev. D, 84, 024017 (2011). [External LinkDOI], [External LinkarXiv:1103.3874 [gr-qc]].
62 Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole”, Phys. Rev. D, 78, 084033 (2008). [External LinkDOI], [External LinkarXiv:0804.0594 [gr-qc]].
63 Baiotti, L., Hawke, I., Montero, P. J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J. A. and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole”, Phys. Rev. D, 71, 024035 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0403029].
64 Baiotti, L. and Rezzolla, L., “Challenging the Paradigm of Singularity Excision in Gravitational Collapse”, Phys. Rev. Lett., 97, 141101 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0608113 [gr-qc]].
65 Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J., “Gravitational wave extraction from an inspiraling configuration of merging black holes”, Phys. Rev. Lett., 96, 111102 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511103].
66 Balasubramanian, V., Buchel, A., Green, S. R., Lehner, L. and Liebling, S. L., “Holographic Thermalization, stability of AdS, and the Fermi-Pasta-Ulam-Tsingou paradox”, Phys. Rev. Lett., 113, 071601 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1403.6471 [hep-th]].
67 Balasubramanian, V. and Kraus, P., “A Stress tensor for Anti-de Sitter gravity”, Commun. Math. Phys., 208, 413–428 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9902121].
68 Banados, M., Teitelboim, C. and Zanelli, J., “The Black hole in three-dimensional space-time”, Phys. Rev. Lett., 69, 1849–1851 (1992). [External LinkDOI], [External LinkarXiv:hep-th/9204099].
69 Banks, T. and Fischler, W., “A Model for High Energy Scattering in Quantum Gravity”, arXiv, e-print, (1999). [External LinkADS], [External LinkarXiv:hep-th/9906038 [hep-th]].
70 Bantilan, H., Pretorius, F. and Gubser, S. S., “Simulation of asymptotically AdS5 spacetimes with a generalized harmonic evolution scheme”, Phys. Rev. D, 85, 084038 (2012). [External LinkDOI], [External LinkarXiv:1201.2132 [hep-th]].
71 Barausse, E., Cardoso, V. and Khanna, G., “Test bodies and naked singularities: Is the self-force the cosmic censor?”, Phys. Rev. Lett., 105, 261102 (2010). [External LinkDOI], [External LinkarXiv:1008.5159 [gr-qc]].
72 Barausse, E., Cardoso, V. and Khanna, G., “Testing the Cosmic Censorship Conjecture with point particles: the effect of radiation reaction and the self-force”, Phys. Rev. D, 84, 104006 (2011). [External LinkDOI], [External LinkarXiv:1106.1692 [gr-qc]].
73 Barausse, E., Palenzuela, C., Ponce, M. and Lehner, L., “Neutron-star mergers in scalar-tensor theories of gravity”, Phys. Rev. D, 87, 081506 (2013). [External LinkDOI], [External LinkarXiv:1212.5053 [gr-qc]].
74 Bardeen, J. M., Carter, B. and Hawking, S. W., “The Four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170 (1973). [External LinkDOI].
75 Bardeen, J. M. and Press, W. H., “Radiation fields in the schwarzschild background”, J. Math. Phys., 14, 7–19 (1973). [External LinkDOI].
76 Barranco, J., Bernal, A., Degollado, J. C., Diez-Tejedor, A., Megevand, M., Alcubierre, M., Núñez, D. and Sarbach, O., “Schwarzschild black holes can wear scalar wigs”, Phys. Rev. Lett., 109, 081102 (2012). [External LinkDOI], [External LinkarXiv:1207.2153 [gr-qc]].
77 Bartnik, R. and McKinnon, J., “Particle-Like Solutions of the Einstein Yang-Mills Equations”, Phys. Rev. Lett., 61, 141–144 (1988). [External LinkDOI].
78 Baumgarte, T. W. and Shapiro, S. L., “On the Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007 (1998). [External LinkDOI], [External Linkgr-qc/9810065].
79 Baumgarte, T. W. and Shapiro, S. L., Numerical Relativity: Solving Einstein’s Equations on the Computer, (Cambridge University Press, Cambridge; New York, 2010). [External LinkADS], [External LinkGoogle Books].
80 Bauswein, A. and Janka, H.-T., “Measuring neutron-star properties via gravitational waves from binary mergers”, Phys. Rev. Lett., 108, 011101 (2012). [External LinkDOI], [External LinkarXiv:1106.1616 [astro-ph]].
81 Bayona, C. A. and Braga, N. R. F., “Anti-de Sitter boundary in Poincaré coordinates”, Gen. Relativ. Gravit., 39, 1367–1379 (2007). [External LinkDOI], [External Linkhep-th/0512182].
82 Beetle, C., Bruni, M., Burko, L. M. and Nerozzi, A., “Towards a novel wave-extraction method for numerical relativity. I. Foundations and initial-value formulation”, Phys. Rev. D, 72, 024013 (2005). [External LinkDOI], [External Linkgr-qc/0407012].
83 Bekenstein, J. D., “Extraction of energy and charge from a black hole”, Phys. Rev. D, 7, 949–953 (1973). [External LinkDOI].
84 Bekenstein, J. D., “Gravitational-Radiation Recoil and Runaway Black Holes”, Astrophys. J., 183, 657–664 (1973). [External LinkDOI].
85 Bekenstein, J. D., “Novel ‘no scalar hair’ theorem for black holes”, Phys. Rev. D, 51, 6608–6611 (1995). [External LinkDOI].
86 Bentivegna, E. and Korzynski, M., “Evolution of a periodic eight-black-hole lattice in numerical relativity”, Class. Quantum Grav., 29, 165007 (2012). [External LinkDOI], [External LinkarXiv:1204.3568 [gr-qc]].
87 Berger, B. K., “How to determine approximate mixmaster parameters from numerical evolution of Einstein’s equations”, Phys. Rev. D, 49, 1120–1123 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9308016 [gr-qc]].
88 Berger, B. K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0201056 [gr-qc]]. URL (accessed 2 April 2014):
89 Berger, B. K., Garfinkle, D. and Strasser, E., “New algorithm for mixmaster dynamics”, Class. Quantum Grav., 14, L29–L36 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9609072 [gr-qc]].
90 Berger, M. J. and Oliger, J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations”, J. Comput. Phys., 53, 484–512 (1984). [External LinkDOI].
91 Berti, E., Buonanno, A. and Will, C. M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411129].
92 Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M. and Sperhake, U., “Numerical simulations of single and binary black holes in scalar-tensor theories: circumventing the no-hair theorem”, Phys. Rev. D, 87, 124020 (2013). [External LinkDOI], [External LinkarXiv:1304.2836 [gr-qc]].
93 Berti, E., Cardoso, V., Hinderer, T., Lemos, M., Pretorius, F. et al., “Semianalytical estimates of scattering thresholds and gravitational radiation in ultrarelativistic black hole encounters”, Phys. Rev. D, 81, 104048 (2010). [External LinkDOI], [External LinkarXiv:1003.0812 [gr-qc]].
94 Berti, E., Cardoso, V. and Kipapa, B., “Up to eleven: radiation from particles with arbitrary energy falling into higher-dimensional black holes”, Phys. Rev. D, 83, 084018 (2011). [External LinkDOI], [External LinkarXiv:1010.3874 [gr-qc]].
95 Berti, E., Cardoso, V. and Starinets, A. O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [External LinkDOI], [External LinkarXiv:0905.2975 [gr-qc]].
96 Berti, E., Cardoso, V. and Will, C. M., “Considerations on the excitation of black hole quasinormal modes”, in Solomos, N. H., ed., Recent Advances in Astronomy and Astrophysics, 7th International Conference of the Hellenic Astronomical Society, Lixourion, Kefallinia Island (Greece), 8 - 11 September 2005, AIP Conf. Proc., 848, pp. 687–697, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601077 [gr-qc]].
97 Berti, E., Cardoso, V. and Will, C. M., “On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0512160].
98 Berti, E., Cavaglia, M. and Gualtieri, L., “Gravitational energy loss in high energy particle collisions: Ultrarelativistic plunge into a multidimensional black hole”, Phys. Rev. D, 69, 124011 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0309203].
99 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374 (2003). [External LinkDOI].
100 Beyer, H. R. and Sarbach, O., “On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations”, Phys. Rev. D, 70, 104004 (2004). [External LinkDOI], [External Linkgr-qc/0406003].
101 Bildsten, L., “Gravitational radiation and rotation of accreting neutron stars”, Astrophys. J., 501, L89 (1998). [External LinkDOI], [External LinkarXiv:astro-ph/9804325 [astro-ph]].
102 Bini, D., Damour, T. and Faye, G., “Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description”, Phys. Rev. D, 85, 124034 (2012). [External LinkDOI], [External LinkarXiv:1202.3565 [gr-qc]].
103 Birkhoff, G. D. and Langer, R. E., Relativity and Modern Physics, (Harvard University Press, Cambridge, 1923). [External LinkADS].
104 Birmingham, D., Sachs, I. and Solodukhin, S. N., “Conformal field theory interpretation of black hole quasi-normal modes”, Phys. Rev. Lett., 88, 151301 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0112055].
105 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847 (1990). [External LinkDOI].
106 Bizoń, P., “Gravitating solitons and hairy black holes”, Acta Phys. Pol. B, 25, 877–898 (1994). [External LinkarXiv:gr-qc/9402016 [gr-qc]].
107 Bizoń, P. and Chmaj, T., “Gravitating skyrmions”, Phys. Lett. B, 297, 55–62 (1992). [External LinkDOI].
108 Bizoń, P. and Rostworowski, A., “On weakly turbulent instability of anti-de Sitter space”, Phys. Rev. Lett., 107, 031102 (2011). [External LinkDOI], [External LinkarXiv:1104.3702 [gr-qc]].
109 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.1528 [gr-qc]]. URL (accessed 5 August 2014):
110 Bolton, C. T., “Cygnus X-1-Dimensions of the system”, Nature, 240, 124 (1972).
111 Bona, C., , Palenzuela, C. and Bona-Casas, C., Elements of Numerical Relativity and Relativistic Hydrodynamics: From Einstein’s Equations to Astrophysical Simulations, Lecture Notes in Physics, 783, (Springer, Berlin; New York, 2009), 2nd edition. [External LinkDOI], [External LinkADS].
112 Bona, C., Ledvinka, T., Palenzuela, C. and Žáček, M., “A Symmetry breaking mechanism for the Z4 general covariant evolution system”, Phys. Rev. D, 69, 064036 (2004). [External LinkDOI], [External Linkgr-qc/0307067].
113 Bona, C., Ledvinka, T., Palenzuela, C. and Žáček, M., “General-covariant evolution formalism for numerical relativity”, Phys. Rev. D, 67, 104005 (2003). [External LinkDOI], [External Linkgr-qc/0302083].
114 Bona, C., Ledvinka, T., Palenzuela-Luque, C. and Žáček, M., “Constraint-preserving boundary conditions in the Z4 numerical relativity formalism”, Class. Quantum Grav., 22, 2615–2634 (2005). [External LinkDOI], [External Linkgr-qc/0411110].
115 Bona, C. and Masso, J., “Hyperbolic evolution system for numerical relativity”, Phys. Rev. Lett., 68, 1097–1099 (1992). [External LinkDOI].
116 Bona, C., Massó, J., Seidel, E. and Stela, J., “A New Formalism for Numerical Relativity”, Phys. Rev. Lett., 75, 600–603 (1995). [External LinkDOI], [External Linkgr-qc/9412071].
117 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical approach for high precision 3-D relativistic star models”, Phys. Rev. D, 58, 104020 (1998). [External LinkDOI], [External LinkarXiv:astro-ph/9803086 [astro-ph]].
118 Bondi, H., van der Burg, M. G. J. and Metzner, A. W. K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52 (1962). [External LinkDOI], [External LinkADS].
119 Bonnor, W. B. and Rotenberg, M. A., “Transport of momentum by gravitational waves: the linear approximation”, Proc. R. Soc. London, Ser. A, 265, 109–116 (1961). [External LinkDOI].
120 Boulware, D. G. and Deser, S., “String Generated Gravity Models”, Phys. Rev. Lett., 55, 2656 (1985). [External LinkDOI].
121 Bowen, J. M. and York Jr, J. W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047–2056 (1980). [External LinkDOI].
122 Boyle, M., Brown, D. A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A., Cook, G. B. and Teukolsky, S. A., “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions”, Phys. Rev. D, 76, 124038 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.0158 [gr-qc]].
123 Boyle, M., Brown, D. A. and Pekowsky, L., “Comparison of high-accuracy numerical simulations of black-hole binaries with stationary-phase post-Newtonian template waveforms for initial and advanced LIGO”, Class. Quantum Grav., 26, 114006 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.1628 [gr-qc]].
124 Boyle, M. and Mroué, A. H., “Extrapolating gravitational-wave data from numerical simulations”, Phys. Rev. D, 80, 124045 (2009). [External LinkDOI], [External LinkarXiv:0905.3177 [gr-qc]].
125 Brady, P. R., Chambers, C. M. and Goncalves, S. M. C. V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, 6057–6061 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9709014 [gr-qc]].
126 Brandt, S. and Brügmann, B., “A Simple construction of initial data for multiple black holes”, Phys. Rev. Lett., 78, 3606–3609 (1997). [External LinkDOI], [External Linkgr-qc/9703066].
127 Brandt, S. et al., “Grazing Collisions of Black Holes via the Excision of Singularities”, Phys. Rev. Lett., 85, 5496–5499 (2000). [External LinkDOI], [External Linkgr-qc/0009047].
128 Brans, C. and Dicke, R. H., “Mach’s principle and a relativistic theory of gravitation”, Phys. Rev., 124, 925–935 (1961). [External LinkDOI].
129 Breuer, R. A., Ruffini, R., Tiomno, J. and Vishveshwara, C. V., “Vector and Tensor Radiation from Schwarzschild Relativistic Circular Geodesics”, Phys. Rev. D, 7, 1002–1007 (1973). [External LinkDOI], [External LinkADS].
130 Breuer, R. A. and Vishveshwara, C. V., “Polarization of Synchrotron Radiation from Relativistic Schwarzschild Circular Geodesics”, Phys. Rev. D, 7, 1008–1017 (1973). [External LinkDOI], [External LinkADS].
131 Brihaye, Y., Kleihaus, B., Kunz, J. and Radu, E., “Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory”, J. High Energy Phys., 2010(11), 098 (2010). [External LinkDOI], [External LinkarXiv:1010.0860 [hep-th]].
132 Brihaye, Y. and Radu, E., “Black hole solutions in d = 5 Chern-Simons gravity”, J. High Energy Phys., 2013(11), 049 (2013). [External LinkDOI], [External LinkarXiv:1305.3531 [gr-qc]].
133 Brill, D. R. and Lindquist, R. W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476 (1963). [External LinkDOI].
134 Brito, R., “Dynamics around black holes: Radiation Emission and Tidal Effects”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1211.1679 [gr-qc]].
135 Brito, R., Cardoso, V. and Pani, P., “Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass”, Phys. Rev. D, 88, 023514 (2013). [External LinkDOI], [External LinkarXiv:1304.6725 [gr-qc]].
136 Brown, J. D., “BSSN in spherical symmetry”, Class. Quantum Grav., 25, 205004 (2008). [External LinkDOI], [External LinkarXiv:0705.3845 [gr-qc]].
137 Brown, J. D., “Puncture Evolution of Schwarzschild Black Holes”, Phys. Rev. D, 77, 044018 (2008). [External LinkDOI], [External LinkarXiv:0705.1359 [gr-qc]].
138 Brown, J. D., “Probing the puncture for black hole simulations”, Phys. Rev. D, 80, 084042 (2009). [External LinkDOI], [External LinkarXiv:0908.3814 [gr-qc]].
139 Brown, J. D. and York Jr, J. W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47, 1407–1419 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9209012].
140 Brügmann, B., “Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions”, Phys. Rev. D, 54, 7361–7372 (1996). [External LinkDOI], [External Linkgr-qc/9608050].
141 Bruhat, Y., “The Cauchy problem”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 130–168, (Wiley, New York; London, 1962).
142 Buchel, A., Lehner, L. and Liebling, S. L., “Scalar Collapse in AdS”, Phys. Rev. D, 86, 123011 (2012). [External LinkDOI], [External LinkarXiv:1210.0890 [gr-qc]].
143 Buchel, A., Lehner, L. and Myers, R. C., “Thermal quenches in N=2* plasmas”, J. High Energy Phys., 2012(08), 049 (2012). [External LinkDOI], [External LinkarXiv:1206.6785 [hep-th]].
144 Buchel, A., Lehner, L., Myers, R. C. and van Niekerk, A., “Quantum quenches of holographic plasmas”, J. High Energy Phys., 2013(05), 067 (2013). [External LinkDOI], [External LinkarXiv:1302.2924 [hep-th]].
145 Buchel, A., Liebling, S. L. and Lehner, L., “Boson stars in AdS spacetime”, Phys. Rev. D, 87, 123006 (2013). [External LinkDOI], [External LinkarXiv:1304.4166 [gr-qc]].
146 Buchman, L. T., Pfeiffer, H. P., Scheel, M. A. and Szilagyi, B., “Simulations of non-equal mass black hole binaries with spectral methods”, Phys. Rev. D, 86, 084033 (2012). [External LinkDOI], [External LinkarXiv:1206.3015 [gr-qc]].
147 Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9811091 [gr-qc]].
148 Buonanno, A., Faye, G. and Hinderer, T., “Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order”, Phys. Rev. D, 87, 044009 (2013). [External LinkDOI], [External LinkarXiv:1209.6349 [gr-qc]].
149 Burgess, C. P., “Introduction to Effective Field Theory”, Annu. Rev. Nucl. Part. Sci., 57, 329–362 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701053 [hep-th]].
150 Burgess, C. P. and Lutken, C. A., “Propagators and effective potentials in anti-de Sitter space”, Phys. Lett. B, 153, 137 (1985). [External LinkDOI].
151 Burko, L. M., “Structure of the black hole’s Cauchy horizon singularity”, Phys. Rev. Lett., 79, 4958–4961 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9710112 [gr-qc]].
152 Burko, L. M., “Singularity deep inside the spherical charged black hole core”, Phys. Rev. D, 59, 024011 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9809073 [gr-qc]].
153 Burko, L. M., “Black hole singularities: A New critical phenomenon”, Phys. Rev. Lett., 90, 121101 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0209084 [gr-qc]].
154 “Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL (accessed 2 April 2014):
External Link
155 “Cactus Computational Toolkit homepage”, project homepage, Max Planck Institute for Gravitational Physics. URL (accessed 2 April 2014):
External Link is same as ref ’cactus’ above, keep cactus, throw out this one because of title.
156 Callan Jr, C. G., Giddings, S. B., Harvey, J. A. and Strominger, A., “Evanescent black holes”, Phys. Rev. D, 45, 1005–1009 (1992). [External LinkDOI], [External LinkarXiv:hep-th/9111056 [hep-th]].
157 Cameron, A. G. W., ed., Interstellar Communication: A Collection of Reprints and Original Contributions, Physical investigations of the universe, (W. A. Benjamin, New York, 1963). [External LinkGoogle Books].
158 Campanelli, M., Kelly, B. J. and Lousto, C. O., “The Lazarus project. II. Space-like extraction with the quasi-Kinnersley tetrad”, Phys. Rev. D, 73, 064005 (2006). [External LinkDOI], [External Linkgr-qc/0510122].
159 Campanelli, M., Lousto, C. O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511048].
160 Campanelli, M., Lousto, C. O. and Zlochower, Y., “Spinning-black-hole binaries: The orbital hang up”, Phys. Rev. D, 74, 041501 (2006). [External LinkDOI], [External Linkgr-qc/0604012].
161 Campanelli, M., Lousto, C. O., Zlochower, Y. and Merritt, D., “Maximum gravitational recoil”, Phys. Rev. Lett., 98, 231102 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0702133 [GR-QC]].
162 Camps, J., Emparan, R. and Haddad, N., “Black Brane Viscosity and the Gregory-Laflamme Instability”, J. High Energy Phys., 2010(05), 042 (2010). [External LinkDOI], [External LinkarXiv:1003.3636 [hep-th]].
163 Cao, Z. and Hilditch, D., “Numerical stability of the Z4c formulation of general relativity”, Phys. Rev. D, 85, 124032 (2012). [External LinkDOI], [External LinkarXiv:1111.2177 [gr-qc]].
164 Cardoso, V., “Black hole bombs and explosions: from astrophysics to particle physics”, Gen. Relativ. Gravit., 45, 2079–2097 (2013). [External LinkDOI], [External LinkarXiv:1307.0038 [gr-qc]].
165 Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and sinking: The Imprint of massive scalars around rotating black holes”, Phys. Rev. Lett., 107, 241101 (2011). [External LinkDOI], [External LinkarXiv:1109.6021 [gr-qc]].
166 Cardoso, V. and Dias, Ó. J. C., “Small Kerr-anti-de Sitter black holes are unstable”, Phys. Rev. D, 70, 084011 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0405006].
167 Cardoso, V. and Dias, Ó. J. C., “Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings”, Phys. Rev. Lett., 96, 181601 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0602017 [hep-th]].
168 Cardoso, V. and Dias, Ó. J. C., “Bifurcation of Plasma Balls and Black Holes to Lobed Configurations”, J. High Energy Phys., 2009(04), 125 (2009). [External LinkDOI], [External LinkarXiv:0902.3560 [hep-th]].
169 Cardoso, V., Dias, Ó. J. C., Hartnett, G. S., Lehner, L. and Santos, J. E., “Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS”, J. High Energy Phys., 2014(04), 183 (2014). [External LinkDOI], [External LinkarXiv:1312.5323 [hep-th]].
170 Cardoso, V., Dias, Ó. J. C. and Lemos, J. P. S., “Gravitational radiation in D-dimensional spacetimes”, Phys. Rev. D, 67, 064026 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0212168].
171 Cardoso, V., Dias, Ó. J. C., Lemos, J. P. S. and Yoshida, S., “The black hole bomb and superradiant instabilities”, Phys. Rev. D, 70, 044039 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404096].
172 Cardoso, V., Dias, Ó. J. C. and Yoshida, S., “Classical instability of Kerr-AdS black holes and the issue of final state”, Phys. Rev. D, 74, 044008 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0607162].
173 Cardoso, V., Emparan, R., Mateos, D., Pani, P. and Rocha, J. V., “Holographic collisions in confining theories”, J. High Energy Phys., 2014(01), 138 (2014). [External LinkDOI], [External LinkarXiv:1310.7590 [hep-th]].
174 Cardoso, V. and Gualtieri, L., “Equilibrium configurations of fluids and their stability in higher dimensions”, Class. Quantum Grav., 23, 7151–7198 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0610004 [hep-th]].
175 Cardoso, V. and Gualtieri, L., “Perturbations of Schwarzschild black holes in dynamical Chern–Simons modified gravity”, Phys. Rev. D, 80, 064008 (2009). [External LinkDOI], [External LinkarXiv:0907.5008 [gr-qc]].
176 Cardoso, V. and Lemos, J. P. S., “Quasinormal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations”, Phys. Rev. D, 64, 084017 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0105103 [gr-qc]].
177 Cardoso, V. and Lemos, J. P. S., “Black hole collision with a scalar particle in four, five and seven dimensional anti-de Sitter spacetimes: Ringing and radiation”, Phys. Rev. D, 66, 064006 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0206084].
178 Cardoso, V. and Lemos, J. P. S., “Black hole collision with a scalar particle in three-dimensional anti-de Sitter space-time”, Phys. Rev. D, 65, 104032 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0112254 [hep-th]].
179 Cardoso, V. and Lemos, José P. S., “Gravitational radiation from collisions at the speed of light: A Massless particle falling into a Schwarzschild black hole”, Phys. Lett. B, 538, 1–5 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0202019 [gr-qc]].
180 Cardoso, V. and Lemos, J. P. S., “Scalar synchrotron radiation in the Schwarzschild-anti-de Sitter geometry”, Phys. Rev. D, 65, 104033 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0201162 [hep-th]].
181 Cardoso, V., Lemos, J. P. S. and Yoshida, S., “Electromagnetic radiation from collisions at almost the speed of light: An Extremely relativistic charged particle falling into a Schwarzschild black hole”, Phys. Rev. D, 68, 084011 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0307104 [gr-qc]].
182 Cardoso, V., Pani, P., Cadoni, M. and Cavaglia, M., “Ergoregion instability of ultracompact astrophysical objects”, Phys. Rev. D, 77, 124044 (2008). [External LinkDOI], [External LinkarXiv:0709.0532 [gr-qc]].
183 Cardoso, V. and Yoshida, S., “Superradiant instabilities of rotating black branes and strings”, J. High Energy Phys., 2005(07), 009 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0502206 [hep-th]].
184 “Carpet: Adaptive Mesh Refinement for the Cactus Framework”, project homepage, Louisiana State University. URL (accessed 2 April 2014):
External Link
185 Carrasco, F., Lehner, L., Myers, R. C., Reula, O. and Singh, A., “Turbulent flows for relativistic conformal fluids in 2+1 dimensions”, Phys. Rev. D, 86, 126006 (2012). [External LinkDOI], [External LinkarXiv:1210.6702 [hep-th]].
186 Carroll, S. M., “Lecture Notes on General Relativity”, lecture notes, S. M. Carroll, (1997). URL (accessed 7 August 2014):
External Link
187 Carter, B., “Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations”, Commun. Math. Phys., 10, 280 (1968).
188 Carter, B., “Axisymmetric Black Hole Has Only Two Degrees of Freedom”, Phys. Rev. Lett., 26, 331–333 (1971). [External LinkDOI].
189 Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K. and Wiedemann, U. A., “Gauge/String Duality, Hot QCD and Heavy Ion Collisions”, arXiv, e-print, (2011). [External LinkarXiv:1101.0618 [hep-th]].
190 Caudill, M., Cook, G. B., Grigsby, J. D. and Pfeiffer, H. P., “Circular orbits and spin in black-hole initial data”, Phys. Rev. D, 74, 064011 (2006). [External LinkDOI], [External Linkgr-qc/0605053].
191 Centrella, J. M., Baker, J. G., Kelly, B. J. and van Meter, J. R., “Black-hole binaries, gravitational waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069 (2010). [External LinkDOI], [External LinkarXiv:1010.5260 [gr-qc]].
192 Chambers, C. M. and Moss, I. G., “Stability of the Cauchy horizon in Kerr-de Sitter space-times”, Class. Quantum Grav., 11, 1035–1054 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9404015 [gr-qc]].
193 Chandrasekhar, S., “The maximum mass of ideal white dwarfs”, Astrophys. J., 74, 81–82 (1931). [External LinkDOI].
194 Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488 (1965). [External LinkDOI].
195 Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, (Clarendon Press, Oxford; New York, 1983). [External LinkADS].
196 Chandrasekhar, S. and Ferrari, V., “On the non-radial oscillations of a star”, Proc. R. Soc. London, Ser. A, 432, 247–279 (1991).
197 Chandrasekhar, S. and Ferrari, V., “On the Non-Radial Oscillations of Slowly Rotating Stars Induced by the Lense-Thirring Effect”, Proc. R. Soc. London, Ser. A, 433, 423–440 (1991). [External LinkDOI].
198 Chandrasekhar, S. and Hartle, J., “On Crossing the Cauchy Horizon of a Reissner-Nordström Black Hole”, Proc. R. Soc. London, Ser. A, 384, 301 (1982). [External LinkDOI].
199 Chatrchyan, S. et al. (CMS Collaboration), “Observation and studies of jet quenching in PbPb collisions at √sNN--- = 2.76 TeV”, Phys. Rev. C, 84, 024906 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.1957 [nucl-ex]].
200 Chatrchyan, S. et al. (CMS Collaboration), “Jet momentum dependence of jet quenching in PbPb collisions at √ ----- sNN = 2.76 TeV”, Phys. Lett. B, 712, 176–197 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.5022 [nucl-ex]].
201 Chatrchyan, S. et al. (CMS Collaboration), “Search for microscopic black holes in pp collisions at √s-- = 7 TeV”, J. High Energy Phys., 2012(04), 061 (2012). [External LinkDOI], [External LinkarXiv:1202.6396 [hep-ex]].
202 Chatrchyan, S. et al. (CMS Collaboration), “Search for microscopic black holes in pp collisions at √ -- s = 8 TeV”, J. High Energy Phys., 2013(07), 178 (2013). [External LinkDOI], [External LinkarXiv:1303.5338 [hep-ex]].
203 Chatziioannou, K., Yunes, N. and Cornish, N., “Model-Independent Test of General Relativity: An Extended post-Einsteinian Framework with Complete Polarization Content”, Phys. Rev. D, 86, 022004 (2012). [External LinkDOI], [External LinkarXiv:1204.2585 [gr-qc]].
204 Chesler, P. M. and Rajagopal, K., “Jet quenching in strongly coupled plasma”, Phys. Rev. D, 90, 025033 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1402.6756 [hep-th]].
205 Chesler, P. M. and Yaffe, L. G., “Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma”, Phys. Rev. Lett., 102, 211601 (2009). [External LinkDOI], [External LinkarXiv:0812.2053 [hep-th]].
206 Chesler, P. M. and Yaffe, L. G., “Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory”, Phys. Rev. D, 82, 026006 (2010). [External LinkDOI], [External LinkarXiv:0906.4426 [hep-th]].
207 Chesler, P. M. and Yaffe, L. G., “Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime”, Phys. Rev. Lett., 106, 021601 (2011). [External LinkDOI], [External LinkarXiv:1011.3562 [hep-th]].
208 Chesler, P. M. and Yaffe, L. G., “Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes”, J. High Energy Phys., 2013(07), 086 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1309.1439 [hep-th]].
209 Ching, E. S. C., Leung, P. T., Suen, W. M. and Young, K., “Wave propagation in gravitational systems: Late time behavior”, Phys. Rev. D, 52, 2118–2132 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9507035 [gr-qc]].
210 Cho, Y. M., “Dimensional Reduction by Isometry”, Phys. Lett. B, 186, 38 (1987). [External LinkDOI].
211 Cho, Y. M. and Kim, D. S., “Higher Dimensional Unification by Isometry”, J. Math. Phys., 30, 1570–1578 (1989). [External LinkDOI].
212 Choptuik, M. W., “Universality and Scaling in Gravitational Collapse of a Massless Scalar Field”, Phys. Rev. Lett., 70, 9–12 (1993). [External LinkDOI].
213 Choptuik, M. W., “The Binary Black Hole Grand Challenge Project”, in Clarke, D. A. and West, M. J., eds., Computational Astrophysics, Proceedings of the 12th Kingston Meeting on Theoretical Astrophysics, held in Halifax, Nova Scotia, Canada, October 17 – 19, 1996, ASP Conference Series, 123, p. 305, (Astronomical Society of the Pacific, San Francisco, 1997). [External LinkADS].
214 Choptuik, M. W., Hirschmann, E. W., Liebling, S. L. and Pretorius, F., “An Axisymmetric Gravitational Collapse Code”, Class. Quantum Grav., 20, 1857–1878 (2003). [External LinkDOI], [External Linkgr-qc/0301006].
215 Choptuik, M. W., Lehner, L., Olabarrieta, I., Petryk, R., Pretorius, F. et al., “Towards the final fate of an unstable black string”, Phys. Rev. D, 68, 044001 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0304085 [gr-qc]].
216 Choptuik, M. W. and Pretorius, F., “Ultra Relativistic Particle Collisions”, Phys. Rev. Lett., 104, 111101 (2010). [External LinkDOI], [External LinkarXiv:0908.1780 [gr-qc]].
217 Christodoulou, D, “Reversible and Irreversible Transformations in Black Hole Physics”, Phys. Rev. Lett., 25, 1596–1597 (1970). [External LinkDOI].
218 Christodoulou, D., “Violation of cosmic censorship in the gravitational collapse of a dust cloud”, Commun. Math. Phys., 93, 171–195 (1984). [External LinkDOI].
219 Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, (Princeton University Press, Princeton, NJ, 1993). [External LinkADS].
220 Chu, T., Pfeiffer, H. P. and Scheel, M. A., “High accuracy simulations of black hole binaries: Spins anti-aligned with the orbital angular momentum”, Phys. Rev. D, 80, 124051 (2009). [External LinkDOI], [External LinkarXiv:0909.1313 [gr-qc]].
221 Coelho, F. S., Herdeiro, C. A. R., Rebelo, C. and Sampaio, M., “Radiation from a D-dimensional collision of shock waves: higher order set up and perturbation theory validity”, Phys. Rev. D, 87, 084034 (2012). [External LinkDOI], [External LinkarXiv:1206.5839 [hep-th]].
222 Coelho, F. S., Herdeiro, C. A. R. and Sampaio, M. O. P., “Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula”, Phys. Rev. Lett., 108, 181102 (2012). [External LinkDOI], [External LinkarXiv:1203.5355 [hep-th]].
223 Cohen, M. I., Pfeiffer, H. P. and Scheel, M. A., “Revisiting Event Horizon Finders”, Class. Quantum Grav., 26, 035005 (2009). [External LinkDOI], [External LinkarXiv:0809.2628 [gr-qc]].
224 Cook, G. B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007085 [gr-qc]]. URL (accessed 2 April 2014):
225 Cook, G. B. and Pfeiffer, H., “Excision boundary conditions for black hole initial data”, Phys. Rev. D, 70, 104016 (2004). [External LinkDOI], [External Linkgr-qc/0407078].
226 Cook, G. B. and York Jr, J. W., “Apparent horizons for boosted or spinning black holes”, Phys. Rev. D, 41, 1077–1085 (1990). [External LinkDOI], [External LinkADS].
227 Cook et al., G. B., “Boosted three-dimensional black-hole evolutions with singularity excision”, Phys. Rev. lett., 80, 2512–2516 (1998). [External LinkDOI], [External Linkgr-qc/9711078].
228 Courant, R., Friedrichs, K. O. and Lewy, H., “Über die partiellen Differenzengleichungen der mathematischen Physik”, Mathematische Annalen, 100, 32–74 (1928). [External LinkDOI], [External LinkADS].
229 Cunningham, C. T., Price, R. H. and Moncrief, V., “Radiation from collapsing relativistic stars. I. Linearized odd-parity radiation”, Astrophys. J., 224, 643–667 (1978). [External LinkDOI], [External LinkADS].
230 Cunningham, C. T., Price, R. H. and Moncrief, V., “Radiation from collapsing relativistic stars. II - Linearized even-parity radiation”, Astrophys. J., 230, 870–892 (1979). [External LinkDOI], [External LinkADS].
231 Cunningham, C. T., Price, R. H. and Moncrief, V., “Radiation from collapsing relativistic stars. III. Second order perturbations of collapse with rotation”, Astrophys. J., 236, 674–692 (1980). [External LinkDOI], [External LinkADS].
232 Cutler, C., Kennefick, D. and Poisson, E., “Gravitational radiation reaction for bound motion around a Schwarzschild black hole”, Phys. Rev. D, 50, 3816–3835 (1994). [External LinkDOI].
233 Dafermos, M., “The Interior of charged black holes and the problem of uniqueness in general relativity”, Commun. Pure Appl. Math., 58, 0445–0504 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0307013 [gr-qc]].
234 Dafermos, M., “Black Holes Without Spacelike Singularities”, Commun. Math. Phys., 332, 729–757 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.1797 [gr-qc]].
235 Dafermos, M., “Null singularities in general relativity”, New Frontiers in Dynamical Gravity, Cambridge, 24 – 28 March 2014, conference homepage, University of Cambridge, (2014). URL (accessed 2 April 2014):
External Link
236 Dafermos, M. and Rodnianski, I., “The black hole stability problem for linear scalar perturbations”, in Damour, T., Jantzen, R. and Ruffini, R., eds., The Twelfth Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Proceedings of the MG12, Paris, France, 12 – 18 July 2009, pp. 132–189, (World Scientific, Singapore; Hackensack, NJ, 2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5137 [gr-qc]].
237 Dain, S., Lousto, C. O. and Takahashi, R., “New conformally flat initial data for spinning black holes”, Phys. Rev. D, 65, 104038 (2002). [External LinkDOI], [External Linkgr-qc/0201062].
238 Dain, S., Lousto, C. O. and Zlochower, Y., “Extra-Large Remnant Recoil Velocities and Spins from Near- Extremal-Bowen-York-Spin Black-Hole Binaries”, Phys. Rev. D, 78, 024039 (2008). [External LinkDOI], [External LinkarXiv:0803.0351 [gr-qc]].
239 Damour, T., “The Problem of Motion in Newtonian and Einstein Gravity”, in Hawking, S. W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge; New York, 1987). [External LinkADS].
240 Damour, T., “The General Relativistic Two Body Problem and the Effective One Body Formalism”, in Bičák, J. and Ledvinka, T., eds., General Relativity, Cosmology and Astrophysics: Perspectives 100 years after Einstein’s stay in Prague, Fundamental Theories of Physics, 177, pp. 111–145, (Springer, Cham; New York, 2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.3169 [gr-qc]].
241 Damour, T., Deruelle, N. and Ruffini, R., “On quantum resonances in stationary geometries”, Lett. Nuovo Cimento, 15, 257–262 (1976). [External LinkDOI].
242 Damour, T. and Esposito-Farèse, G., “Tensor multiscalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176 (1992). [External LinkDOI].
243 Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [External LinkDOI].
244 Damour, T. and Esposito-Farèse, G., “Tensor-scalar gravity and binary pulsar experiments”, Phys. Rev. D, 54, 1474–1491 (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602056 [gr-qc]].
245 Damour, T., Guercilena, F., Hinder, I., Hopper, S., Nagar, A. and Rezzolla, L., “Strong-field scattering of two black holes: Numerics versus analytics”, Phys. Rev. D, 89, 081503 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1402.7307 [gr-qc]].
246 Damour, T., Jaranowski, P. and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0010040 [gr-qc]]. Erratum: 10.1103/PhysRevD.66.029901.
247 Damour, T. and Nagar, A., “Improved analytical description of inspiralling and coalescing black-hole binaries”, Phys. Rev. D, 79, 081503 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0136 [gr-qc]].
248 Damour, T. and Nagar, A., “Effective One Body description of tidal effects in inspiralling compact binaries”, Phys. Rev. D, 81, 084016 (2010). [External LinkDOI], [External LinkarXiv:0911.5041 [gr-qc]].
249 Damour, T. and Nagar, A., “The Effective One Body description of the Two-Body problem”, Fundam. Theor. Phys., 162, 211–252 (2011). [External LinkarXiv:0906.1769 [gr-qc]].
250 Davis, M., Ruffini, R., Press, W. H. and Price, R. H., “Gravitational radiation from a particle falling radially into a schwarzschild black hole”, Phys. Rev. Lett., 27, 1466–1469 (1971). [External LinkDOI].
251 Davis, M., Ruffini, R. and Tiomno, J., “Pulses of Gravitational Radiation of a Particle Falling Radially into a Schwarzschild Black Hole”, Phys. Rev. D, 5, 2932–2935 (1972). [External LinkDOI], [External LinkADS].
252 Davis, M., Ruffini, R., Tiomno, J. and Zerilli, F., “Can synchrotron gravitational radiation exist?”, Phys. Rev. Lett., 28, 1352–1355 (1972). [External LinkDOI].
253 de Haro, S., Solodukhin, S, N. and Skenderis, K., “Holographic Reconstruction of Spacetime and Renormalization in the AdS/CFT Correspondence”, Commun. Math. Phys., 217, 595–622 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0002230].
254 de Sitter, W., “On Einstein’s theory of gravitation and its astronomical consequences. Second paper”, Mon. Not. R. Astron. Soc., 77, 155–184 (1916).
255 de Sitter, W., “On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis”, Proc. K. Ned. Akad. Wetensch. Series B Physical Sciences, 19, 1217–1225 (1917). [External LinkADS].
256 D’Eath, P. D., “High-speed black-hole encounters and gravitational radiation”, Phys. Rev. D, 18, 990–1019 (1978). [External LinkDOI].
257 D’Eath, P. D. and Payne, P. N., “Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision”, Phys. Rev. D, 46, 658–674 (1992). [External LinkDOI].
258 D’Eath, P. D. and Payne, P. N., “Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function”, Phys. Rev. D, 46, 675–693 (1992). [External LinkDOI].
259 D’Eath, P. D. and Payne, P. N., “Gravitational radiation in high speed black hole collisions. 3. Results and conclusions”, Phys. Rev. D, 46, 694–701 (1992). [External LinkDOI].
260 Deffayet, C., Gao, X., Steer, D. A. and Zahariade, G., “From k-essence to generalised Galileons”, Phys. Rev. D, 84, 064039 (2011). [External LinkDOI], [External LinkarXiv:1103.3260 [hep-th]].
261 Degollado, J. C. and Herdeiro, C. A. R., “Stationary scalar configurations around extremal charged black holes”, Gen. Relativ. Gravit., 45, 2483–2492 (2013). [External LinkDOI], [External LinkarXiv:1303.2392 [gr-qc]].
262 Degollado, J. C. and Herdeiro, C. A. R., “Time evolution of superradiant instabilities for charged black holes in a cavity”, Phys. Rev. D, 89, 063005 (2014). [External LinkDOI], [External LinkarXiv:1312.4579 [gr-qc]].
263 Delsate, T., Hilditch, D. and Witek, H., “Initial value formulation of dynamical Chern-Simons gravity”, Phys. Rev. D, 91, 024027 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1407.6727 [gr-qc]].
264 Dennison, K. A., Wendell, J. P., Baumgarte, T. W. and Brown, J. D., “Trumpet slices of the Schwarzschild-Tangherlini spacetime”, Phys. Rev. D, 82, 124057 (2010). [External LinkDOI], [External LinkarXiv:1010.5723 [gr-qc]].
265 Deppe, N., Leonard, C. D., Taves, T., Kunstatter, G. and Mann, R. B., “Critical Collapse in Einstein-Gauss-Bonnet Gravity in Five and Six Dimensions”, Phys. Rev. D, 86, 104011 (2012). [External LinkDOI], [External LinkarXiv:1208.5250 [gr-qc]].
266 Detweiler, S. and Lindblom, L., “On the nonradial pulsations of general relativistic stellar models”, Astrophys. J., 292, 12–15 (1985). [External LinkDOI].
267 Detweiler, S. L., “Black Holes and Gravitational Waves. I. Circular Orbits About a Rotating Hole”, Astrophys. J., 225, 687–693 (1978). [External LinkDOI].
268 Detweiler, S. L., “Klein–Gordon equation and rotating black holes”, Phys. Rev. D, 22, 2323–2326 (1980). [External LinkDOI].
269 Detweiler, S. L. and Szedenits, E., “Black holes and gravitational waves. II. Trajectories plunging into a nonrotating hole”, Astrophys. J., 231, 211–218 (1979). [External LinkDOI].
270 Dias, Ó. J. C., Figueras, P., Monteiro, R., Reall, H. S. and Santos, J. E., “An instability of higher-dimensional rotating black holes”, J. High Energy Phys., 2010(05), 076 (2010). [External LinkDOI], [External LinkarXiv:1001.4527 [hep-th]].
271 Dias, Ó. J. C., Figueras, P., Monteiro, R. and Santos, J. E., “Ultraspinning instability of rotating black holes”, Phys. Rev. D, 82, 104025 (2010). [External LinkDOI], [External LinkarXiv:1006.1904 [hep-th]].
272 Dias, Ó. J. C., Figueras, P., Monteiro, R., Santos, J. E. and Emparan, R., “Instability and new phases of higher-dimensional rotating black holes”, Phys. Rev. D, 80, 111701 (2009). [External LinkDOI], [External LinkarXiv:0907.2248 [hep-th]].
273 Dias, Ó. J. C., Hartnett, G. S. and Santos, J. E., “Quasinormal modes of asymptotically flat rotating black holes”, Class. Quantum Grav., 31, 245011 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1402.7047 [hep-th]].
274 Dias, Ó. J. C., Horowitz, G. T., Marolf, D. and Santos, J. E., “On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions”, Class. Quantum Grav., 29, 235019 (2012). [External LinkDOI], [External LinkarXiv:1208.5772 [gr-qc]].
275 Dias, Ó. J. C., Horowitz, G. T. and Santos, J. E., “Black holes with only one Killing field”, J. High Energy Phys., 2011(07), 115 (2011). [External LinkDOI], [External LinkarXiv:1105.4167 [hep-th]].
276 Dias, Ó. J. C. and Santos, J. E., “Boundary Conditions for Kerr-AdS Perturbations”, J. High Energy Phys., 2013(10), 156 (2013). [External LinkDOI], [External LinkarXiv:1302.1580 [hep-th]].
277 Dias, Ó. J. C., Santos, J. E. and Stein, M., “Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence”, J. High Energy Phys., 2012(10), 182 (2012). [External LinkDOI], [External LinkarXiv:1208.3322 [hep-th]].
278 Diener, P., “A new general purpose event horizon finder for 3-D numerical space-times”, Class. Quantum Grav., 20, 4901–4918 (2003). [External LinkDOI], [External Linkgr-qc/0305039].
279 Dimopoulos, S. and Landsberg, G. L., “Black holes at the LHC”, Phys. Rev. Lett., 87, 161602 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0106295 [hep-ph]].
280 Dolan, S. R., “Superradiant instabilities of rotating black holes in the time domain”, Phys. Rev. D, 87, 124026 (2013). [External LinkDOI], [External LinkarXiv:1212.1477 [gr-qc]].
281 Dreyer, O., Krishnan, B., Shoemaker, D. and Schnetter, E., “Introduction to isolated horizons in numerical relativity”, Phys. Rev. D, 67, 024018 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0206008].
282 Duenas-Vidal, A. and Vázquez-Mozo, M. A., “Colliding AdS gravitational shock waves in various dimensions and holography”, J. High Energy Phys., 2010(07), 021 (2010). [External LinkDOI], [External LinkarXiv:1004.2609 [hep-th]].
283 Duff, M. J., “Kaluza-Klein theory in perspective”, in Lindström, U., ed., The Oskar Klein Centenary, Proceedings of the Symposium held in Stockholm, Sweden, September 19 – 21, 1994, pp. 22–35, (World Scientific, Singapore; River Edge, NJ, 1995). [External LinkADS], [External LinkarXiv:hep-th/9410046 [hep-th]].
284 Duff, M. J., Khuri, R. R. and Lu, J. X., “String solitons”, Phys. Rep., 259, 213–326 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9412184 [hep-th]].
285 Duff, M. J. and Lu, J. X., “Black and super p-branes in diverse dimensions”, Nucl. Phys. B, 416, 301–334 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9306052 [hep-th]].
286 Eardley, D. M. and Giddings, S. B., “Classical black hole production in high-energy collisions”, Phys. Rev. D, 66, 044011 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0201034 [gr-qc]].
287 Eardley, D. M. and Smarr, L., “Time function in numerical relativity. Marginally bound dust collapse”, Phys. Rev. D, 19, 2239–2259 (1979). [External LinkDOI].
288 East, W. E. and Pretorius, F., “Ultrarelativistic black hole formation”, Phys. Rev. Lett., 110, 101101 (2013). [External LinkDOI], [External LinkarXiv:1210.0443 [gr-qc]].
289 East, W. E., Ramazanoğlu, F. M. and Pretorius, F., “Black Hole Superradiance in Dynamical Spacetime”, Phys. Rev. D, 89, 061503 (2014). [External LinkDOI], [External LinkarXiv:1312.4529 [gr-qc]].
290 Echeverria, F., “Gravitational wave measurements of the mass and angular momentum of a black hole”, Phys. Rev. D, 40, 3194–3203 (1989). [External LinkDOI].
291 Eddington, A. S., The Mathematical Theory of Relativity, (Cambridge University Press, Cambridge, 1924), 2nd edition. 1954 reprint.
292 Ehlers, J., “Isolated systems in general relativity”, Ann. N.Y. Acad. Sci., 336, 279–294 (1980). [External LinkDOI].
293 Einstein, A., “Die Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1915, 844–847 (1915).
294 Einstein, A., “Näherungsweise Integration der Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916, 688–696 (1916). [External LinkADS].
295 Einstein, A., “Näherungsweise Integration der Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916, 688–696 (1916). [External LinkADS].
296 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154–167 (1918). [External LinkADS].
297 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154–167 (1918).
298 Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math. (2), 39, 65–100 (1938). [External LinkDOI].
299 “Einstein Telescope”, project homepage, European Gravitational Observatory (EGO), (2008). URL (accessed 2 April 2014):
External Link
300 “Einstein Toolkit: Open software for relativistic astrophysics”, project homepage, Louisiana State University. URL (accessed 2 April 2014):
External Link
301 “ELI - extreme light infrastructure”, project homepage, ELI Delivery Consortium. URL (accessed 2 April 2014):
External Link
302 “eLISA”, project homepage, Max Planck Institute for Gravitational Physics (Albert Einstein Institute). URL (accessed 2 April 2014):
External Link
303 Elvang, H. and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701035 [hep-th]].
304 Emparan, R., Masip, M. and Rattazzi, R., “Cosmic rays as probes of large extra dimensions and TeV gravity”, Phys. Rev. D, 65, 064023 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0109287 [hep-ph]].
305 Emparan, R. and Myers, R. C., “Instability of ultra-spinning black holes”, J. High Energy Phys., 2003(09), 025 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0308056 [hep-th]].
306 Emparan, R. and Reall, H. S., “Generalized Weyl solutions”, Phys. Rev. D, 65, 084025 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0110258 [hep-th]].
307 Emparan, R. and Reall, H. S., “A rotating black ring solution in five dimensions”, Phys. Rev. Lett., 88, 101101 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0110260 [hep-th]].
308 Emparan, R. and Reall, H. S., “Black Holes in Higher Dimensions”, Living Rev. Relativity, 11, lrr-2008-6 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.3471 [hep-th]]. URL (accessed 2 April 2014):
309 Emparan, R., Suzuki, R. and Tanabe, K., “The large D limit of General Relativity”, J. High Energy Phys., 2013(06), 009 (2013). [External LinkDOI], [External LinkarXiv:1302.6382 [hep-th]].
310 Emparan, R., Suzuki, R. and Tanabe, K., “Instability of rotating black holes: large D analysis”, J. High Energy Phys., 2014(06), 106 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1402.6215 [hep-th]].
311 Eppley, K. R., The Numerical Evolution of the Collision of Two Black Holes, Ph.D. thesis, (Princeton University, Princeton, New Jersey, 1975). [External LinkADS].
312 Estabrook, F., Wahlquist, H., Christensen, S., DeWitt, B., Smarr, L. et al., “Maximally slicing a black hole”, Phys. Rev. D, 7, 2814–2817 (1973). [External LinkDOI].
313 Etienne, Z. B., Baker, J. G., Paschalidis, V., Kelly, B. J. and Shapiro, S. L., “Improved moving puncture gauge conditions for compact binary evolutions”, Phys. Rev. D, 90, 064032 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1404.6523 [astro-ph]].
314 Fefferman, C. and Graham, R., “Conformal invariants”, in Élie Cartan et les Mathématiques d’Aujourd’hui, The mathematical heritage of Elie Cartan, Lyon, 25 – 29, 1984, Astérisque, p. 95. Société mathématique de France, (1985).
315 Feng, J. L. and Shapere, A. D., “Black hole production by cosmic rays”, Phys. Rev. Lett., 88, 021303 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0109106 [hep-ph]].
316 Ferrari, V. and Gualtieri, L., “Quasi-Normal Modes and Gravitational Wave Astronomy”, Gen. Relativ. Gravit., 40, 945–970 (2008). [External LinkDOI], [External LinkarXiv:0709.0657 [gr-qc]].
317 Ferrari, V. and Ruffini, R., “On the structure of gravitational wave bursts: implosion with finite kinetic energy”, Phys. Lett. B, 98, 381–384 (1981). [External LinkDOI].
318 Figueras, P. and Wiseman, T., “Gravity and large black holes in Randall-Sundrum II braneworlds”, Phys. Rev. Lett., 107, 081101 (2011). [External LinkDOI], [External LinkarXiv:1105.2558 [hep-th]].
319 Figueras, P. and Wiseman, T., “Stationary holographic plasma quenches and numerical methods for non-Killing horizons”, Phys. Rev. Lett., 110, 171602 (2013). [External LinkDOI], [External LinkarXiv:1212.4498 [hep-th]].
320 Finkelstein, D., “Past-Future Asymmetry of the Gravitational Field of a Point Particle”, Phys. Rev., 110, 965–967 (1958). [External LinkDOI].
321 Fischer, A. E. and Marsden, J. E., “The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I”, Commun. Math. Phys., 28, 1–38 (1972). [External LinkDOI].
322 Fitchett, M. J., “The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system”, Mon. Not. R. Astron. Soc., 203, 1049–1062 (1983). [External LinkDOI].
323 Flanagan, E. E. and Hinderer, T., “Constraining neutron star tidal Love numbers with gravitational wave detectors”, Phys. Rev. D, 77, 021502 (2008). [External LinkDOI], [External LinkarXiv:0709.1915 [astro-ph]].
324 Fock, V, “On motion of finite masses in general relativity”, J. Phys.(Moscow), 1, 81–116 (1939).
325 Fock, V. A., The Theory of Space, Time and Gravitation, (Pergamon Press, Oxford; New York, 1964), 2nd rev. edition.
326 Fodor, G., Forgács, P. and Grandclément, P., “Scalar field breathers on anti-de Sitter background”, Phys. Rev. D, 89, 065027 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1312.7562 [hep-th]].
327 Fourès-Bruhat, Y., “Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires”, Acta Math., 88, 141–225 (1952). [External LinkDOI].
328 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1 (2004). [External LinkDOI], [External LinkADS]. URL (accessed 2 April 2014):
329 Frauendiener, J. and Hein, M., “Numerical evolution of axisymmetric, isolated systems in general relativity”, Phys. Rev. D, 66, 124004 (2002). [External LinkDOI], [External Linkgr-qc/0207094].
330 Friedman, J. L. and Stergioulas, N., Rotating Relativistic Stars, Cambridge Monographs on Mathematical Physics, (Cambridge Uiversity Press, Cambridge; New York, 2013). [External LinkADS].
331 Friedrich, H., “The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system”, Proc. R. Soc. London, Ser. A, 378, 401–421 (1981). [External LinkDOI].
332 Friedrich, H., “On the Regular and Asymptotic Characteristic Initial Value Problem for Einstein’s Vacuum Field Equations”, Proc. R. Soc. London, Ser. A, 375, 169–184 (1981). [External LinkDOI].
333 Friedrich, H., “On the Hyperbolicity of Einstein’s and Other Gauge Field Equations”, Commun. Math. Phys., 100, 525 (1985). [External LinkDOI].
334 Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451–1469 (1996). [External LinkDOI].
335 Friedrich, H. and Nagy, G., “The Initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619–655 (1999). [External LinkDOI].
336 Frost, J. A., Gaunt, J. R., Sampaio, M. O. P., Casals, M., Dolan, S. R. et al., “Phenomenology of Production and Decay of Spinning Extra-Dimensional Black Holes at Hadron Colliders”, J. High Energy Phys., 2009(10), 014 (2009). [External LinkDOI], [External LinkarXiv:0904.0979 [hep-ph]].
337 Fujii, Y. and Maeda, K.-I., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003). [External LinkADS], [External LinkGoogle Books].
338 Fujita, R., Hikida, W. and Tagoshi, H., “An Efficient Numerical Method for Computing Gravitational Waves Induced by a Particle Moving on Eccentric Inclined Orbits around a Kerr Black Hole”, Prog. Theor. Phys., 121, 843–874 (2009). [External LinkDOI], [External LinkarXiv:0904.3810 [gr-qc]].
339 Furuhashi, H. and Nambu, Y., “Instability of massive scalar fields in Kerr-Newman space-time”, Prog. Theor. Phys., 112, 983–995 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0402037 [gr-qc]].
340 Galley, C. R. and Hu, B. L., “Self-force on extreme mass ratio inspirals via curved spacetime effective field theory”, Phys. Rev. D, 79, 064002 (2009). [External LinkDOI], [External LinkarXiv:0801.0900 [gr-qc]].
341 Garat, A. and Price, R. H., “Nonexistence of conformally flat slices of the Kerr spacetime”, Phys. Rev. D, 61, 124011 (2000). [External LinkDOI], [External Linkgr-qc/0002013].
342 Garay, L. J. and García-Bellido, J., “Jordan-Brans-Dicke quantum wormholes and Coleman’s mechanism”, Nucl. Phys. B, 400, 416–434 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9209015 [gr-qc]].
343 Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev. D, 65, 044029 (2002). [External LinkDOI], [External Linkgr-qc/0110013].
344 Garfinkle, D., Cutler, C. and Duncan, G. C., “Choptuik scaling in six dimensions”, Phys. Rev. D, 60, 104007 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9908044 [gr-qc]].
345 Garrison, D., “Numerical Relativity as a Tool for Studying the Early Universe”, J. Gravity, 2014, 407197 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.7097 [gr-qc]].
346 Gerlach, U. H. and Sengupta, U. K., “Gauge invariant perturbation on most general spherically symmetric space-times”, Phys. Rev. D, 19, 2268–2272 (1979). [External LinkDOI].
347 Geroch, R., “A method for generating solutions of Einstein’s equations”, J. Math. Phys., 12, 918–924 (1970). [External LinkDOI].
348 Giacomazzo, B., Rezzolla, L. and Stergioulas, N., “Collapse of differentially rotating neutron stars and cosmic censorship”, Phys. Rev. D, 84, 024022 (2011). [External LinkDOI], [External LinkarXiv:1105.0122 [gr-qc]].
349 Gibbons, G. W., “The Maximum tension principle in general relativity”, Found. Phys., 32, 1891–1901 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0210109 [hep-th]].
350 Gibbons, G. W., Lu, H., Page, D. N. and Pope, C. N., “Rotating black holes in higher dimensions with a cosmological constant”, Phys. Rev. Lett., 93, 171102 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0409155 [hep-th]].
351 Gibbons, G. W., Lu, H., Page, D. N. and Pope, C. N., “The general Kerr–de Sitter metrics in all dimensions”, J. Geom. Phys., 53, 49–73 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0404008 [hep-th]].
352 Gibbons, G. W. and Maeda, K.-I., “Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields”, Nucl. Phys. B, 298, 741 (1988). [External LinkDOI].
353 Giddings, S. B. and Thomas, S. D., “High-energy colliders as black hole factories: The End of short distance physics”, Phys. Rev. D, 65, 056010 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0106219 [hep-ph]].
354 Glampedakis, K., “Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity”, Class. Quantum Grav., 22, S605–S659 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0509024 [gr-qc]].
355 Gold, R. and Brügmann, B., “Radiation from low-momentum zoom-whirl orbits”, Class. Quantum Grav., 27, 084035 (2010). [External LinkDOI], [External LinkarXiv:0911.3862 [gr-qc]].
356 Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F. and Sudarshan, E. C. G., “Spin-s Spherical Harmonics and ”, J. Math. Phys., 8, 2155–2161 (1967).
357 Goldberg, J. N. and Sachs, R. K., “A theorem on Petrov types”, Acta Phys. Pol. (Suppl.), 22, 13 (1962). [External LinkDOI], [External LinkADS]. republication.
358 Goldberger, W. D., “Les Houches lectures on effective field theories and gravitational radiation”, arXiv, e-print, (2007). [External LinkADS], [External LinkarXiv:hep-ph/0701129].
359 Goldstine, H. H., The Computer: from Pascal to von Neumann, (Princeton University Press, Princeton, NJ, 1972).
360 Goldstine, H. H., ed., A History of Numerical Analysis from the 16th Through the 19th Century, Studies in the History of Mathematics and Physical Sciences, 2, (Springer, New York; Heidelberg, 1977). [External LinkADS].
361 Goldwirth, D. S. and Piran, T., “Gravitational Collapse of Massless Scalar Field and Cosmic Censorship”, Phys. Rev. D, 36, 3575 (1987). [External LinkDOI].